(±)-Talapyrones A−F: six pairs of dimeric polyketide enantiomers with unusual 6/6/6 and 6/6/6/5 ring systems from Talaromycesadpressus

Meijia Zheng , Xinyi Zhao , Chenxi Zhou , Hong Liao , Qin Li , Yuling Lu , Bingbing Dai , Weiguang Sun , Ying Ye , Chunmei Chen , Yonghui Zhang , Hucheng Zhu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) : 932 -937.

PDF (10260KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) :932 -937. DOI: 10.1016/S1875-5364(25)60928-9
Original article
research-article

(±)-Talapyrones A−F: six pairs of dimeric polyketide enantiomers with unusual 6/6/6 and 6/6/6/5 ring systems from Talaromycesadpressus

Author information +
History +
PDF (10260KB)

Abstract

(±)-Talapyrones A−F (1−6), six pairs of dimeric polyketide enantiomers featuring unusual 6/6/6 and 6/6/6/5 ring systems, were isolated from the fungus Talaromyces adpressus. Their structures were determined by spectroscopic analysis and HR-ESI-MS data, and their absolute configurations were elucidated using a modified Mosher’s method and electronic circular dichroism (ECD) calculations. (±)-Talapyrones A−F (1−6) possess a 6/6/6 tricyclic skeleton, presumably formed through a Michael addition reaction between one molecule of α-pyrone derivative and one molecule of C8 poly-β-keto chain. In addition, compounds 2/3 and 4/5 are two pairs of C-18 epimers, respectively. Putative biosynthetic pathways of 1−6 were discussed.

Keywords

Polyketides / Talaromyces adpressus / Enantiomers / Structure elucidation / Biosynthetic pathways

Cite this article

Download citation ▾
Meijia Zheng, Xinyi Zhao, Chenxi Zhou, Hong Liao, Qin Li, Yuling Lu, Bingbing Dai, Weiguang Sun, Ying Ye, Chunmei Chen, Yonghui Zhang, Hucheng Zhu. (±)-Talapyrones A−F: six pairs of dimeric polyketide enantiomers with unusual 6/6/6 and 6/6/6/5 ring systems from Talaromycesadpressus. Chinese Journal of Natural Medicines, 2025, 23(8): 932-937 DOI:10.1016/S1875-5364(25)60928-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao SS, Tian KL, Li Y, et al. Enantiomeric dibenzo-α-pyrone derivatives from Alternaria alternata ZHJG5 and their potential as agrochemicals. J Agric Food Chem. 2020; 68(51):15115-15122. https://doi.org/10.1021/acs.jafc.0c04106.

[2]

Liu Y, Wang W, Miao J. New antiproliferative dibenzo-α-pyrone from whole plants of Centella asiatica. Nat Prod Commun. 2021; 16(3):1-4. https://doi.org/10.1177/1934578X211003019.

[3]

Amin M, Liang X, Ma X, et al. New pyrone and cyclopentenone derivatives from marine-derived fungus Aspergillus sydowii SCSIO 00305. Nat Prod Res. 2021; 35(2):318-326. https://doi.org/10.1080/14786419.2019.1629919.

[4]

Xian PJ, Chen HY, Feng Z, et al. Capsulactone: a new 4-hydroxy-α-pyrone derivative from an endophytic fungus Penicillium capsulatum and its antimicrobial activity. J Asian Nat Prod Res. 2021; 23(11):1100-1106. https://doi.org/10.1080/10286020.2020.1847092.

[5]

Hou XF, Song YJ, Zhang M, et al. Enzymology of anthraquinone-γ-pyrone ring formation in complex aromatic polyketide biosynthesis. Angew Chem Int Ed. 2018; 57(41):13475-13479. https://doi.org/10.1002/anie.201806729.

[6]

Qiu P, Liu JQ, Zhao LS, et al. Inoscavin A, a pyrone compound isolated from a Sanghuangporus vaninii extract, inhibits colon cancer cell growth and induces cell apoptosis via the hedgehog signaling pathway. Phytomedicine. 2022;96:153852. https://doi.org/10.1016/j.phymed.2021.153852.

[7]

Zhou W, Zhuang YB, Bai YF, et al. Biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. Microb Cell Fact. 2016; 15(1):149. https://doi.org/10.1186/s12934-016-0549-9.

[8]

Wang MH, Yang LH, Feng LB, et al. Verruculosins A-B, new oligophenalenone dimers from the soft coral-derived fungus Talaromyces verruculosus. Mar Drugs. 2019; 17(9):516. https://doi.org/10.3390/md17090516.

[9]

Chaiyosang B, Kanokmedhakul K, Sanmanoch W, et al. Bioactive oxaphenalenone dimers from the fungus Talaromyces macrosporus KKU-1NK8. Fitoterapia. 2019; 134:429-434. https://doi.org/10.1016/j.fitote.2019.03.015.

[10]

Yurchenko EA, Menchinskaya ES, Pislyagin EA, et al. Cytoprotective activity of p-terphenyl polyketides and flavuside B from marine-derived fungi against oxidative stress in neuro-2a cells. Molecules. 2021; 26(12):3618. https://doi.org/10.3390/molecules26123618.

[11]

Song Q, Yang SQ, Li XM, et al. Aromatic polyketides from the deep-sea cold-seep mussel associated endozoic fungus Talaromyces minioluteus CS-138. Mar Drugs. 2022; 20(8):529. https://doi.org/10.3390/md20080529.

[12]

Cao X, Ge YC, Lan DH, et al. Spirocyclic polyketides from the marine fungus Talaromyces sp. CX11. Fitoterapia. 2023;164:105359. https://doi.org/10.1016/j.fitote.2022.105359.

[13]

Cao X, Shi YT, Wu XD, et al. Talaromyolides A-D and talaromytin: polycyclic meroterpenoids from the fungus Talaromyces sp. CX11. Org Lett. 2019; 21(16):6539-6542. https://doi.org/10.1021/acs.orglett.9b02466.

[14]

Huang ZH, Liang X, Li CJ, et al. Talaromynoids A-I, highly oxygenated meroterpenoids from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517 and their lipid accumulation inhibitory activities. J Nat Prod. 2021; 84(10):2727-2737. https://doi.org/10.1021/acs.jnatprod.1c00681.

[15]

Li XY, Awakawa T, Mori T, et al. Heterodimeric non-heme iron enzymes in fungal meroterpenoid biosynthesis. J Am Chem Soc. 2021; 143(50):21425-21432. https://doi.org/10.1021/jacs.1c11548.

[16]

Zhang M, Yan S, Liang Y, et al. Talaronoids A-D: four fusicoccane diterpenoids with an unprecedented tricyclic 5/8/ 6 ring system from the fungus Talaromyces stipitatus. Org Chem Front. 2020; 7(21):3486-3492. https://doi.org/10.1039/D0QO00960A.

[17]

Li Q, Zheng MJ, Li FL, et al. Talarolactones A-G, α-pyrone dimers with anti-inflammatory activities from Talaromyces adpressus, and their biosynthetic pathways. Org Lett. 2023; 25(10):1616-1621. https://doi.org/10.1021/acs.orglett.2c04352.

[18]

Zhang M, Li Q, Li SJ, et al. An unprecedented ergostane with a 6/6/ 5 tricyclic 13(14→8)abeo-8,14-seco skeleton from Talaromyces adpressus. Bioorg Chem. 2022;127:105943. https://doi.org/10.1016/j.bioorg.2022.105943.

[19]

Zhang M, Deng YF, Liu F, et al. Five undescribed steroids from Talaromyces stipitatus and their cytotoxic activities against hepatoma cell lines. Phytochemistry. 2021;189:112816. https://doi.org/10.1016/j.phytochem.2021.112816.

[20]

Chadni Z, Rahaman MH, Jerin I, et al. Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology. 2017; 8(1):48-57. https://doi.org/10.1080/21501203.2017.1302013.

[21]

Morales-Oyervides L, Ruiz-Sanchez JP, Oliveira JC, et al. Biotechnological approaches for the production of natural colorants by Talaromyces/Penicillium: a review. Biotechnol Adv. 2020;43:107601. https://doi.org/10.1016/j.biotechadv.2020.107601.

[22]

Jain L, Kurmi AK, Agrawal D. Conclusive selection of optimal parameters for cellulase production by Talaromyces verruculosus IIPC 324 under SSF via saccharification of acid-pretreated sugarcane bagasse. Biofuels. 2018; 12(1):61-69. https://doi.org/10.1080/17597269.2018.1449063.

[23]

Lambre C, Baviera JMB, Bolognesi C, et al. Safety evaluation of the food enzyme containing endo-polygalacturonase and cellulase from the non-genetically modified Talaromyces cellulolyticus strain NITE BP-03478. EFSA J. 2023; 21(2):7840. https://doi.org/10.2903/j.efsa.2023.7840.

[24]

Hong X, Guan XQ, Lai QL, et al. Characterization of a bioactive meroterpenoid isolated from the marine-derived fungus Talaromyces sp. Appl Microbiol Biotechnol. 2022; 106(8):2927-2935. https://doi.org/10.1007/s00253-022-11914-1.

[25]

Zang Y, Genta-Jouve G, Escargueil AE, et al. Antimicrobial oligophenalenone dimers from the soil fungus Talaromyces stipitatus. J Nat Prod. 2016; 79(12):2991-2996. https://doi.org/10.1021/acs.jnatprod.6b00458.

[26]

Zang Y, Genta-Jouve G, Retailleau P, et al. Talaroketals A and B, unusual bis(oxaphenalenone) spiro and fused ketals from the soil fungus Talaromyces stipitatus ATCC 10500. Org Biomol Chem. 2016; 14(9):2691-2697. https://doi.org/10.1039/C5OB02657A.

[27]

Cong MJ, Zhang Y, Feng XY, et al. Anti-inflammatory alkaloids from the cold-seep-derived fungus Talaromyces helicus SCSIO41311. 3 Biotech. 2022; 12(8):161. https://doi.org/10.1007/s13205-022-03237-9.

[28]

Asai T, Chung YM, Sakurai H, et al. Tenuipyrone, a novel skeletal polyketide from the entomopathogenic fungus, Isaria tenuipes, cultivated in the presence of epigenetic modifiers. Org Lett. 2012; 14(2):513-515. https://doi.org/10.1021/ol203097b.

[29]

Luo JG, Wang XB, Xu YM, et al. Delitschiapyrone A, a pyrone-naphthalenone adduct bearing a new pentacyclic ring system from the leaf-associated fungus Delitschia sp. FL1581. Org Lett. 2014; 16(22):5944-5947. https://doi.org/10.1021/ol502973c.

[30]

Li FL, Ye Z, Huang ZY, et al. New α-pyrone derivatives with herbicidal activity from the endophytic fungus Alternaria brassicicola. Bioorg Chem. 2021;117:105452. https://doi.org/10.1016/j.bioorg.2021.105452.

[31]

Ohtani I, Kusumi T, Kashman Y, et al. High-field FT NMR application of Mosher’s method. The absolute configurations of marine terpenoids. J Am Chem Soc. 1991; 113(11):4092-4096. https://doi.org/10.1021/ja00011a006.

[32]

Zheng MJ, Zhou CX, Liao H, et al. Enantiomeric α-pyrone derivatives with immunosuppressive activity from Talaromyces adpressus. Phytochemistry. 2023;218:113931. https://doi.org/10.1016/j.phytochem.2023.113931.

[33]

Zheng MJ, Xiao Y, Li Q, et al. Cytotoxic ergosteroids from a strain of the fungus Talaromyces adpressus. J Nat Prod. 2023; 86(9):2081-2090. https://doi.org/10.1021/acs.jnatprod.3c00089.

PDF (10260KB)

90

Accesses

0

Citation

Detail

Sections
Recommended

/