Facilitating microglial phagocytosis by which Jiawei Xionggui Decoction alleviates cognitive impairment via TREM2-mediated energy metabolic reprogramming

Wen Wen , Jie Chen , Junbao Xiang , Shiqi Zhang , Jingru Liu , Jie Wang , Ping Wang , Shijun Xu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) : 909 -919.

PDF (12388KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) :909 -919. DOI: 10.1016/S1875-5364(25)60927-7
Original article
research-article

Facilitating microglial phagocytosis by which Jiawei Xionggui Decoction alleviates cognitive impairment via TREM2-mediated energy metabolic reprogramming

Author information +
History +
PDF (12388KB)

Abstract

Triggering receptor expressed on myeloid cells 2 (TREM2)-mediated microglial phagocytosis is an energy-intensive process that plays a crucial role in amyloid beta (Aβ) clearance in Alzheimer’s disease (AD). Energy metabolic reprogramming (EMR) in microglia induced by TREM2 presents therapeutic targets for cognitive impairment in AD. Jiawei Xionggui Decoction (JWXG) has demonstrated effectiveness in enhancing energy supply, protecting microglia, and mitigating cognitive impairment in APP/PS1 mice. However, the mechanism by which JWXG enhances Aβ phagocytosis through TREM2-mediated EMR in microglia remains unclear. This study investigates how JWXG facilitates microglial phagocytosis and alleviates cognitive deficits in AD through TREM2-mediated EMR. Microglial phagocytosis was evaluated through immunofluorescence staining in vitro and in vivo. The EMR level of microglia was assessed using high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) kits. The TREM2/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway was analyzed using Western blotting in BV2 cells. TREM2−/− BV2 cells were utilized for reverse validation experiments. The Aβ burden, neuropathological features, and cognitive ability in APP/PS1 mice were evaluated using ELISA kits, immunohistochemistry (IHC), and the Morris water maze (MWM) test. JWXG enhanced both the phagocytosis of EMR disorder-BV2 cells (EMRD-BV2) and increased EMR levels. Notably, these effects were significantly reversed in TREM2−/− BV2 cells. JWXG elevated TREM2 expression, adenosine triphosphate (ATP) levels, and microglial phagocytosis in APP/PS1 mice. Additionally, JWXG reduced Aβ-burden, neuropathological lesions, and cognitive deficits in APP/PS1 mice. In conclusion, JWXG promoted TREM2-induced EMR and enhanced microglial phagocytosis, thereby reducing Aβ deposition, improving neuropathological lesions, and alleviating cognitive deficits.

Keywords

Akt/mTOR/HIF-1α / Energy metabolic reprogramming / Jiawei Xionggui Decoction / Microglial phagocytosis / Triggering receptor expressed on myeloid cells 2 (TREM2)

Cite this article

Download citation ▾
Wen Wen, Jie Chen, Junbao Xiang, Shiqi Zhang, Jingru Liu, Jie Wang, Ping Wang, Shijun Xu. Facilitating microglial phagocytosis by which Jiawei Xionggui Decoction alleviates cognitive impairment via TREM2-mediated energy metabolic reprogramming. Chinese Journal of Natural Medicines, 2025, 23(8): 909-919 DOI:10.1016/S1875-5364(25)60927-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

van Dyck CH, Swanson CJ, Aisen P, et al.Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023; 388(1):9-21. https://doi.org/10.1056/NEJMoa2212948.

[2]

Bassil F, Brown HJ, Pattabhiraman S, et al. Amyloid-beta (Aβ) plaques promote seeding and spreading of α-synuclein and tau in a mouse model of lewy body disorders with Aβ pathology. Neuron. 2020; 105(2):260-275.e6. https://doi.org/10.1016/j.neuron.2023.10.030.

[3]

Jucker M, Walker LC. Alzheimer’s disease: from immunotherapy to immunoprevention. Cell. 2023; 186(20):4260-4270. https://doi.org/10.1016/j.cell.2023.08.021.

[4]

Evans CD, Sparks J, Andersen SW, et al. APOE ε4’s impact on response to amyloid therapies in early symptomatic Alzheimer’s disease: analyses from multiple clinical trials. Alzheimers Dement. 2023; 19(12):5407-5417. https://doi.org/10.1002/alz.13128.

[5]

Cummings J, Apostolova L, Rabinovici GD, et al.Lecanemab: appropriate use recommendations. J Prev Alzheimers Dis. 2023; 10(3):362-377. https://doi.org/10.14283/jpad.2023.30.

[6]

Söderberg L, Johannesson M, Nygren P, et al. Lecanemab, aducanumab, and gantenerumab-binding profiles to different forms of amyloid-β might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics. 2023; 20(1):195-206. https://doi.org/10.1007/s13311-022-01308-6.

[7]

Grubman A, Choo XY, Chew G, et al. Transcriptional signature in microglia associated with Aβ plaque phagocytosis. Nat Commun. 2021; 12(1):3015. https://doi.org/10.1038/s41467-021-23111-1.

[8]

Parhizkar S, Gent G, Chen Y, et al. Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice. Sci Transl Med. 2023; 15(693):eade6285. https://doi.org/10.1126/scitranslmed.ade6285.

[9]

Ulland TK, Song WM, Huang SC, et al. TREM2 maintains mmicroglial metabolic fitness in Alzheimer’s disease. Cell. 2017; 170(4):649-663.e13. https://doi.org/10.1016/j.cell.2017.07.023.

[10]

Li L, Chen Q, Qin Y, et al. Regulation of TREM2 on BV2 inflammation through PI3K/AKT/mTOR pathway. Biotechnol Genet Eng Rev. 2024; 40(4):4040-4061. https://doi.org/10.1080/02648725.2023.2204719.

[11]

Shi Q, Chang C, Saliba A, et al. Microglial mTOR activation upregulates TREM2 and enhances β-amyloid plaque clearance in the 5XFAD Alzheimer’s disease model. J Neurosci. 2022; 42(27):5294-5313. https://doi.org/10.1523/JNEUROSCI.2427-21.2022.

[12]

Baik SH, Kang S, Lee W, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 2019; 30(3):493-507.e6. https://doi.org/10.1016/j.cmet.2019.06.005.

[13]

Liu J, Feng R, Wang D, et al. Triclosan-induced glycolysis drives inflammatory activation in microglia via the Akt/mTOR/HIF 1α signaling pathway. Ecotoxicol Environ Saf. 2021;224:112664. https://doi.org/10.1016/j.ecoenv.2021.112664.

[14]

Breda CNS, Davanzo GG, Basso PJ, et al. Mitochondria as central hub of the immune system. Redox Biol. 2019;26:101255. https://doi.org/10.1016/j.redox.2019.101255.

[15]

Lu J, Wang C, Cheng X, et al. A breakdown in microglial metabolic reprogramming causes internalization dysfunction of α-synuclein in a mouse model of Parkinson’s disease. J Neuroinflammation. 2022; 19(1):113. https://doi.org/10.1186/s12974-022-02484-0.

[16]

Lu J, Zhou W, Dou F, et al. TRPV1 sustains microglial metabolic reprogramming in Alzheimer’s disease. EMBO Rep. 2021; 22(6):e52013. https://doi.org/10.15252/embr.202052013.

[17]

Huang Y, Happonen KE, Burrola PG, et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol. 2021; 22(5):586-594. https://doi.org/10.1038/s41590-021-00913-5.

[18]

Zhao P, Xu Y, Jiang L, et al. A tetravalent TREM2 agonistic antibody reduced amyloid pathology in a mouse model of Alzheimer’s disease. Sci Transl Med. 2022; 14(661):eabq0095. https://doi.org/10.1126/scitranslmed.abq0095.

[19]

Zhao N, Bu G. A TREM2 antibody energizes microglia. Nat Neurosci. 2023; 26(3):366-368. https://doi.org/10.1038/s41593-023-01265-z.

[20]

Han X, Xu T, Fang Q, et al. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol. 2021;44:102010. https://doi.org/10.1016/j.redox.2021.102010.

[21]

Li N, Yan X, Huang W, et al. Curcumin protects against the age-related hearing loss by attenuating apoptosis and senescence via activating Nrf2 signaling in cochlear hair cells. Biochem Pharmacol. 2023;212:115575. https://doi.org/10.1016/j.bcp.2023.115575.

[22]

Fernandes F, Barroso MF, De Simone A, et al. Multi-target neuroprotective effects of herbal medicines for Alzheimer’s disease. J Ethnopharmacol. 2022;290:115107. https://doi.org/10.1016/j.jep.2022.115107.

[23]

Ospondpant D, Xia Y, Lai QWS, et al. The extracts of Dracaena cochinchinensis stemwood suppress inflammatory response and phagocytosis in lipopolysaccharide-activated microglial cells. Phytomedicine. 2023;118:154936. https://doi.org/10.1016/j.phymed.2023.154936.

[24]

Liu H, Wang J, Sekiyama A, et al. Juzen-Taiho-To, an herbal medicine, activates and enhances phagocytosis in microglia/macrophages. Tohoku J Exp Med. 2008; 215(1):43-54. https://doi.org/10.1620/tjem.215.43.

[25]

Li P, Huang FK, Yang C, et al. Advance in studies on traditional Chinese medicine on Aβ’s scavenging effect. Chin J Chin Mater Med. 2013; 38(23):4020-4023. https://doi.org/10.4268/cjcmm20132305.

[26]

Wei J, Fu W, Chen H, et al. Tongluo Xingnao effervescent tablets ameliorates cognitive function of SAMP8 mice via Nampt/SIRT1/FOXO3 pathway. Chin Tradit Pat Med. 2017; 39(4):684-689. https://doi.org/10.3969/j.issn.1001-1528.2017.04.00.

[27]

Dai Y, Ma T, Ren X, et al. Tongluo Xingnao effervescent tablet preserves mitochondrial energy metabolism and attenuates cognition deficits in APPswe/PS1De9 mice. Neurosci Lett. 2016; 630:101-108. https://doi.org/10.1016/j.neulet.2016.07.044.

[28]

Fu WJ. Studies on the Effect of Tongluoxingnao Effervescent Tablet on Aβ Metabolism in Transgenic AD Models. Chendu Universtiy of TCM, 2017.

[29]

Hu Y, Ju SH, Zhang YJ, et al. Effect of Tongluo Xingnao effervescent tablets on learning and memory dysfunction in rats with chronic cerebral ischemia. Chin J Chin Mater Med. 2014; 39(10):1908-1912. https://doi.org/10.4268/cjcmm20141029.

[30]

Zhang YJ, Dai Y, Hu Y, et al. Effect of Tongluo Xingnao effervescent tablet on learning and memory of AD rats and expression of insulin-degrading enzyme in hippocampus. Chin J Chin Mater Med. 2013; 38(17):2863-2867. https://doi.org/mdl-24380312.

[31]

Fu WJ, Yuan D, Tao M, et al. Tongluo Xingnao effervescent tablet reverses memory deficit and reduces plaque load in APPswe/PS1dE9 mice. Exp Ther Med. 2018; 15(4):4005-4013. https://doi.org/10.3892/etm.2018.5897.

[32]

Hu Y. Studies on the Effect of Tongluoxingnao Effervescent Tablet on Brain Energy Metabolism in Multi-infarct Dementia Rats. Chendu Universtiy of TCM, 2015.

[33]

Li J, Chen X, Li X, et al. Cryptochlorogenic acid and its metabolites ameliorate myocardial hypertrophy through a HIF1α-related pathway. Food Funct. 2022; 13(4):2269-2282. https://doi.org/10.1039/D1FO03838A.

[34]

Yang J, Jia Z, Xiao Z, et al. Baicalin rescues cognitive dysfunction, mitigates neurodegeneration, and exerts anti-epileptic effects through activating TLR4/MYD88/Caspase-3 pathway in rats. Drug Des Devel Ther. 2021; 15:3163-3180. https://doi.org/10.2147/DDDT.S314076.

[35]

Jin X, Liu MY, Zhang DF, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther. 2019; 25(5):575-590. https://doi.org/10.1111/cns.13086.

[36]

Li Z, Zheng G, Wang N, et al. A Flower-like brain targeted selenium nanocluster lowers the chlorogenic acid dose for ameliorating cognitive impairment in APP/PS1 mice. J Agric Food Chem. 2023; 71(6):2883-2897. https://doi.org/10.1021/acs.jafc.2c06809.

[37]

Shi D, Hao Z, Qi W, et al. Aerobic exercise combined with chlorogenic acid exerts neuroprotective effects and reverses cognitive decline in Alzheimer’s disease model mice (APP/PS1) via the SIRT1/PGC-1α/PPARγ signaling pathway. Front Aging Neurosci. 2023;15:1269952. https://doi.org/10.3389/fnagi.2023.1269952.

[38]

Mahaman YAR, Huang F, Salissou MTM, et al. Ferulic acid improves synaptic plasticity and cognitive impairments by alleviating the PP2B/DARPP-32/PP1 axis-mediated STEP increase and Aβ burden in Alzheimer’s disease. Neurotherapeutics. 2023; 20(4):1081-1108. https://doi.org/10.1007/s13311-023-01356-6.

[39]

Shi J, Chen J, Xie X, et al. Baicalein-corrected gut microbiota may underlie the amelioration of memory and cognitive deficits in APP/PS1 mice. Front Pharmacol. 2023;14:1132857. https://doi.org/10.3389/fphar.2023.1132857.

[40]

Cai Q, Li Y, Pei G. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. J Neuroinflammation. 2017; 14(1):63. https://doi.org/10.1186/s12974-017-0839-0.

[41]

Chen Y, Yang C, Zou M, et al. Inhibiting mitochondrial inflammation through Drp1/HK1/NLRP3 pathway: a mechanism of alpinetin attenuated aging-associated cognitive impairment. Phytother Res. 2023; 37(6):2454-2471. https://doi.org/10.1002/ptr.7767.

[42]

Zhan M, Liu X, Xia X, et al. Promotion of neuroinflammation by the glymphatic system: a new insight into ethanol extracts from Alisma orientale in alleviating obesity-associated cognitive impairment. Phytomedicine. 2024;122:155147. https://doi.org/10.1016/j.phymed.2023.155147.

[43]

Yang C, Lu L, Liao L, et al. Establishment of GC-MS method for the determination of Pseudomonas aeruginosa biofilm and its application in metabolite enrichment analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1179:122839. https://doi.org/10.1016/j.jchromb.2021.122839.

[44]

Wang Y, Cella M, Mallinson K, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. 2015; 160(6):1061-1071. https://doi.org/10.1016/j.cell.2015.01.049.

[45]

Kapogiannis D, Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 2011; 10(2):187-198. https://doi.org/10.1016/S1474-4422(10)70277-5.

[46]

Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020; 19(9):609-633. https://doi.org/10.1038/s41573-020-0072-x.

[47]

Terada T, Obi T, Bunai T, et al. In vivo mitochondrial and glycolytic impairments in patients with Alzheimer disease. Neurology. 2020; 94(15):e1592-e1604. https://doi.org/10.1212/WNL.0000000000009249.

[48]

Fairley LH, Lai KO, Wong JH, et al. Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2023; 120(8):e2209177120. https://doi.org/10.1073/pnas.2209177120.

[49]

Sowade RF, Jahn TR. Seed-induced acceleration of amyloid-β mediated neurotoxicity in vivo. Nat Commun. 2017; 8(1):512. https://doi.org/10.1038/s41467-017-00579-4.

[50]

Hernández-Mercado K, Zepeda A. Morris water maze and contextual fear conditioning tasks to evaluate cognitive functions associated with adult hippocampal neurogenesis. Front Neurosci. 2021;15:782947. https://doi.org/10.3389/fnins.2021.782947.

[51]

Darling AL, Shorter J. Atomic structures of amyloid-β oligomers illuminate a neurotoxic mechanism. Trends Neurosci. 2020; 43(10):740-743. https://doi.org/10.1016/j.tins.2020.07.006.

[52]

Puntambekar SS, Moutinho M, Lin PB, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer’s disease. Mol Neurodegener. 2022; 17(1):47. https://doi.org/10.1186/s13024-022-00545-9.

[53]

Wen W, Li P, Liu P, et al. Post-translational modifications of BACE1 in Alzheimer’s disease. Curr Neuropharmacol. 2022; 20(1):211-222. https://doi.org/10.2174/1570159X19666210121163224.

[54]

Høilund-Carlsen PF, Revheim ME, Costa T, et al. Passive Alzheimer’s immunotherapy: a promising or uncertain option? Ageing Res Rev. 2023;90:101996. https://doi.org/10.1016/j.arr.2023.101996.

[55]

Xin SH, Tan L, Cao X, et al. Clearance of amyloid β and Tau in Alzheimer’s disease: from mechanisms to therapy. Neurotox Res. 2018; 34(3):733-748. https://doi.org/10.1007/s12640-018-9895-1.

[56]

Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018; 560(7717):185-191. https://doi.org/10.1038/s41586-018-0368-8.

[57]

Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun. 2014;5:5659. https://doi.org/10.1038/ncomms6659.

[58]

Bhattacherjee A, Jung J, Zia S, et al. The CD 33 short isoform is a gain-of-function variant that enhances Aβ1-42 phagocytosis in microglia. Mol Neurodegener. 2021; 16(1):19. https://doi.org/10.1186/s13024-021-00443-6.

[59]

Arcuri C, Mecca C, Bianchi E, et al. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front Mol Neurosci. 2017;10:191. https://doi.org/10.3389/fnmol.2017.00191.

[60]

Villacampa N, Heneka MT. Microglia in Alzheimer’s disease: local heroes! J Exp Med. 2020; 217(4):e20192311. https://doi.org/10.1084/jem.20192311.

[61]

Cserép C, Pósfai B, Lénárt N, et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science. 2020; 367(6477):528-537. https://doi.org/10.1126/science.aax6752.

[62]

Gao C, Jiang J, Tan Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther. 2023; 8(1):359. https://doi.org/10.1038/s41392-023-01588-0.

[63]

Bassett B, Subramaniyam S, Fan Y, et al. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun. 2021; 91:519-530. https://doi.org/10.1016/j.bbi.2020.11.009.

[64]

Lecours C, St-Pierre MK, Picard K, et al. Levodopa partially rescues microglial numerical, morphological, and phagolysosomal alterations in a monkey model of Parkinson’s disease. Brain Behav Immun. 2020; 90:81-96. https://doi.org/10.1016/j.bbi.2020.07.044.

[65]

Ashe KH. The biogenesis and biology of amyloid β oligomers in the brain. Alzheimers Dement. 2020; 16(11):1561-1567. https://doi.org/10.1002/alz.12084.

[66]

Glass CK, Natoli G. Molecular control of activation and priming in macrophages. Nat Immunol. 2016; 17(1):26-33. https://doi.org/10.1038/ni.3306.

[67]

Minhas PS, Latif-Hernandez A, McReynolds MR, et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature. 2021; 590(7844):122-128. https://doi.org/10.1038/s41586-020-03160-0.

[68]

Li W, Wang S, Zhang H, et al. Honokiol restores microglial phagocytosis by reversing metabolic reprogramming. J Alzheimers Dis. 2021; 82(4):1475-1485. https://doi.org/10.3233/JAD-210177.

[69]

Patgiri A, Skinner OS, Miyazaki Y, et al. An engineered enzyme that targets circulating lactate to alleviate intracellular NADH∶NAD+ imbalance. Nat Biotechnol. 2020; 38(3):309-313. https://doi.org/10.1038/s41587-019-0377-7.

[70]

Pan RY, He L, Zhang J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 2022; 34(4):634-648.e6. https://doi.org/10.1016/j.cmet.2022.02.013.

[71]

Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014; 345(6204):1250684. https://doi.org/10.1126/science.1250684.

[72]

Yang F, Zhao D, Cheng M, et al. mTOR-mediated immunometabolic reprogramming nanomodulators enable sensitive switching of energy deprivation-induced microglial polarization for Alzheimer’s disease management. ACS Nano. 2023; 17(16):15724-15741. https://doi.org/10.1021/acsnano.3c03232.

[73]

Zhu Y, Fang J, Wang H, et al. Baicalin suppresses proliferation, migration, and invasion in human glioblastoma cells via Ca2+-dependent pathway. Drug Des Devel Ther. 2018; 12:3247-3261. https://doi.org/10.2147/DDDT.S176403.

[74]

Li P, Hu J, Shi B, et al. Baicalein enhanced cisplatin sensitivity of gastric cancer cells by inducing cell apoptosis and autophagy via Akt/mTOR and Nrf2/Keap 1 pathway. Biochem Biophys Res Commun. 2020; 531(3):320-327. https://doi.org/10.1016/j.bbrc.2020.07.045.

[75]

Cheng CY, Kao ST, Lee YC. Ferulic acid ameliorates cerebral infarction by activating Akt/mTOR/4E-BP1/Bcl-2 anti-apoptotic signaling in the penumbral cortex following permanent cerebral ischemia in rats. Mol Med Rep. 2019; 19(2):792-804. https://doi.org/10.3892/mmr.2018.9737.

[76]

Hou J, Chen Y, Grajales-Reyes G, et al. TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol Neurodegener. 2022; 17(1):84. https://doi.org/10.1186/s13024-022-00588-y.

[77]

Griciuc A, Patel S, Federico AN, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron. 2019; 103(5):820-835.e7. https://doi.org/10.1016/j.neuron.2019.06.010.

[78]

Zhou Y, Song WM, Andhey PS, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med. 2020; 26(1):131-142. https://doi.org/10.1038/s41591-019-0695-9.

[79]

Schlepckow K, Morenas-Rodríguez E, Hong S, et al. Stimulation of TREM2 with agonistic antibodies-an emerging therapeutic option for Alzheimer’s disease. Lancet Neurol. 2023; 22(11):1048-1060. https://doi.org/10.1016/S1474-4422(23)00247-8.

[80]

Xu Q, Xu W, Cheng H, et al.Efficacy and mechanism of cGAMP to suppress Alzheimer’s disease by elevating TREM2. Brain Behav Immun. 2019; 81:495-508. https://doi.org/10.1016/j.bbi.2019.07.004.

[81]

Manrique-Castano D, Dzyubenko E, Borbor M, et al. Tenascin-C preserves microglia surveillance and restricts leukocyte and, more specifically, T cell infiltration of the ischemic brain. Brain Behav Immun. 2021; 91:639-648. https://doi.org/10.1016/j.bbi.2020.10.016.

[82]

Wang H, Ma J, Li X, et al. FDA compound library screening baicalin upregulates TREM2 for the treatment of cerebral ischemia-reperfusion injury. Eur J Pharmacol. 2024;969:176427. https://doi.org/10.1016/j.ejphar.2024.176427.

PDF (12388KB)

95

Accesses

0

Citation

Detail

Sections
Recommended

/