Caerulomycin A disrupts glucose metabolism and triggers ER stress-induced apoptosis in triple-negative breast cancer cells
Ye Zhang , Shanshan Su , Xiaoyu Xu , Zhixian He , Yiyan Zhou , Xiangrong Lu , Aiqin Jiang
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1080 -1091.
Caerulomycin A disrupts glucose metabolism and triggers ER stress-induced apoptosis in triple-negative breast cancer cells
Triple-negative breast cancer (TNBC) represents an aggressive breast cancer subtype with poor prognosis and limited targeted treatment options. This investigation examined the anti-cancer potential of Caerulomycin A (Cae A), a natural compound derived from marine actinomycetes, against TNBC. Cae A demonstrated selective inhibition of viability and proliferation in TNBC cell lines, including 4T1, MDA-MB-231, and MDA-MB-468, through apoptosis induction. Mechanistic analyses revealed that the compound induced sustained endoplasmic reticulum (ER) stress and subsequent upregulation of C/EBP homologous protein (CHOP) expression, resulting in mitochondrial damage-mediated apoptosis. Inhibition of ER stress or CHOP expression knockdown reversed mitochondrial damage and apoptosis, highlighting the essential role of ER stress and CHOP in Cae A’s anti-tumor mechanism. Both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) decreased in TNBC cells following Cae A treatment, indicating reduced mitochondrial respiratory and glycolytic capacities. This diminished energy metabolism potentially triggers ER stress and subsequent apoptosis. Furthermore, Cae A exhibited significant anti-tumor effects in the 4T1 tumor model in vivo without apparent toxicity. The compound also effectively inhibited human TNBC organoid growth. These results indicate that Cae A may serve as a potential therapeutic agent for TNBC, with its efficacy likely mediated through the disruption of glucose metabolism and the induction of ER stress-associated apoptosis.
Triple negative breast cancer / Caerulomycin A / Glucose metabolism / CHOP / Apoptosis
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490(7418): 61-70. https://doi.org/10.1038/nature11412. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
/
| 〈 |
|
〉 |