Caerulomycin A disrupts glucose metabolism and triggers ER stress-induced apoptosis in triple-negative breast cancer cells

Ye Zhang , Shanshan Su , Xiaoyu Xu , Zhixian He , Yiyan Zhou , Xiangrong Lu , Aiqin Jiang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1080 -1091.

PDF (10897KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) :1080 -1091. DOI: 10.1016/S1875-5364(25)60919-8
Original article
research-article

Caerulomycin A disrupts glucose metabolism and triggers ER stress-induced apoptosis in triple-negative breast cancer cells

Author information +
History +
PDF (10897KB)

Abstract

Triple-negative breast cancer (TNBC) represents an aggressive breast cancer subtype with poor prognosis and limited targeted treatment options. This investigation examined the anti-cancer potential of Caerulomycin A (Cae A), a natural compound derived from marine actinomycetes, against TNBC. Cae A demonstrated selective inhibition of viability and proliferation in TNBC cell lines, including 4T1, MDA-MB-231, and MDA-MB-468, through apoptosis induction. Mechanistic analyses revealed that the compound induced sustained endoplasmic reticulum (ER) stress and subsequent upregulation of C/EBP homologous protein (CHOP) expression, resulting in mitochondrial damage-mediated apoptosis. Inhibition of ER stress or CHOP expression knockdown reversed mitochondrial damage and apoptosis, highlighting the essential role of ER stress and CHOP in Cae A’s anti-tumor mechanism. Both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) decreased in TNBC cells following Cae A treatment, indicating reduced mitochondrial respiratory and glycolytic capacities. This diminished energy metabolism potentially triggers ER stress and subsequent apoptosis. Furthermore, Cae A exhibited significant anti-tumor effects in the 4T1 tumor model in vivo without apparent toxicity. The compound also effectively inhibited human TNBC organoid growth. These results indicate that Cae A may serve as a potential therapeutic agent for TNBC, with its efficacy likely mediated through the disruption of glucose metabolism and the induction of ER stress-associated apoptosis.

Keywords

Triple negative breast cancer / Caerulomycin A / Glucose metabolism / CHOP / Apoptosis

Cite this article

Download citation ▾
Ye Zhang, Shanshan Su, Xiaoyu Xu, Zhixian He, Yiyan Zhou, Xiangrong Lu, Aiqin Jiang. Caerulomycin A disrupts glucose metabolism and triggers ER stress-induced apoptosis in triple-negative breast cancer cells. Chinese Journal of Natural Medicines, 2025, 23(9): 1080-1091 DOI:10.1016/S1875-5364(25)60919-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA: A Cancer J Clin.2023; 73(1):17-48. https://doi.org/10.3322/caac.21763.

[2]

Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013; 24(9):2206-2223. https://doi.org/10.1093/annonc/mdt303.

[3]

Jiang YZ, Ma D, Suo C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019; 35(3):428-440. e5. https://doi.org/10.1016/j.ccell.2019.02.001.

[4]

Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490(7418): 61-70. https://doi.org/10.1038/nature11412.

[5]

Ganesan P, Moulder S, Lee JJ, et al. Triple-negative breast cancer patients treated at MD Anderson Cancer Center in phase I trials: improved outcomes with combination chemotherapy and targeted agents. Mol Cancer Therapeut. 2014; 13(12):3175-3184. https://doi.org/10.1158/1535-7163.MCT-14-0358.

[6]

Lyons TG. Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol. 2019; 20(11):82. https://doi.org/10.1007/s11864-019-0682-x.

[7]

Sasaki K, Yoshida H. Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem. 2015; 157(4):185-195. https://doi.org/10.1093/jb/mvv010.

[8]

Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2012; 32(7):805-818. https://doi.org/10.1038/onc.2012.130.

[9]

Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nature Rev Cancer. 2014; 14(9):581-597. https://doi.org/10.1038/nrc3800.

[10]

Schröder M, Kaufman RJ.The mammalian unfolded protein response. Ann Rev Biochem. 2005; 74(1):739-789. https://doi.org/10.1146/annurev.biochem.73.011303.074134.

[11]

Maurel M, McGrath EP, Mnich K, et al. Controlling the unfolded protein response-mediated life and death decisions in cancer. Semin Cancer Biol. 2015; 33:57-66. https://doi.org/10.1016/j.semcancer.2015.03.003.

[12]

Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001; 3(11):E255-263. https://doi.org/10.1038/ncb1101-e255.

[13]

King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev. 2020; 49(22):8113-8136. https://doi.org/10.1039/D0CS00259C.

[14]

Kim C, Kim B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: a review. Nutrients. 2018; 10(8):1021. https://doi.org/10.3390/nu10081021.

[15]

Liu S, Zhang X, Yao X, et al. Mammalian IRE1α dynamically and functionally coalesces with stress granules. Nat Cell Biol. 2024; 26(6):917-931. https://doi.org/10.1038/s41556-024-01418-7.

[16]

Wang HF, Wang ZQ, Ding Y, et al. Endoplasmic reticulum stress regulates oxygen-glucose deprivation-induced parthanatos in human SH-SY5Y cells via improvement of intracellular ROS. CNS Neurosci Ther. 2018; 24(1):29-38. https://doi.org/10.1111/cns.12771.

[17]

Geng H, Chen L, Lv S, et al. Photochemically controlled release of the glucose transporter 1 inhibitor for glucose deprivation responses and cancer suppression research. J Proteome Res. 2024; 23(2):653-662. https://doi.org/10.1021/acs.jproteome.3c00469.

[18]

Wu L, Jin Y, Zhao X, et al. Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-mediated bystander killing via TNF-α. Cell Metab. 2023; 35(9):1580-1596. e9. https://doi.org/10.1016/j.cmet.2023.07.001.

[19]

Bérdy J.Bioactive microbial metabolites. J Antibiot (Tokyo). 2005; 58(1):1-26. https://doi.org/10.1038/ja.2005.1.

[20]

Funk A, Divekar PV.Caerulomycin, a new antibiotic from Streptomyces caeruleus Baldacci. I. Production, isolation, assay, and biological properties. Can J Microbiol. 1959; 5:317-321. https://doi.org/10.1139/m59-039.

[21]

Balachandran C, Hirose M, Tanaka T, et al. Design and synthesis of poly(2,2′-bipyridyl) ligands for induction of cell death in cancer cells: control of anticancer activity by complexation/decomplexation with biorelevant metal cations. Inorganic Chem. 2023; 62(36):14615-14631. https://doi.org/10.1021/acs.inorgchem.3c01738.

[22]

Mitchell RJ, Gowda AS, Olivelli AG, et al. Triarylphosphine-coordinated bipyridyl Ru(II) complexes induce mitochondrial dysfunction. Inorganic Chem. 2023; 62(28):10940-10954. https://doi.org/10.1021/acs.inorgchem.3c00736.

[23]

Carneiro BA, El-Deiry WS.Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020; 17(7):395-417. https://doi.org/10.1038/s41571-020-0341-y.

[24]

Verfaillie T, Garg AD, Agostinis P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett. 2013; 332(2):249-264. https://doi.org/10.1016/j.canlet.2010.07.016.

[25]

Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020; 21(2):85-100. https://doi.org/10.1038/s41580-019-0173-8.

[26]

Li G, Mongillo M, Chin KT, et al. Role of ERO1-α-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol. 2009; 186(6):783-792. https://doi.org/10.1083/jcb.200904060.

[27]

Lai L, Liu Y, Liu Y, et al. Role of endoplasmic reticulum oxidase 1α in H9C2 cardiomyocytes following hypoxia/reoxygenation injury. Mol Med Rep. 2020; 22(2):1420-1428. https://doi.org/10.3892/mmr.2020.11217.

[28]

Wang LL, Hu RC, Dai AG, et al. CHOP overexpression sensitizes human non-small cell lung cancer cells to cisplatin treatment by Bcl-2/JNK pathway. Am J Transl Res. 2021; 13(6):6279-6287.

[29]

Li Y, Jiang W, Niu Q, et al. eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus. Cell Death Dis. 2019; 10(12):891. https://doi.org/10.1038/s41419-019-2128-6.

[30]

Waks AG, Winer EP.Breast cancer treatment: a review. JAMA. 2019; 321(3):288-300. https://doi.org/10.1001/jama.2018.19323.

[31]

Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013; 31:51-72. https://doi.org/10.1146/annurev-immunol-032712-100008.

[32]

Sprooten J, Laureano RS, Vanmeerbeek I, et al. Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology. 2023; 12(1):2219591. https://doi.org/10.1080/2162402X.2023.2219591.

[33]

Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest. 2002; 110(10):1389-1398. https://doi.org/10.1172/JCI0216886.

[34]

Walczak A, Gradzik K, Kabzinski J, et al. The role of the ER-induced UPR pathway and the efficacy of its inhibitors and inducers in the inhibition of tumor progression. Oxid Med Cell Longev. 2019;2019:5729710. https://doi.org/10.1155/2019/5729710.

[35]

Urra H, Dufey E, Lisbona F, et al. When ER stress reaches a dead end. Biochim Biophys Acta. 2013; 1833(12):3507-3517. https://doi.org/10.1016/j.bbamcr.2013.07.024.

[36]

Rangel DF, Dubeau L, Park R, et al. Endoplasmic reticulum chaperone GRP78/BiP is critical for mutant Kras-driven lung tumorigenesis. Oncogene. 2021; 40(20):3624-3632. https://doi.org/10.1038/s41388-021-01791-9.

[37]

Liu Y, Adachi M, Zhao S, et al.Preventing oxidative stress: a new role for XBP1. Cell Death Differ. 2009; 16(6):847-857. https://doi.org/10.1038/cdd.2009.14.

[38]

Papandreou I, Denko NC, Olson M, et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood. 2011; 117(4):1311-1314. https://doi.org/10.1182/blood-2010-08-303099.

[39]

Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011; 13(3):184-190. https://doi.org/10.1038/ncb0311-184.

[40]

Li J, Ni M, Lee B, et al. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 2008; 15(9):1460-1471. https://doi.org/10.1038/cdd.2008.81.

[41]

Huber AL, Lebeau J, Guillaumot P, et al. p58(IPK)-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose. Mol Cell. 2013; 49(6):1049-1059. https://doi.org/10.1016/j.molcel.2013.01.009.

[42]

Nakagawa H, Umemura A, Taniguchi K, et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell. 2014; 26(3):331-343. https://doi.org/10.1016/j.ccr.2014.07.001.

[43]

Obeng EA, Carlson LM, Gutman DM, et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006; 107(12):4907-4916. https://doi.org/10.1182/blood-2005-08-3531.

[44]

Chen B, Lei S, Yin X, et al. Mitochondrial respiration inhibition suppresses papillary thyroid carcinoma via PI3K/Akt/FoxO1/Cyclin D1 pathway. Front Oncol. 2022;12:900444. https://doi.org/10.3389/fonc.2022.900444.

[45]

Kunimasa K, Ikeda-Ishikawa C, Tani Y, et al. Spautin-1 inhibits mitochondrial complex I and leads to suppression of the unfolded protein response and cell survival during glucose starvation. Sci Rep. 2022; 12(1):11533. https://doi.org/10.1038/s41598-022-15673-x.

[46]

Shao M, Shan B, Liu Y, et al. Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARα axis signalling. Nat Commun. 2014;5:3528. https://doi.org/10.1038/ncomms4528.

PDF (10897KB)

94

Accesses

0

Citation

Detail

Sections
Recommended

/