Identification and biomimetic synthesis of iphionanes and cyperanes from Artemisia hedinii and their anti-hepatic fibrosis activity

Xiaofei Liu , Xing Wang , Chunping Tang , Changqiang Ke , Bintao Hu , Sheng Yao , Yang Ye

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) : 871 -880.

PDF (14619KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) :871 -880. DOI: 10.1016/S1875-5364(25)60915-0
Original article
research-article

Identification and biomimetic synthesis of iphionanes and cyperanes from Artemisia hedinii and their anti-hepatic fibrosis activity

Author information +
History +
PDF (14619KB)

Abstract

Two novel skeleton sesquiterpenoids (1 and 6), along with four new iphionane-type sesquiterpenes (2−5) and six new cyperane-type sesquiterpenes (7−11), were isolated from the whole plant of Artemisia hedinii (A. hedinii). The two novel skeleton compounds (1 and 6) were derived from the decarbonization of iphionane and cyperane-type sesquiterpenes, respectively. Their structures were elucidated through a comprehensive analysis of spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and 1D and 2D nuclear magnetic resonance (NMR) spectra. The absolute configurations were determined using electronic circular dichroism (ECD) spectra, single-crystal X-ray crystallographic analyses, time-dependent density functional theory (TDDFT) ECD calculation, density functional theory (DFT) NMR calculations, and biomimetic syntheses. The biomimetic syntheses of the two novel skeletons (1 and 6) were inspired by potential biogenetic pathways, utilizing a predominant eudesmane-type sesquiterpene (A) in A. hedinii as the substrate. All compounds were evaluated in LX-2 cells for their anti-hepatic fibrosis activity. Compounds 2, 8, and 10 exhibited significant activity in downregulating the expression of α-smooth muscle actin (α-SMA), a protein involved in hepatic fibrosis.

Keywords

Artemisia hedinii / Iphionane / Cyperane / New skeleton / Biomimetic synthesis / Anti-hepatic fibrosis

Cite this article

Download citation ▾
Xiaofei Liu, Xing Wang, Chunping Tang, Changqiang Ke, Bintao Hu, Sheng Yao, Yang Ye. Identification and biomimetic synthesis of iphionanes and cyperanes from Artemisia hedinii and their anti-hepatic fibrosis activity. Chinese Journal of Natural Medicines, 2025, 23(7): 871-880 DOI:10.1016/S1875-5364(25)60915-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Martin VJJ, Pitera DJ, Withers ST, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003; 21:796-802. https://doi.org/10.1038/nbt833.

[2]

El-Ghazouly MG, El-Sebakhy NA, El-Din AAS, et al. Sesquiterpene xylosides from Iphiona scabra. Phytochemistry. 1987; 26(2):439-443. https://doi.org/10.1016/S0031-9422(00)81428-4.

[3]

Ahmed AA, Mahmoud AA. Jasonol, a rare tricyclic eudesmane sesquiterpene and six other new sesquiterpenoids from Jasonia candicans. Tetrahedron. 1998; 54(28):8141-8152. https://doi.org/10.1016/S0040-4020(98)00453-0.

[4]

Todorova MN, Evstatieva LN. Comparative study of tanacetum species growing in Bulgaria. Z Naturforsch C J Biosci. 2001; 56(7-8):506-512. https://doi.org/10.1515/znc-2001-7-806.

[5]

Tian LW, Xu M, Li XC, et al. Eucalmaidials A and B, phloroglucinol-coupled sesquiterpenoids from the juvenile leaves of Eucalyptus maideni. RSC Adv. 2014; 4(41):21373-21378. https://doi.org/10.1039/C4RA01078G.

[6]

Wu HB, Ma LH, Li XM, et al. Selective phytotoxic effects of sesquiterpenoids from Sonchus arvensis as a preliminary approach for the biocontrol of two problematic weeds of wheat. J Agric Food Chem. 2022; 70(30):9412-9420. https://doi.org/10.1021/acs.jafc.2c03462.

[7]

Hikino H, Aota K, Maebayashi Y, et al. Structure and absolute configuration of cyperolone. Chem Pharm Bull. 1967; 15(9):1349-1355. https://doi.org/10.1248/cpb.15.1349.

[8]

Hikino H, Hikino Y, Agatsuma K, et al. Structure and absolute configuration of faurinone. Chem Pharm Bull. 1968; 16(9):1779-1783. https://doi.org/10.1248/cpb.16.1779.

[9]

Ahmed AA, Jakupovic J. Sesqui- and monoterpenes from Jasonia montana. Phytochemistry. 1990; 29(11):3658-3661. https://doi.org/10.1016/0031-9422(90)85296-R.

[10]

Ohira S, Hasegawa T, Hayashi KI, et al. Sesquiterpenoids from Cyperus rotundus. Phytochemistry. 1998; 47(8):1577-1581. https://doi.org/10.1016/S0031-9422(97)00825-X.

[11]

Todorova MN, Tsankova ET. New sesquiterpenoids from Achillea clypeolata. Phytochemistry. 1999; 52(8):1515-1518. https://doi.org/10.1016/S0031-9422(99)00350-7.

[12]

Baser KHC, Demirci B, Iscan G, et al. The essential oil constituents and antimicrobial activity of Anthemis aciphylla BOISS. var. discoidea BOISS. Chem Pharm Bull. 2006; 54(2):222-225. https://doi.org/10.1248/cpb.54.222.

[13]

Ceccherelli P, Curini M, Marcotullio MC, et al. Biogenetic-type transformation of 3-keto-4,5-epoxy-eudesmanes: synthesis of cyperanes, eremophilanes and spirovetivanes. Tetrahedron. 1989; 45(12):3809-3818. https://doi.org/10.1016/S0040-4020(01)89241-3.

[14]

Bora KS, Sharma A. The genus Artemisia: a comprehensive review. Pharm Biol. 2010; 49(1):101-109. https://doi.org/10.3109/13880209.2010.497815.

[15]

Wang X, Peng X, Tang C, et al. Anti-inflammatory eudesmane sesquiterpenoids from Artemisia hedinii. J Nat Prod. 2021; 84(5):1626-1637. https://doi.org/10.1021/acs.jnatprod.1c00177.

[16]

Wang X, Tang C, Meng S, et al. Noreudesmane sesquiterpenoids from Artemisia hedinii and their anti-inflammatory activities. Fitoterapia. 2021;153:104961. https://doi.org/10.1016/j.fitote.2021.104961.

[17]

Si C. Study on the Pharmacodynamic Material Basis of Tibetan Medicine Artemisia hedinii Ostenf. et Pauls. Against Intrahepatic Cholestatic Liver Injury and Its Quality Standard. Jiangxi University of Traditional Chinese Medicine, Nanchang, 2023.

[18]

Tao L, Yang G, Sun T, et al. Capsaicin receptor TRPV1 maintains quiescence of hepatic stellate cells in the liver via recruitment of SARM1. J Hepatol. 2023; 78(4):805-819. https://doi.org/10.1016/j.jhep.2022.12.031.

[19]

Rustaiyan A, Bamonieri A, Raffatrad M, et al. Eudesmane derivatives and highly oxygenated monoterpenes from Iranian Artemisia species. Phytochemistry. 1987; 26(8):2307-2310. https://doi.org/10.1016/S0031-9422(00)84708-1.

[20]

Gao XL, Xiong ZM, Zhou G, et al. First enantioselective total synthesis and absolute configurations of 4,5-dioxo-seco-γ-eudesmol and 5β,11-dihydroxyiphionan-4-one, two aglycones of naturally occurring sesquiterpenes with new skeletons. Synthesis. 2001; 1:37-39. https://doi.org/10.1055/s-2001-9742.

[21]

Buskas T, Söderberg E, Konradsson P, et al. Use of n-pentenyl glycosides as precursors to various spacer functionalities. J Org Chem. 2000; 65(4):958-963. https://doi.org/10.1021/jo9909554.

[22]

Yang J, Xiong Z, Chen Y, et al. The enantioselective synthesis of (+)-selina-3,11-dien-9-ol. Synth Commun. 1997; 27(17):2985-2991. https://doi.org/10.1080/00397919708005005.

[23]

Yu WS, Jin ZD.A new strategy for the stereoselective introduction of steroid side chain viar-alkoxy vinyl cuprates: total synthesis of a highly potent antitumor natural product OSW-1. J Am Chem Soc. 2001; 123(14):3369-3370. https://doi.org/10.1021/ja004098t.

[24]

Douelle F, Capes AS, Greaney MF. Highly diastereoselective synthesis of vicinal quaternary and tertiary stereocenters using the iodo-aldol cyclization. Org Lett. 2007; 9(10):1931-1934. https://doi.org/10.1021/ol070482k.

[25]

Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem. 2015; 80(24):12526-12534. https://doi.org/10.1021/acs.joc.5b02396.

[26]

Zanardi MM, Sarotti AM. Sensitivity analysis of DP4+ with the probability distribution terms: development of a universal and customizable method. J Org Chem. 2021; 86(12):8544-8548. https://doi.org/10.1021/acs.joc.1c00987.

[27]

Peng F, Tee JK, Setyawati MI, et al. Inorganic nanomaterials as highly efficient inhibitors of cellular hepatic fibrosis. ACS Appl Mater Inter. 2018; 10(38):31938-31946. https://doi.org/10.1021/acsami.8b10527.

PDF (14619KB)

115

Accesses

0

Citation

Detail

Sections
Recommended

/