Platycodon grandiflorus polysaccharides combined with hesperidin exerted the synergistic effect of relieving ulcerative colitis in mice by modulating PI3K/AKT and JAK2/STAT3 signaling pathways

Yang Liu , Quanwei Sun , Xuefei Xu , Mengmeng Li , Wenheng Gao , Yunlong Li , Ye Yang , Dengke Yin

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) : 848 -862.

PDF (20940KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) :848 -862. DOI: 10.1016/S1875-5364(25)60913-7
Original article
research-article

Platycodon grandiflorus polysaccharides combined with hesperidin exerted the synergistic effect of relieving ulcerative colitis in mice by modulating PI3K/AKT and JAK2/STAT3 signaling pathways

Author information +
History +
PDF (20940KB)

Abstract

Ulcerative colitis (UC) is a chronic inflammatory disorder with a complex etiology, characterized by intestinal inflammation and barrier dysfunction. Platycodon grandiflorus polysaccharides (PGP), the primary component of Platycodon grandiflorus, and hesperidin (Hesp), a prominent active component in Citrus aurantium L. (CAL), have both demonstrated anti-inflammatory properties. This study aims to elucidate the underlying mechanism of the synergistic effect of PGP combined with Hesp on UC, focusing on the coordinated interaction between the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathways. A mouse model of UC induced by dextran sulfate sodium (DSS) and a cell model using lipopolysaccharide (LPS)-induced RAW264.7/IEC6 cells were employed to investigate the in vitro and in vivo anti-inflammatory effects of PGP combined with Hesp on UC and its potential mechanism of action. The results indicated that compared to the effects of either drug alone, the combination of PGP and Hesp significantly modulated inflammatory factor levels, inhibited oxidative stress, regulated colonic mucosal immunity, suppressed apoptosis, and restored intestinal barrier function in vitro and in vivo. Further in vitro studies revealed that PGP significantly inhibited the PI3K/AKT signaling pathway, while Hesp significantly inhibited the JAK2/STAT3 signaling pathway. The use of inhibitors and activators targeting both pathways validated the synergistic effects of PGP combined with Hesp on the PI3K/AKT and JAK2/STAT3 signaling pathways. These findings suggest that PGP combined with Hesp exhibits a synergistic effect on DSS-induced colitis, potentially mediated through the phosphatase and tensin homolog (PTEN)/PI3K/AKT and interleukin-6 (IL-6)/JAK2/STAT3 signaling pathways.

Keywords

Ulcerative colitis / Platycodon grandiflorus polysaccharides / Hesperidin / Synergistic effects / PI3K/AKT / JAK2/STAT3

Cite this article

Download citation ▾
Yang Liu, Quanwei Sun, Xuefei Xu, Mengmeng Li, Wenheng Gao, Yunlong Li, Ye Yang, Dengke Yin. Platycodon grandiflorus polysaccharides combined with hesperidin exerted the synergistic effect of relieving ulcerative colitis in mice by modulating PI3K/AKT and JAK2/STAT3 signaling pathways. Chinese Journal of Natural Medicines, 2025, 23(7): 848-862 DOI:10.1016/S1875-5364(25)60913-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ordas I, Eckmann L, Talamini M, et al. Ulcerative colitis. Lancet. 2012; 380(9853):1606-1619. https://doi.org/10.1016/S0140-6736(12)60150-0.

[2]

Feuerstein JD, Moss AC, Farraye FA. Ulcerative colitis. Mayo Clin Proc. 2019; 94(7):1357-1373. https://doi.org/10.1016/j.mayocp.2019.01.018.

[3]

Segal JP, LeBlanc JF, Hart AL.Ulcerative colitis: an update. Clin Med (Lond). 2021; 21(2):135-139. https://doi.org/10.7861/clinmed.2021-0080.

[4]

Pasvol TJ, Horsfall L, Bloom S, et al. Incidence and prevalence of inflammatory bowel disease in UK primary care: a population-based cohort study. BMJ Open. 2020; 10(7):e036584. https://doi.org/10.1136/bmjopen-2019-036584.

[5]

Du L, Ha C. Epidemiology and pathogenesis of ulcerative colitis. Gastroenterol Clin North Am. 2020; 49(4):643-654. https://doi.org/10.1016/j.gtc.2020.07.005.

[6]

Kucharzik T, Koletzko S, Kannengiesser K, et al.Ulcerative colitis-diagnostic and therapeutic algorithms. Dtsch Arztebl Int. 2020; 117(33-34):564-574. https://doi.org/10.3238/arztebl.2020.0564.

[7]

Liu Y, Li BG, Su YH, et al. Potential activity of traditional Chinese medicine against ulcerative colitis: a review. J Ethnopharmacol. 2022;289:115084. https://doi.org/10.1016/j.jep.2022.115084.

[8]

Wang C, Cheng G, Yang S, et al. Protective effects of Platycodon grandiflorus polysaccharides against apoptosis induced by carbonyl cyanide 3-chlorophenylhydrazone in 3D4/21 cells. Int J Biol Macromol. 2019; 141:1220-1227. https://doi.org/10.1016/j.ijbiomac.2019.09.086.

[9]

Liu Y, Rui XL, Li JC, et al. Effect of Platycodon grandiflorus polysaccharide on ulcerative colitis in mice. Chin Trad Patent Med. 2022; 44(4):1093-1099. https://doi.org/10.3969/j.issn.1001-1528.2022.04.010.

[10]

Liu Y, Chen Q, Ren R, et al. Platycodon grandiflorus polysaccharides deeply participate in the anti-chronic bronchitis effects of Platycodon grandiflorus decoction, a representative of “the lung and intestine are related". Front Pharmacol. 2022;13:927384. https://doi.org/10.3389/fphar.2022.927384.

[11]

He W, Li Y, Liu M, et al. Citrus aurantium L. and its flavonoids regulate TNBS-induced inflammatory bowel disease through anti-inflammation and suppressing isolated jejunum contraction. Int J Mol Sci. 2018; 19(10):3057. https://doi.org/10.3390/ijms19103057.

[12]

Guo K, Ren J, Gu G, et al. Hesperidin protects against intestinal inflammation by restoring intestinal barrier function and up-regulating Treg cells. Mol Nutr Food Res. 2019; 63(11):e1800975. https://doi.org/10.1002/mnfr.201800975.

[13]

Elhennawy MG, Abdelaleem EA, Zaki AA, et al. Cinnamaldehyde and hesperetin attenuate TNBS-induced ulcerative colitis in rats through modulation of the JAk2/STAT3/SOCS3 pathway. J Biochem Mol Toxicol. 2021; 35(5):e22730. https://doi.org/10.1002/jbt.22730.

[14]

Lai CY, Yeh KY, Liu BF, et al. MicroRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-alpha signaling pathways in zebrafish. Cancers (Basel). 2021; 13(21):5565. https://doi.org/10.3390/cancers13215565.

[15]

Seavey MM, Lu LD, Stump KL, et al. Therapeutic efficacy of CEP-33779, a novel selective JAK2 inhibitor, in a mouse model of colitis-induced colorectal cancer. Mol Cancer Ther. 2012; 11(4):984-993. https://doi.org/10.1158/1535-7163.MCT-11-0951.

[16]

Liu Y, Dong YH, Shen W, et al. Platycodon grandiflorus polysaccharide regulates colonic immunity through mesenteric lymphatic circulation to attenuate ulcerative colitis. Chin J Nat Med. 2023; 20(4):263-278. https://doi.org/10.1016/S1875-5364(22)60261-9.

[17]

Xu B, Huang S, Chen Y, et al. Synergistic effect of combined treatment with baicalin and emodin on DSS-induced colitis in mouse. Phytother Res. 2021; 35(10):5708-5719. https://doi.org/10.1002/ptr.7230.

[18]

Luo S, Deng X, Liu Q, et al. Emodin ameliorates ulcerative colitis by the flagellin-TLR5 dependent pathway in mice. Int Immunopharmacol. 2018; 59:269-275. https://doi.org/10.1016/j.intimp.2018.04.010.

[19]

Lv Q, Wang K, Qiao SM, et al. Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome. Chin J Nat Med. 2018; 16(3):161-174. https://doi.org/10.1016/S1875-5364(18)30044-X.

[20]

Zhou R, Huang K, Chen S, et al. Zhilining Formula alleviates DSS-induced colitis through suppressing inflammation and gut barrier dysfunction via the AHR/NF-κBp65 axis. Phytomedicine. 2024;129:155571. https://doi.org/10.1016/j.phymed.2024.155571.

[21]

Li H, Fan C, Feng C, et al. Inhibition of phosphodiesterase-4 attenuates murine ulcerative colitis through interference with mucosal immunity. Br J Pharmacol. 2019; 176(13):2209-2226. https://doi.org/10.1111/bph.14667.

[22]

Chen YF, Zheng JJ, Qu C, et al. Inonotus obliquus polysaccharide ameliorates dextran sulphate sodium induced colitis involving modulation of Th1/Th2 and Th17/Treg balance. Artif Cells Nanomed Biotechnol. 2019; 47(1):757-766. https://doi.org/10.1080/21691401.2019.1577877.

[23]

Wu MY, Liu L, Wang EJ, et al. PI3KC3 complex subunit NRBF2 is required for apoptotic cell clearance to restrict intestinal inflammation. Autophagy. 2021; 17(5):1096-1111. https://doi.org/10.1080/15548627.2020.1741332.

[24]

Yu T, Li Z, Xu L, et al. Anti-inflammation effect of Qingchang Suppository in ulcerative colitis through JAK2/STAT3 signaling pathway in vitro and in vivo. J Ethnopharmacol. 2021;266:113442. https://doi.org/10.1016/j.jep.2020.113442.

[25]

Gutierrez RMP, Hoyo-Vadillo C. Anti-inflammatory potential of Petiveria alliacea on activated RAW264.7 murine macrophages. Pharmacogn Mag. 2017; 13(Suppl 2):S174-S178. https://doi.org/10.4103/pm.pm_479_16.

[26]

Aranda A, Sequedo L, Tolosa L, et al. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol In Vitro. 2013; 27(2):954-963. https://doi.org/10.1016/j.tiv.2013.01.016.

[27]

Yin PJ, Qu Y. Compatibility and application rules of Jiegeng (Platycodonis Radix) in classical prescriptions. J Shandong Univ TCM. 2018; 42(6):484-487. https://doi.org/10.16294/j.cnki.1007-659x.2018.06.004.

[28]

Wang Q, Qu Y.Compatibility and application rules of Zhishi (Citrus aurantium L.) in classical prescriptions. J Guangzhou Univ TCM. 2018; 35(2):374-378. https://doi.org/10.13359/j.cnki.gzxbtcm.2018.02.036.

[29]

Zhang ZJ. Effects of Painong Powder on acute suppurative disease. Foreign Med Sci Tradit Chin Med. 1994;3:29.

[30]

Zhang MM, Rui XL, Yang Y, et al. Anti-tumor effects of Painong Powder on mice with colon cancer. Chin Trad Patent Med. 2021; 43(4): 882-887.

[31]

Zhang MM, Yin DK, Rui XL, et al. Protective effect of Pai-Nong-San against AOM/DSS-induced CAC in mice through inhibiting the Wnt signaling pathway. Chin J Nat Med. 2021; 19(12):912-920. https://doi.org/10.1016/S1875-5364(22)60143-2.

[32]

Wang K, Guo J, Chang X, et al. Painong-San extract alleviates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota, restoring intestinal barrier function and attenuating TLR4/NF-κB signaling cascades. J Pharm Biomed Anal. 2022;209:114529. https://doi.org/10.1155/2021/2810915.

[33]

Rui XL, Li JC, Zhang MM, et al. Therapeutic effect of Painong Powder on dextran sodium sulfate-induced colitis mice. Chin J Mod Appl Pharm. 2021; 38:2940-2944. https://doi.org/10.13748/j.cnki.issn1007-7693.2021.23.005.

[34]

Li J, Rui X, Xu L, et al. Enhanced therapeutic effect on colitis with powder formulations of Painong San associated with the promotion of intestinal adhesion and absorption. J Ethnopharmacol. 2022;289:115030. https://doi.org/10.1016/j.jep.2022.115030.

[35]

Laharie D. Towards therapeutic choices in ulcerative colitis. Lancet. 2017; 390(10090):98-99. https://doi.org/10.1016/S0140-6736(17)31263-1.

[36]

Liang J, Chen S, Chen J, et al. Therapeutic roles of polysaccharides from Dendrobium officinaleon colitis and its underlying mechanisms. Carbohydr Polym. 2018; 185:159-168. https://doi.org/10.1016/j.carbpol.2018.01.013.

[37]

Luo S, Wen R, Wang Q, et al. Rhubarb Peony Decoction ameliorates ulcerative colitis in mice by regulating gut microbiota to restoring Th17/Treg balance. J Ethnopharmacol. 2019; 231:39-49. https://doi.org/10.1016/j.jep.2018.08.033.

[38]

Li J, Ma Y, Li X, et al. Fermented Astragalus and its metabolites regulate inflammatory status and gut microbiota to repair intestinal barrier damage in dextran sulfate sodium-induced ulcerative colitis. Front Nutr. 2022;9:1035912. https://doi.org/10.3389/fnut.2022.1035912.

[39]

Lu Z, Xiong W, Xiao S, et al. Huanglian Jiedu Decoction ameliorates DSS-induced colitis in mice via the JAK2/STAT3 signalling pathway. Chin Med. 2020;15:45. https://doi.org/10.1186/s13020-020-00327-9.

[40]

Pavan E, Damazo AS, Arunachalam K, et al. Copaifera malmei Harms leaves infusion attenuates TNBS-ulcerative colitis through modulation of cytokines, oxidative stress and mucus in experimental rats. J Ethnopharmacol. 2021;267:113499. https://doi.org/10.1016/j.jep.2020.113499.

[41]

Naito Y, Takagi T, Yoshikawa T. Neutrophil-dependent oxidative stress in ulcerative colitis. J Clin Biochem Nutr. 2007; 41(1):18-26. https://doi.org/10.3164/jcbn.2007003.

[42]

Yao J, Wang JY, Liu L, et al. Anti-oxidant effects of resveratrol on mice with DSS-induced ulcerative colitis. Arch Med Res. 2010; 41(4):288-294. https://doi.org/10.1016/j.arcmed.2010.05.002.

[43]

Piechota-Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch Pharmacol. 2014; 387(7):605-620. https://doi.org/10.1007/s00210-014-0985-1.

[44]

Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol. 2007; 23(4):379-383. https://doi.org/10.1097/MOG.0b013e32816aa392.

[45]

Lee Y, Sugihara K, Gillilland MG, et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater. 2020; 19(1):118-126. https://doi.org/10.1038/s41563-019-0462-9.

[46]

Niu MM, Guo HX, Cai JW, et al. Bifidobacterium breve alleviates DSS-induced colitis in mice by maintaining the mucosal and epithelial barriers and modulating gut microbes. Nutrients. 2022; 14(18):3671. https://doi.org/10.3390/nu14183671.

[47]

Huang XL, Xu J, Zhang XH, et al. PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis. Inflamm Res. 2011; 60(8):727-734. https://doi.org/10.1007/s00011-011-0325-6.

[48]

Yan S, Hui Y, Li J, et al. Glutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice. Iran J Basic Med Sci. 2020; 23(9):1124-1129. https://doi.org/10.22038/ijbms.2020.39815.9436.

[49]

Dou D, Liang J, Zhai X, et al. Oxytocin signalling in dendritic cells regulates immune tolerance in the intestine and alleviates DSS-induced colitis. Clin Sci (Lond). 2021; 135(4):597-611. https://doi.org/10.1042/CS20201438.

[50]

Way EE, Trevejo-Nunez G, Kane LP, et al. Dose-dependent suppression of cytokine production from T cells by a novel phosphoinositide 3-kinase delta inhibitor. Sci Rep. 2016;6:30384. https://doi.org/10.1038/srep30384.

[51]

Lu QG, Zeng L, Li XH, et al. Protective effects of Panax notoginseng saponin on dextran sulfate sodium-induced colitis in rats through phosphoinositide-3-kinase protein kinase B signaling pathway inhibition. World J Gastroenterol. 2020; 26(11):1156-1171. https://doi.org/10.3748/wjg.v26.i11.1156.

[52]

Wang L, Hu Y, Song B, et al. Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm Res. 2021; 70(7):753-764. https://doi.org/10.1007/s00011-021-01482-x.

[53]

Salas A, Hernandez-Rocha C, Duijvestein M, et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020; 17(6):323-337. https://doi.org/10.1038/s41575-020-0273-0.

[54]

Dambacher J, Beigel F, Seiderer J, et al. Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease. Gut. 2007; 56(9):1257-1265. https://doi.org/10.1136/gut.2006.118679.

[55]

Li L, Xu T, Huang C, et al. NLRC5 mediates cytokine secretion in RAW264.7 macrophages and modulated by the JAK2/STAT3 pathway. Inflammation. 2014; 37(3):835-847. https://doi.org/10.1007/s10753-013-9804-y.

[56]

Fernandez-Clotet A, Castro-Poceiro J, Panes J. Tofacitinib for the treatment of ulcerative colitis. Expert Rev Clin Immunol. 2018; 14(11):881-892. https://doi.org/10.1080/1744666X.2018.1532291.

[57]

Zhao Y, Luan H, Jiang H, et al. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine. 2021;84:153519. https://doi.org/10.1016/j.phymed.2021.153519.

[58]

Jiang R, Tang J, Zhang X, et al. CCN1 promotes inflammation by inducing IL-6 production via alpha6beta1/PI3K/Akt/NF-kappaB pathway in autoimmune hepatitis. Front Immunol. 2022;13:810671. https://doi.org/10.3389/fimmu.2022.810671.

[59]

Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol. 2022;12:1023177. https://doi.org/10.3389/fonc.2022.1023177.

[60]

Nguyen TT, Ung TT, Li S, et al. Lithocholic acid induces miR21, promoting PTEN inhibition via STAT3 and ERK-1/2 signaling in colorectal cancer cells. Int J Mol Sci. 2021; 22(19):10209. https://doi.org/10.3390/ijms221910209.

[61]

Tokuhira N, Kitagishi Y, Suzuki M, et al. PI3K/AKT/PTEN pathway as a target for Crohn’s disease therapy (Review). Int J Mol Med. 2015; 35(1):10-16. https://doi.org/10.3892/ijmm.2014.1981.

PDF (20940KB)

136

Accesses

0

Citation

Detail

Sections
Recommended

/