Wenxia Changfu Formula inhibits NSCLC metastasis by halting TAMs-induced epithelial-mesenchymal transition via antagonisticallymodulating CCL18

Qianyu Bi , Mengran Wang , Li Luo , Beiying Zhang , Siyuan Lv , Zengna Wang , Xuming Ji

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) : 838 -847.

PDF (18154KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) :838 -847. DOI: 10.1016/S1875-5364(25)60912-5
Original article
research-article

Wenxia Changfu Formula inhibits NSCLC metastasis by halting TAMs-induced epithelial-mesenchymal transition via antagonisticallymodulating CCL18

Author information +
History +
PDF (18154KB)

Abstract

Our previous research demonstrated that the Wenxia Changfu Formula (WCF), as a neoadjuvant therapy, inhibits M2 macrophage infiltration in the tumor microenvironment and prevents lung cancer metastasis. Given tumor-associated macrophages (TAMs) in epithelial-mesenchymal transition (EMT), this study investigated whether WCF impedes lung cancer metastasis by attenuating TAM-induced EMT in non-small cell lung cancer (NSCLC) cells. Utilizing a co-culture model treated with or without WCF, we observed that WCF downregulated cluster of differentiation 163 (CD163) expression in macrophages, reduced CCL18 levels in the conditioned medium, and inhibited the growth, invasion, and EMT of NSCLC cells induced by macrophage co-culture. Manipulation of CCL18 levels and Src overexpression in NSCLC cells revealed that WCF’s effects are mediated through CCL18 and Src signaling. In vivo, WCF inhibited recombinant CCL18 (rCCL18)-induced tumor metastasis in nude mice by blocking Src signaling. These findings indicate that WCF inhibits NSCLC metastasis by impeding TAM-induced EMT via antagonistic modulation of CCL18, providing evidence for its potential development and clinical application in NSCLC patients.

Keywords

Tumor-associated macrophages / Non-small cell lung cancer (NSCLC) / Wenxia Changfu Formula / Chemokine (C-C motif) ligand 18 (pulmonary and activation-regulated) (CCL18) / Tyrosine-protein kinase Src

Cite this article

Download citation ▾
Qianyu Bi, Mengran Wang, Li Luo, Beiying Zhang, Siyuan Lv, Zengna Wang, Xuming Ji. Wenxia Changfu Formula inhibits NSCLC metastasis by halting TAMs-induced epithelial-mesenchymal transition via antagonisticallymodulating CCL18. Chinese Journal of Natural Medicines, 2025, 23(7): 838-847 DOI:10.1016/S1875-5364(25)60912-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024; 74(1):12-49. https://doi.org/10.3322/caac.21820.

[2]

Li C, Lei S, Ding L, et al. Global burden and trends of lung cancer incidence and mortality. Chin Med J (Engl). 2023; 136(13):1583-1590. https://doi.org/10.1097/CM9.0000000000002529.

[3]

Rasmussen RK, Etzerodt A.Therapeutic targeting of tumor-associated macrophages. Adv Pharmacol. 2021; 91:185-211. https://doi.org/10.1016/bs.apha.2021.03.002.

[4]

Su P, Li O, Ke K, et al. Targeting tumor-associated macrophages: critical players in tumor progression and therapeutic strategies (Review). Int J Oncol. 2024; 64(6):60. https://doi.org/10.3892/ijo.2024.5648.

[5]

Shefler I, Salamon P, Zitman-Gal T, et al. Tumor-derived extracellular vesicles induce CCL18 production by mast cells: a possible link to angiogenesis. Cells. 2022; 11(3):353. https://doi.org/10.3390/cells11030353.

[6]

Huang X, Lai S, Qu F, et al. CCL18 promotes breast cancer progression by exosomal miR-760 activation of ARF6/Src/PI3K/Akt pathway. Mol Ther Oncolytics. 2022; 25:1-15. https://doi.org/10.1016/j.omto.2022.03.004.

[7]

Caner A, Asik E, Ozpolat B. SRC signaling in cancer and tumor microenvironment. Adv Exp Med Biol. 2021; 1270:57-71. https://doi.org/10.1007/978-3-030-47189-7_4.

[8]

Tan S, Tang H, Wang Y, et al. Tumor cell-derived exosomes regulate macrophage polarization: emerging directions in the study of tumor genesis and development. Heliyon. 2023; 9(9):e19296. https://doi.org/10.1016/j.heliyon.2023.e19296.

[9]

Jin J, Yu G.Hypoxic lung cancer cell-derived exosomal miR-21 mediates macrophage M2 polarization and promotes cancer cell proliferation through targeting IRF1. World J Surg Oncol. 2022; 20(1):241. https://doi.org/10.1186/s12957-022-02706-y.

[10]

Zhang Y, Wu Z, Yu H, et al. Chinese herbal medicine Wenxia Changfu Formula reverses cell adhesion-mediated drug resistance via the integrin β1-PI3K-AKT pathway in lung cancer. J Cancer. 2019; 10(2):293-304. https://doi.org/10.7150/jca.25163.

[11]

Bi Q, Wang M, Zhao F, et al. N-Butanol fraction of Wenxia Formula extract inhibits the growth and invasion of non-small cell lung cancer by down-regulating Sp1-mediated MMP2 expression. Front Pharmacol. 2020;11:594744. https://doi.org/10.3389/fphar.2020.594744.

[12]

Pyaskovskaya ON, Boychuk IV, Fedorchuk AG, et al. Aconitine-containing agent enhances antitumor activity of dichloroacetate against Ehrlich carcinoma. Exp Oncol. 2015; 37(3):192-196. https://doi.org/10.31768/2312-8852.2015.37(3):192-196.

[13]

Liu Q, Hodge J, Wang J, et al. Emodin reduces breast cancer lung metastasis by suppressing macrophage-induced breast cancer cell epithelial-mesenchymal transition and cancer stem cell formation. Theranostics. 2020; 10(18):8365-8381. https://doi.org/10.7150/thno.45395.

[14]

Li H, Huang N, Zhu W, et al.Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer. 2018; 18(1):579. https://doi.org/10.1186/s12885-018-4299-4.

[15]

Wang MR, Chen RJ, Zhao F, et al. Effect of Wenxia Changfu Formula combined with cisplatin reversing non-small cell lung cancer cell adhesion-mediated drug resistance. Front Pharmacol. 2020;11:500137. https://doi.org/10.3389/fphar.2020.500137.

[16]

Wang M, Bi QY, Zhang YN, et al. The anti-lung cancer effect of ethyl acetate extract from Wenxia Formula in vivo via the hedgehog-Gli1 signaling pathway mediated by cancer associated fibroblasts. Arch Med Sci. 2020;2020:106. https://doi.org/10.5114/aoms.2020.100106.

[17]

Chen W, Chen M, Hong L, et al. M2-like tumor-associated macrophage-secreted CCL2 facilitates gallbladder cancer stemness and metastasis. Exp Hematol Oncol. 2024; 13(1):83. https://doi.org/10.1186/s40164-024-00550-2.

[18]

Rotolo A, Caputo VS, Holubova M, et al. Enhanced anti-lymphoma activity of CAR19-iNKT cells underpinned by dual CD19 and CD1d targeting. Cancer Cell. 2018; 34(4):596-610. https://doi.org/10.1016/j.ccell.2018.08.017.

[19]

Wang CQ, Yi LW, Zhao L, et al. 177 saponins, including 11 new compounds in wild ginseng tentatively identified via HPLC-IT-TOF-MS(n), and differences among wild ginseng, ginseng under forest, and cultivated ginseng. Molecules. 2021; 26(11):3371. https://doi.org/10.3390/molecules26113371.

[20]

He F, Wang CJ, Xie Y, et al. Simultaneous quantification of nine aconitum alkaloids in Aconiti Lateralis Radix Praeparata and related products using UHPLC-QQQ-MS/MS. Sci Rep. 2017; 7(1):13023. https://doi.org/10.1038/s41598-017-13499-6.

[21]

Wang L, Huang S, Chen B, et al. Characterization of the anticoagulative constituents of Angelicae Sinensis Radix and their metabolites in rats by HPLC-DAD-ESI-IT-TOF-MSn. Planta Med. 2016; 82(4):362-370. https://doi.org/10.1055/s-0035-1558309.

[22]

Yan Y, Zhang Q, Feng F. HPLC-TOF-MS and HPLC-MS/MS combined with multivariate analysis for the characterization and discrimination of phenolic profiles in nonfumigated and sulfur-fumigated rhubarb. J Sep Sci. 2016; 39(14):2667-2677. https://doi.org/10.1002/jssc.201501382.

[23]

Dallavalasa S, Beeraka NM, Basavaraju CG, et al. The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis: current status. Curr Med Chem. 2021; 28(39):8203-8236. https://doi.org/10.2174/0929867328666210720143721.

[24]

Aehnlich P, Powell RM, Peeters MJW, et al. TAM receptor inhibition-implications for cancer and the immune system. Cancers (Basel). 2021; 13(6):1195. https://doi.org/10.3390/cancers13061195.

[25]

Yan S, Wan G.Tumor-associated macrophages in immunotherapy. FEBS J. 2021; 288(21):6174-6186. https://doi.org/10.1111/febs.15726.

[26]

Huang H, Li J, Hu WJ, et al. The serum level of CC chemokine ligand 18 correlates with the prognosis of non-small cell lung cancer. Int J Biol Markers. 2019; 34(2):156-162. https://doi.org/10.1177/1724600819829758.

[27]

Plönes T, Krohn A, Burger M, et al. Serum level of CC-chemokine ligand 18 is increased in patients with non-small-cell lung cancer and correlates with survival time in adenocarcinomas. PLoS One. 2012; 7(7):e41746. https://doi.org/10.1371/journal.pone.0041746.

[28]

Kong S, Ding L, Fan C, et al. Global analysis of lysine acetylome reveals the potential role of CCL18 in non-small cell lung cancer. Proteomics. 2021; 21(7-8):e2000144. https://doi.org/10.1002/pmic.202000144.

[29]

Zhang J, Hu Z, Horta CA, et al. Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Semin Cancer Biol. 2023; 88:46-66. https://doi.org/10.1016/j.semcancer.2022.12.002.

[30]

Ding D, Zhang L, Liu X, et al. Chemokine CCL 18 promotes phagocytosis through its receptor CCR8 rather than PITPNM3 in human microglial cells. J Interferon Cytokine Res. 2022; 42(1):19-28. https://doi.org/10.1089/jir.2021.0123.

[31]

Korbecki J, Olbromski M, Dzięgiel P. CCL18 in the progression of cancer. Int J Mol Sci. 2020; 21(21):7955. https://doi.org/10.3390/ijms21217955.

[32]

Chen RH, Xiao ZW, Yan XQ, et al. Tumor cell-secreted ISG15 promotes tumor cell migration and immune suppression by inducing the macrophage M2-like phenotype. Front Immunol. 2020;11:594775. https://doi.org/10.3389/fimmu.2020.594775.

[33]

Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: recent insights provide novel therapeutic opportunities. Oncogene. 2023; 42(22):1786-1801. https://doi.org/10.1038/s41388-023-02701-x.

[34]

Fang R, Chen X, Zhang S, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun. 2021; 12(1):177. https://doi.org/10.1038/s41467-020-20379-7.

[35]

Aravind A, Palollathil A, Rex DAB, et al. A multi-cellular molecular signaling and functional network map of C-C motif chemokine ligand 18 (CCL18): a chemokine with immunosuppressive and pro-tumor functions. J Cell Commun Signal. 2022; 16(2):293-300. https://doi.org/10.1007/s12079-021-00633-3.

[36]

Khan T, Kryza T, Lyons NJ, et al. The CDCP1 signaling hub: a target for cancer detection and therapeutic intervention. Cancer Res. 2021; 81(9):2259-2269. https://doi.org/10.1158/0008-5472.CAN-20-2978.

[37]

Li HY, Cui XY, Wu W, et al. Pyk2 and Src mediate signaling to CCL18-induced breast cancer metastasis. J Cell Biochem. 2014; 115(3):596-603. https://doi.org/10.1002/jcb.24697.

[38]

Schmid S, Le UT, Haager B, et al. Local concentrations of CC-chemokine-ligand 18 correlate with tumor size in non-small cell lung cancer and are elevated in lymph node-positive disease. Anticancer Res. 2016; 36(9):4667-4671. https://doi.org/10.21873/anticanres.11018.

[39]

Schmidt-Wolf R, Zissel G.Interaction between CCL18 and GPR30 differs from the interaction between estradiol and GPR30. Anticancer Res. 2020; 40(6):3097-3108. https://doi.org/10.21873/anticanres.14291.

[40]

Jarry U, Bostoën M, Pineau R, et al. Orthotopic model of lung cancer: isolation of bone micro-metastases after tumor escape from osimertinib treatment. BMC Cancer. 2021; 21(1):530. https://doi.org/10.1186/s12885-021-08205-9.

[41]

Mordant P, Loriot Y, Lahon B, et al. Bioluminescent orthotopic mouse models of human localized non-small cell lung cancer: feasibility and identification of circulating tumour cells. PLoS One. 2011; 6(10):e26073. https://doi.org/10.1371/journal.pone.0026073.

[42]

Lu S, Zhang Y, Li H, et al. Ginsenoside Rb 1 can ameliorate the key inflammatory cytokines TNF-α and IL-6 in a cancer cachexia mouse model. BMC Complement Med Ther. 2020; 20(1):11. https://doi.org/10.1186/s12906-019-2797-9.

[43]

Wu JJ, Zhu YF, Guo ZZ, et al. Aconitum alkaloids, the major components of Aconitum species, affect expression of multidrug resistance-associated protein 2 and breast cancer resistance protein by activating the Nrf2-mediated signalling pathway. Phytomedicine. 2018; 44:87-97. https://doi.org/10.1016/j.phymed.2017.12.007.

[44]

Zheng Y, You X, Chen L, et al. Biotherapeutic nanoparticles of poly(ferulic acid) delivering doxorubicin for cancer therapy. J Biomed Nanotechnol. 2019; 15(8):1734-1743. https://doi.org/10.1166/jbn.2019.2798.

[45]

Zou G, Zhang X, Wang L, et al. Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription. Theranostics. 2020; 10(15):6839-6853. https://doi.org/10.7150/thno.43622.

[46]

Ji XM, Ouyang B, Liu H, et al. In vitro and in vivo inhibitory effect of the combination of Wenxia Changfu Formula with cisplatin in non-small cell lung cancer. Chin J Integr Med. 2011; 17(12):908-916. https://doi.org/10.1007/s11655-011-0934-5.

[47]

Yin J, Zhao X, Chen X, et al. Emodin suppresses hepatocellular carcinoma growth by regulating macrophage polarization via microRNA-26a/transforming growth factor beta 1/protein kinase B. Bioengineered. 2022; 13(4):9548-9563. https://doi.org/10.1080/21655979.2022.2061295.

[48]

Ding L, Qi H, Wang Y, et al. Recent advances in ginsenosides against respiratory diseases: therapeutic targets and potential mechanisms. Biomed Pharmacother. 2023;158:114096. https://doi.org/10.1016/j.biopha.2022.114096.

[49]

Xin C, Quan H, Kim JM, et al. Ginsenoside Rb 1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway. J Ginseng Res. 2019; 43(3):394-401. https://doi.org/10.1016/j.jgr.2018.05.003.

[50]

Zhu Y, Wang A, Zhang S, et al. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res. 2023; 49:159-173. https://doi.org/10.1016/j.jare.2022.09.007.

PDF (18154KB)

90

Accesses

0

Citation

Detail

Sections
Recommended

/