Naturally occurring seco- and nor-polycyclic polyprenylated acylphloroglucinols: distribution, structural diversity, andbiological activity

Yulin Duan , Ying Tang , Changxing Qi , Yonghui Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) : 824 -837.

PDF (17356KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) :824 -837. DOI: 10.1016/S1875-5364(25)60911-3
Review
research-article

Naturally occurring seco- and nor-polycyclic polyprenylated acylphloroglucinols: distribution, structural diversity, andbiological activity

Author information +
History +
PDF (17356KB)

Abstract

Polycyclic polyprenylated acylphloroglucinols (PPAPs) represent a distinct subclass of specialized metabolites predominantly found in the plant kingdom, particularly within the Guttiferae (Clusiaceae) family. These compounds exhibit remarkable structural diversity and a wide range of biological activities. Seco- and nor-PPAPs, two unique variants of PPAPs with diverse skeletal structures, have been extensively investigated. As of June 2023, 200 compounds have been isolated from four genera, with Hypericum being the primary source. Notably, 115 of these compounds were identified in the past four years, indicating a significant increase in research activity. Seco- and nor-PPAPs can be categorized into six main subgroups based on the original PPAP scaffolds. Biological studies have revealed their potential in various therapeutic applications, including anti-cancer, anti-inflammatory, hepatoprotective, anti-Alzheimer’s disease (anti-AD), multidrug resistance (MDR) reversal, anti-depressant, neuroprotective, and immunosuppressive effects. This review provides a comprehensive overview of the occurrence, structures, and bioactivities of natural seco- and nor-PPAPs, offering valuable insights for the further development of PPAPs.

Keywords

Natural products / Seco-polycyclic polyprenylated acylphloroglucinols / Nor-polycyclic polyprenylated acylphloroglucinols / Chemical structure / Biological activity

Cite this article

Download citation ▾
Yulin Duan, Ying Tang, Changxing Qi, Yonghui Zhang. Naturally occurring seco- and nor-polycyclic polyprenylated acylphloroglucinols: distribution, structural diversity, andbiological activity. Chinese Journal of Natural Medicines, 2025, 23(7): 824-837 DOI:10.1016/S1875-5364(25)60911-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang XW, Grossman RB, Xu G. Research progress of polycyclic polyprenylated acylphloroglucinols. Chem Rev. 2018; 118(7):3508-3558. https://doi.org/10.1021/acs.chemrev.7b00551.

[2]

Ciochina R, Grossman RB. Polycyclic polyprenylated acylphloroglucinols. Chem Rev. 2006; 106(9):3963-3986. https://doi.org/10.1021/cr0500582.

[3]

Bridi H, Meirelles GC, von Poser GL. Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. Phytochemistry. 2018; 155:203-232. https://doi.org/10.1016/j.phytochem.2018.08.002.

[4]

Marrelli M, Statti G, Conforti F. Hypericum spp.: an update on the biological activities and metabolic profiles. Mini Rev Med Chem. 2020; 20(1):66-87. https://doi.org/10.2174/1389557519666190926120211.

[5]

Guttroff C, Baykal A, Wang H, et al. Polycyclic polyprenylated acylphloroglucinols: an emerging class of non-peptide-based MRSA- and VRE-active antibiotics. Angew Chem Int Ed. 2017; 56(50):15852-15856. https://doi.org/10.1002/anie.201707069.

[6]

Phang Y, Wang X, Lu Y, et al. Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur J Med Chem. 2020;205:112646. https://doi.org/10.1016/j.ejmech.2020.112646.

[7]

Zur Bonsen AB, Peralta RA, Fallon T, et al. Intramolecular tricarbonyl-ene reactions and α-hydroxy-β-diketone rearrangements inspired by the biosynthesis of polycyclic polyprenylated acylphloroglucinols. Angew Chem Int Ed. 2022; 61(34):e202203311. https://doi.org/10.1002/anie.202203311.

[8]

Phang YL, Liu S, Zheng C, et al. Recent advances in the synthesis of natural products containing the phloroglucinol motif. Nat Prod Rep. 2022; 39(9):1766-1802. https://doi.org/10.1039/D1NP00077B.

[9]

Wen S, Boyce JH, Kandappa SK, et al. Regiodivergent photocyclization of dearomatized acylphloroglucinols: asymmetric syntheses of (-)-nemorosone and (-)-6-epi-garcimultiflorone A. J Am Chem Soc. 2019; 141(28):11315-11321. https://doi.org/10.1021/jacs.9b05600.

[10]

Grenning AJ, Boyce JH, Porco JA. Rapid synthesis of polyprenylated acylphloroglucinol analogs via dearomative conjunctive allylic annulation. J Am Chem Soc. 2014; 136(33):11799-11804. https://doi.org/10.1021/ja5060302.

[11]

Li S, Chen Q, Xie X, et al. Pd-catalyzed enantioselective dearomative allylic annulation to access PPAPs analogues. Org Lett. 2021; 23(20):7824-7828. https://doi.org/10.1021/acs.orglett.1c02842.

[12]

George JH, Hesse MD, Baldwin JE, et al. Biomimetic synthesis of polycyclic polyprenylated acylphloroglucinol natural products isolated from Hypericum papuanum. Org Lett. 2010; 12(15):3532-3535. https://doi.org/10.1021/ol101380a.

[13]

Wang X, Phang Y, Feng J, et al. Stereodivergent strategy in structural determination: asymmetric total synthesis of garcinol, cambogin, and related analogues. Org Lett. 2021; 23(11):4203-4208. https://doi.org/10.1021/acs.orglett.1c01139.

[14]

Pepper HP, Tulip SJ, Nakano Y, et al. Biomimetic total synthesis of (±)-doitunggarcinone A and (+)-garcibracteatone. J Org Chem. 2014; 79(6):2564-2573. https://doi.org/10.1021/jo500027k.

[15]

Simpkins NS. Adventures in bridgehead substitution chemistry: synthesis of polycyclic polyprenylated acylphloroglucinols (PPAPs). Chem Commun. 2013; 49(11):1042-1051. https://doi.org/10.1039/C2CC37914G.

[16]

Ji Y, Hong B, Franzoni I, et al. Enantioselective total synthesis of hyperforin and pyrohyperforin. Angew Chem Int Ed. 2022; 61(16):e202116136. https://doi.org/10.1002/anie.202116136.

[17]

Li XX, Yan Y, Zhang J, et al. Hyperforin: a natural lead compound with multiple pharmacological activities. Phytochemistry. 2023;206:113526. https://doi.org/10.1016/j.phytochem.2022.113526.

[18]

Liu S, Yu B, Dai J, et al. Targeting the biological activity and biosynthesis of hyperforin: a mini-review. Chin J Nat Med. 2022; 20(10):721-728. https://doi.org/10.1016/S1875-5364(22)60189-4.

[19]

Bystrov NS, Chernov BK, Dobrynin VN, et al. The structure of hyperforin. Tetrahedron Lett. 1975; 16(32):2791-2794. https://doi.org/10.1016/S0040-4039(00)75241-5.

[20]

Richard JA. Chemistry and biology of the polycyclic polyprenylated acylphloroglucinol hyperforin. Eur J Org Chem. 2013; 2014(2):273-299. https://doi.org/10.1002/ejoc.201300815.

[21]

Cervo L, Rozio M, Ekalle-Soppo CB, et al. Role of hyperforin in the antidepressant-like activity of Hypericum perforatum extracts. Psychopharmacology. 2002; 164(4):423-428. https://doi.org/10.1007/s00213-002-1229-5.

[22]

Chatterjee SS, Nöldner M, Koch E, et al. Antidepressant activity of Hypericum perforatum and hyperforin: the neglected possibility. Pharmacopsychiatry. 1998; 31(Suppl 1):7-15. https://doi.org/10.1055/s-2007-979340.

[23]

Hu YL, Hu K, Kong LM, et al. Norascyronones A and B,2,3,4-nor-polycyclic polyprenylated acylphloroglucinols from Hypericum ascyron. Org Lett. 2019; 21(4):1007-1010. https://doi.org/10.1021/acs.orglett.8b04022.

[24]

Duan YL, Deng YF, Bu PF, et al. Discovery of nor-bicyclic polyprenylated acylphloroglucinols possessing diverse architectures with anti-hepatoma activities from Hypericum patulum. Bioorg Chem. 2021;111:104902. https://doi.org/10.1016/j.bioorg.2021.104902.

[25]

Duan YL, Xie SS, Bu PF, et al. Hypaluton A, an immunosuppressive 3,4-nor-polycyclic polyprenylated acylphloroglucinol from Hypericum patulum. J Org Chem. 2021; 86(9):6478-6485. https://doi.org/10.1021/acs.joc.1c00319.

[26]

Tian WJ, Yu Y, Yao XJ, et al. Norsampsones A-D, four new decarbonyl polycyclic polyprenylated acylphloroglucinols from Hypericum sampsonii. Org Lett. 2014; 16(13):3448-3451. https://doi.org/10.1021/ol501333k.

[27]

Kobayashi J, Tanaka N. Prenylated acylphloroglucinols and meroterpenoids from Hypericum plants. Heterocycles. 2015; 90(1):23-40. https://doi.org/10.3987/REV-14-SR(K)1.

[28]

Richard JA, Pouwer RH, Chen DY. The chemistry of the polycyclic polyprenylated acylphloroglucinols. Angew Chem Int Ed. 2012; 51(19):4536-4561. https://doi.org/10.1002/anie.201103873.

[29]

de Almeida MF, Guedes MLS, Cruz FG. Lathrophytoic acids A and B: two novel polyprenylated phloroglucinol derivatives from Kielmeyera lathrophyton. Tetrahedron Lett. 2011; 52(52):7108-7112. https://doi.org/10.1016/j.tetlet.2011.10.102.

[30]

Cardona L, Pedro J, Serrano A, et al. Spiroterpenoids from Hypericum Reflexum. Phytochemistry. 1993; 33(3):1185-1187. https://doi.org/10.1016/0031-9422(93)85046-T.

[31]

Fu YG, Huang YQ, Xu ZH, et al. Polyprenylated acylphloroglucinols from Garcinia species and structural revision of seven analogues. Nat Prod Bioprospect. 2025; 15(1):34-47. https://doi.org/10.1007/s13659-025-00519-6.

[32]

Ma J, Zang YD, Zhang JJ, et al. Nine prenylated acylphloroglucinols with potential anti-depressive and hepatoprotective activities from Hypericum scabrum. Bioorg Chem. 2021;107:104529. https://doi.org/10.1016/j.bioorg.2020.104529.

[33]

Zhang ZZ, Zeng YR, Li YN, et al. Two new seco-polycyclic polyprenylated acylphloroglucinol from Hypericum sampsonii. Org Biomol Chem. 2021; 19(1):216-219. https://doi.org/10.1039/D0OB02072A.

[34]

Yang XW, Ding Y, Zhang JJ, et al. New acylphloroglucinol derivatives with diverse architectures from Hypericum henryi. Org Lett. 2014; 16(9):2434-2437. https://doi.org/10.1021/ol500808p.

[35]

Yang XW, Li MM, Liu X, et al. Polycyclic polyprenylated acylphloroglucinol congeners possessing diverse structures from Hypericum henryi. J Nat Prod. 2015; 78(4):885-895. https://doi.org/10.1021/acs.jnatprod.5b00057.

[36]

Wu J, Cheng XF, Harrison LJ, et al. A phloroglucinol derivative with a new carbon skeleton from Hypericum perforatum (Guttiferae). Tetrahedron Lett. 2004; 45(52):9657-9659. https://doi.org/10.1016/j.tetlet.2004.11.007.

[37]

Zhang JJ, Yang XW, Liu X, et al. 1,9-Seco-bicyclic polyprenylated acylphloroglucinols from Hypericum uralum. J Nat Prod. 2015; 78(12):3075-3079. https://doi.org/10.1021/acs.jnatprod.5b00830.

[38]

Zhou ZB, Zhang YM, Pan K, et al. Cytotoxic polycyclic polyprenylated acylphloroglucinols from Hypericum attenuatum. Fitoterapia. 2014; 95:1-7. https://doi.org/10.1016/j.fitote.2014.02.011.

[39]

Lou HY, Li YN, Yi P, et al. Hyperfols A and B: two highly modified polycyclic polyprenylated acylphloroglucinols from Hypericum perforatum. Org Lett. 2020; 22(17):6903-6906. https://doi.org/10.1021/acs.orglett.0c02434.

[40]

Kong LM, Long XW, Yang XW, et al. seco-Polycyclic polyprenylated acylphloroglucinols with unusual carbon skeletons from Hypericum ascyron. Tetrahedron Lett. 2017; 58(22):2113-2117. https://doi.org/10.1016/j.tetlet.2017.04.044.

[41]

Lu WJ, Xu WJ, Zhang MH, et al. Diverse polycyclic polyprenylated acylphloroglucinol congeners with anti-nonalcoholic steatohepatitis activity from Hypericum forrestii. J Nat Prod. 2021; 84(4):1135-1148. https://doi.org/10.1021/acs.jnatprod.0c01202.

[42]

Verotta L, Lovaglio E, Sterner O, et al. Modulation of chemoselectivity by protein additives. Remarkable effects in the oxidation of hyperforin. J Org Chem. 2004; 69(23):7869-7874. https://doi.org/10.1021/jo048857s.

[43]

Zhu H, Chen C, Yang J, et al. Hyperhexanone A, a crucial intermediate from bicyclo[3.3.1]- to cyclohexanone monocyclic-polycyclic polyprenylated acylphloroglucinols. Tetrahedron. 2016; 72(31):4655-4659. https://doi.org/10.1016/j.tet.2016.06.035.

[44]

Sun M, Wang X, Zhu T, et al. Hyperacmosins K-M, three new polycyclic polyprenylated acylphloroglucinols from Hypericum acmosepalum. RSC Adv. 2021; 11(34):21029-21035. https://doi.org/10.1039/D1RA03533A.

[45]

Suo XY, Shi MJ, Dang J, et al. Two new polycyclic polyprenylated acylphloroglucinols derivatives from Hypericum acmosepalum. J Asian Nat Prod Res. 2021; 23(11):1068-1076. https://doi.org/10.1080/10286020.2021.1880395.

[46]

Lu W, Zhang Y, Li Y, et al. Hyperbenzones A and B, two 1,2-seco and rearranged polycyclic polyprenylated acylphloroglucinols from Hypericum beanii. Chin Chem Lett. 2022; 33(8):4121-4125. https://doi.org/10.1016/j.cclet.2021.11.011.

[47]

Nguyen LTT, Lai NTDDT, Nguyen LTT, et al. Thoreliolides A and B, two polyisoprenylated benzoylphloroglucinol derivatives with a new carbon skeleton from the fruits of Calophyllum thorelii. Tetrahedron Lett. 2016; 57(25):2737-2741. https://doi.org/10.1016/j.tetlet.2016.05.021.

[48]

Tao L, Xu S, Zhang Z, et al. Bioassay-guided isolation of α-glucosidase inhibitory constituents from Hypericum sampsonii. Chin J Nat Med. 2023; 21(6):443-453. https://doi.org/10.1016/S1875-5364(23)60472-8.

[49]

Gao XM, Yu T, Lai FSF, et al. Novel polyisoprenylated benzophenone derivatives from Garcinia paucinervis. Tetrahedron Lett. 2010; 51:2442-2446. https://doi.org/10.1016/j.tetlet.2010.02.147.

[50]

Zhang H, Tao L, Fu WW, et al. Prenylated benzoylphloroglucinols and xanthones from the leaves of Garcinia oblongifolia with antienteroviral activity. J Nat Prod. 2014; 77(4):1037-1046. https://doi.org/10.1021/np500124e.

[51]

Zhen B, Hu JW, Wang JJ, et al. Hyperascyrins L-N, rare methylated polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum ascyron. J Asian Nat Prod Res. 2019; 21(5):409-418. https://doi.org/10.1080/10286020.2019.1581175.

[52]

Soroury S, Alilou M, Gelbrich T, et al. Unusual derivatives from Hypericum scabrum. Sci Rep. 2021; 10(1):22181-22190. https://doi.org/10.1038/s41598-020-79305-y.

[53]

Andreas B, Christopher JS, Jonathan HG. Bioinspired total synthesis of hyperireflexolides A and B. Org Lett. 2023; 25:6317-6321. https://doi.org/10.1021/acs.orglett.3c02232.

[54]

Winkelmann K, Heilmann J, Zerbe O, et al. Further prenylated bi- and tricyclic phloroglucinol derivatives from Hypericum papuanum. Helv Chim Acta. 2001; 84(11):3380-3392 doi: 10.1002/1522-2675(20011114)84:11<3380::AID-HLCA3380>3.0.CO;2-O.

[55]

Li X, Li Q, Xu J, et al. Isolation and antihyperglycemic effects of garcibractinols A-H, intricate polycyclic polyprenylated acylphloroglucinols from the fruits of Garcinia bracteata. Bioorg Chem. 2023;138:106651. https://doi.org/10.1016/j.bioorg.2023.106651.

[56]

Lu WJ, Xu WJ, Zhang YQ, et al. Hyperforones A-C, benzoyl-migrated [5.3.1]-type polycyclic polyprenylated acylphloroglucinols from Hypericum forrestii. Org Chem Front. 2020; 7(9):1070-1076. https://doi.org/10.1039/D0QO00152J.

[57]

Liao Y, Liu X, Yang J, et al. Hypersubones A and B, new polycyclic acylphloroglucinols with intriguing adamantane type cores from Hypericum subsessile. Org Lett. 2015; 17(5):1172-1175. https://doi.org/10.1021/acs.orglett.5b00100.

[58]

Ye Y, Yang XW, Xu G. Unusual adamantane type polyprenylated acylphloroglucinols with an oxirane unit and their structural transformation from Hypericum hookerianum. Tetrahedron. 2016; 72(22):3057-3062. https://doi.org/10.1016/j.tet.2016.04.025.

[59]

Xie S, Tan X, Liu Y, et al. Hypersonins A-D,Polycyclic polyprenylated acylphloroglucinols with a 1,2-seco-homoadamantane architecture from Hypericum wilsonii. J Nat Prod. 2020; 83(6):1804-1809. https://doi.org/10.1021/acs.jnatprod.9b01187.

[60]

Teng H, Ren Y, Ma Z, et al. Homoadamantane polycyclic polyprenylated acylphloroglucinols from the fruits of Garcinia multiflora. Fitoterapia. 2019;137:104245. https://doi.org/10.1016/j.fitote.2019.104245.

[61]

Liu YY, Ao Z, Xue GM, et al. Hypatulone A, a homoadamantane-type acylphloroglucinol with an intricately caged core from Hypericum patulum. Org Lett. 2018; 20(24):7953-7956. https://doi.org/10.1021/acs.orglett.8b03523.

[62]

Yang XW, Grossman RB. Revision of the structure of hypatulone A by NMR, computations, and biosynthetic considerations. Org Lett. 2020; 22(2):760-763. https://doi.org/10.1021/acs.orglett.9b04666.

[63]

Zeng YR, Yuan CM, Li YN, et al. Hymoins A-D: two pairs of polyprenylated acylphloroglucinols from Hypericum monogynum and their light-induced transformation. Org Lett. 2021; 23(8):3125-3129. https://doi.org/10.1021/acs.orglett.1c00811.

[64]

Li YW, Lu WJ, Zhou X, et al. Diverse polycyclic polyprenylated acylphloroglucinols with anti-neuroinflammatory activity from Hypericum beanii. Bioorg Chem. 2022;127:106005. https://doi.org/10.1016/j.bioorg.2022.106005.

[65]

Shi Z, Hu H, Guo Y, et al. Discovery of 13,15-nor-polycyclic polyprenylated acylphloroglucinols from Hypericum longistylum with anti-inflammatory activity. Org Biomol Chem. 2022; 20(6):1284-1291. https://doi.org/10.1039/D1OB02107A.

[66]

Tanaka N, Abe S, Hasegawa K, et al. Biyoulactones A-C, new pentacyclic meroterpenoids from Hypericum chinense. Org Lett. 2011; 13(20):5488-5491. https://doi.org/10.1021/ol2021548.

[67]

Li YN, Zeng YR, Yang J, et al. Chemical constituents from the flowers of Hypericum monogynum L. with COX-2 inhibitory activity. Phytochemistry. 2022;193:112970. https://doi.org/10.1016/j.phytochem.2021.112970.

[68]

Zeng YR, Li YN, Yang J, et al. Hypermonones A-I, new polyprenylated acylphloroglucinols from Hypericum monogynum with multidrug resistance reversal activity. Chin J Chem. 2021; 39(9):2422-2432. https://doi.org/10.1002/cjoc.202100210.

[69]

Yang B, Qi C, Yao Z, et al. Hybeanones A and B, two highly modified polycyclic polyprenylated acylphloroglucinols from Hypericum beanii. Chin J Chem. 2022; 40(1):53-58. https://doi.org/10.1002/cjoc.202100468.

[70]

Hu YL, Yue GG, Li XR, et al. Structurally diverse spirocyclic polycyclic polyprenylated acylphloroglucinols from Hypericum ascyron Linn. and their anti-tumor activity. Phytochemistry. 2023;212:113727. https://doi.org/10.1016/j.phytochem.2023.113727.

[71]

Xu WJ, Luo J, Li RJ, et al. Furanmonogones A and B: two rearranged acylphloroglucinols with a 4,5-seco-3(2H) -furanone core from the flowers of Hypericum monogynum. Org Chem Front. 2017; 4(2):313-317. https://doi.org/10.1039/C6QO00620E.

[72]

Li D, Yang J, Liu B, et al. Synthesis of desacyl furanmonogones A and B. Org Lett. 2021; 23(12):4532-4537. https://doi.org/10.1021/acs.orglett.1c01157.

[73]

Duan YT, Zhang J, Lao YZ, et al. Spirocyclic polycyclic polyprenylated acylphloroglucinols from the ethyl acetate fraction of Hypericum henryi. Tetrahedron Lett. 2018; 59(46):4067-4072. https://doi.org/10.1016/j.tetlet.2018.09.071.

[74]

Yang B, Huang J, Lin S, et al. Hyperbeanone A, a 5,6-seco-spirocyclic polycyclic polyprenylated acylphloroglucinol derivative with an unprecedented skeleton from Hypericum beanii. Org Chem Front. 2021; 8(22):6411-6418. https://doi.org/10.1039/D1QO01302E.

[75]

Tanaka N, Abe S, Kobayashi Ji. Biyoulactones D and E, meroterpenoids from Hypericum chinense. Tetrahedron Lett. 2012; 53(12):1507-1510. https://doi.org/10.1016/j.tetlet.2012.01.052.

[76]

Zhang N, Shi Z, Guo Y, et al. The absolute configurations of hyperilongenols A-C: rare 12,13-seco-spirocyclic polycyclic polyprenylated acylphloroglucinols with enolizable β,β′-tricarbonyl systems from Hypericum longistylum Oliv. Org Chem Front. 2019; 6(9):1491-1502. https://doi.org/10.1039/C9QO00245F.

[77]

Zhang N, Shi Z, Xu Q, et al. Longisglucinols A-C, structurally intriguing polycyclic polyprenylated acylphloroglucinols with anti-inflammatory activity from Hypericum longistylum. Org Lett. 2020; 22(20):7926-7929. https://doi.org/10.1021/acs.orglett.0c02853.

[78]

Chen Y, Xue Q, Teng H, et al. Acylphloroglucinol derivatives with a tricyclo-[4.4.1.11,4] dodecane skeleton from Garcinia bracteata fruits. J Org Chem. 2020; 85(10):6620-6625. https://doi.org/10.1021/acs.joc.0c00637.

[79]

Tantapakul C, Phakhodee W, Ritthiwigrom T, et al. Rearranged benzophenones and prenylated xanthones from Garcinia propinqua twigs. J Nat Prod. 2012; 75(9):1660-1664. https://doi.org/10.1021/np300487w.

[80]

Oya A, Tanaka N, Kusama T, et al. Prenylated benzophenones from Triadenum japonicum. J Nat Prod. 2015; 78(2):258-264. https://doi.org/10.1021/np500827h.

[81]

Mitsugi K, Takabayashi T, Ohyoshi T, et al. Total synthesis of a PPAP, nemorosonol, using a tandem Michael addition-intramolecular aldol reaction. Org Lett. 2022; 24(25):4635-4639. https://doi.org/10.1021/acs.orglett.2c01745.

[82]

Nigam SK, Banerji R, Rebuffat S, et al. Soulattrone A, a C24 terpenoid from Calophyllum soulattri. Phytochemistry. 1988; 27(2):527-530. https://doi.org/10.1016/0031-9422(88)83134-0.

[83]

Zheng C, Wang X, Fu W, et al. Total synthesis of norsampsones A and B, garcinielliptones N and O, and hyperscabrin A. J Nat Prod. 2018; 81(11):2582-2589. https://doi.org/10.1021/acs.jnatprod.8b00763.

[84]

Liu R, Su Y, Yang J, et al. Polyprenylated acylphloroglucinols from Hypericum scabrum. Phytochemistry. 2017; 142:38-50. https://doi.org/10.1016/j.phytochem.2017.06.011.

[85]

Zhang F, Yang J, Yi P, et al. Hyperpatone A, a polycyclic polyprenylated acylphloroglucinol with a rare 8/6/5/6/ 5 pentacyclic skeleton from Hypericum patulum. Org Biomol Chem. 2023; 21:140-146. https://doi.org/10.1039/D2OB01851A.

[86]

Ma Y, Liu B, Li P, et al. Hyperacmosin R, a new decarbonyl prenylphloroglucinol with unusual spiroketal subunit from Hypericum acmosepalum. Molecules. 2022;27:5932. https://doi.org/10.3390/molecules27185932.

[87]

Teng H, Ma Z, Teng H, et al. Two novel cyclohexanone-monocyclic polycyclic polyprenylated acylphloroglucinols from Garcinia multiflora fruits. Nat Prod Res. 2022; 36(2):508-514. https://doi.org/10.1080/14786419.2020.1788559.

[88]

Xie S, Zhou Y, Tan X, et al. Norwilsonnol A, an immunosuppressive polycyclic polyprenylated acylphloroglucinol with a spiro[5-oxatricyclo[6.4.0.03,7]dodecane-6',1-1',2'-dioxane] system from Hypericum wilsonii. Org Chem Front. 2021; 8(10):2280-2286. https://doi.org/10.1039/D1QO00271F.

[89]

Guo Y, Huang F, Sun W, et al. Unprecedented polycyclic polyprenylated acylphloroglucinols with anti-Alzheimer’s activity from St. John’s wort. Chem Sci. 2021; 12(34):11438-11446. https://doi.org/10.1039/D1SC03356E.

[90]

Duan Y, Guo Y, Deng Y, et al. Norprzewalsone A, a rearranged polycyclic polyprenylated acylphloroglucinol with a spiro[cyclopentane-1,3'-tricyclo[7.4.0.01,6]tridecane] core from Hypericum przewalskii. J Org Chem. 2022; 87(10):6824-6831. https://doi.org/10.1021/acs.joc.2c00503.

[91]

Huang L, Zhang Z, Li YN, et al. Hypersampones A-C, three nor-polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum sampsonii. Org Lett. 2022; 24:5967-5971. https://doi.org/10.1021/acs.orglett.2c02240.

[92]

Guo Y, Tong Q, Zhang N, et al. Highly functionalized cyclohexanone-monocyclic polyprenylated acylphloroglucinols from Hypericum perforatum induce leukemia cell apoptosis. Org Chem Front. 2019; 6(6):817-824. https://doi.org/10.1039/C8QO01268G.

[93]

Sun H, Wang J, Zhen B, et al. Polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum pseudohenryi. Phytochemistry. 2021;187:112761. https://doi.org/10.1016/j.phytochem.2021.112761.

[94]

Xu ZJ, Liu XY, Zhu MZ, et al. Photoredox-catalyzed cascade reactions involving aryl radical: total synthesis of (±)-norascyronone A and (±)-eudesmol. Org Lett. 2021; 23(23):9073-9077. https://doi.org/10.1021/acs.orglett.1c03319.

[95]

Sassnink SA, Phan QD, Lam HC, et al. Biomimetic synthesis of the non-canonical PPAP natural products yezo'otogirin C and hypermogin D, and studies towards the synthesis of norascyronone A. Org Biomol Chem. 2022; 20(8):1759-1768. https://doi.org/10.1039/D2OB00074A.

[96]

Cao T, Zhu L, Lan Y, et al. Protecting-group-free total syntheses of (±)-norascyronones A and B. Org Lett. 2020; 22(7):2517-2521. https://doi.org/10.1021/acs.orglett.0c00212.

[97]

Tanaka N, Kakuguchi Y, Ishiyama H, et al. Yezo’otogirins A-C, new tricyclic terpenoids from Hypericum yezoense. Tetrahedron Lett. 2009; 50(33):4747-4750. https://doi.org/10.1016/j.tetlet.2009.06.021.

[98]

Zeng Y, Yang J, Li Y, et al. Hypermogins A-D, four highly modified polycyclic polyprenylated acylphloroglucinols from Hypericum monogynum. Tetrahedron Lett. 2021;64:152733. https://doi.org/10.1016/j.tetlet.2020.152733.

[99]

Lam HC, Kuan KK, George JH. Biomimetic total synthesis of (±)-yezo'otogirin A. Org Biomol Chem. 2014; 12(16):2519-2522. https://doi.org/10.1039/C4OB00186A.

[100]

He S, Yang W, Zhu L, et al. Bioinspired total synthesis of (±)-yezo'otogirin C. Org Lett. 2014; 16(2):496-499. https://doi.org/10.1021/ol403374h.

[101]

Yang W, Cao J, Zhang M, et al. Systemic study on the biogenic pathways of yezo'otogirins: total synthesis and antitumor activities of (±)-yezo'otogirin C and its structural analogues. J Org Chem. 2015; 80(2):836-846. https://doi.org/10.1021/jo502267g.

[102]

Shan MD, Hu LH, Chen ZL. Three new hyperforin analogues from Hypericum perforatum. J Nat Prod. 2001; 64(1):127-130. https://doi.org/10.1021/np000362k.

[103]

Ma J, Ji TF, Yang JB, et al. Three new phloroglucinol derivatives from Hypericum scabrum. J Asian Nat Prod Res. 2012; 14(5):508-514. https://doi.org/10.1080/10286020.2012.680445.

[104]

Gao W, Hu JW, Hou WZ, et al. Four new prenylated phloroglucinol derivatives from Hypericum scabrum. Tetrahedron Lett. 2016; 57(21):2244-2248. https://doi.org/10.1016/j.tetlet.2016.04.026.

[105]

Wang X, Nie XB, Grossman RB, et al. Structural revision of hyperibrin B and hyperscabrones H and I by biosynthetic considerations, NMR analysis, and chemical synthesis. J Nat Prod. 2021; 84(7):2059-2064. https://doi.org/10.1021/acs.jnatprod.1c00458.

[106]

Gao W, Hou WZ, Zhao J, et al. Polycyclic polyprenylated acylphloroglucinol congeners from Hypericum scabrum. J Nat Prod. 2016; 79(6):1538-1547. https://doi.org/10.1021/acs.jnatprod.5b01063.

[107]

Weng JR, Tsao LT, Wang JP, et al. Anti-inflammatory phloroglucinols and terpenoids from Garcinia subelliptica. J Nat Prod. 2004; 67(11):1796-1799. https://doi.org/10.1021/np049811x.

[108]

Lou H, Ma F, Yi P, et al. Bioassay and UPLC-Q-Orbitrap-MS/MS guided isolation of polycyclic polyprenylated acylphloroglucinols from St. John’s wort and their neuroprotective activity. Arab J Chem. 2022;15:104057. https://doi.org/10.1016/j.arabjc.2022.104057.

[109]

Fang QQ, Feng TT, Wang AZ, et al. Structurally diverse polyprenylated acylphloroglucinols from Hypericum uralum Buch. Ham. ex D. Don. Phytochemistry. 2021;187:112771. https://doi.org/10.1016/j.phytochem.2021.112771.

[110]

Zeng YR, Yi P, Gu W, et al. Hypermonins A and B, two 6-norpolyprenylated acylphloroglucinols with unprecedented skeletons from Hypericum monogynum. Org Biomol Chem. 2018; 16(22):4195-4198. https://doi.org/10.1039/C8OB00650D.

[111]

Zheng D, Chen Y, Wan S, et al. Polycyclic polyprenylated acylphloroglucinol congeners from Garcinia yunnanensis Hu with inhibitory effect on α-hemolysin production in Staphylococcus aureus. Bioorg Chem. 2021;114:105074. https://doi.org/10.1016/j.bioorg.2021.105074.

[112]

Xie S, Qi C, Duan Y, et al. Discovery of new polycyclic polyprenylated acylphloroglucinols with diverse architectures as potent cyclooxygenase-2 inhibitors. Org Chem Front. 2020; 7(11):1349-1357. https://doi.org/10.1039/D0QO00259C.

[113]

Tian WJ, Qiu YQ, Chen JJ, et al. Norsampsone E, an unprecedented decarbonyl polycyclic polyprenylated acylphloroglucinol with a homoadamantyl core from Hypericum sampsonii. RSC Adv. 2017; 7(53):33113-33119. https://doi.org/10.1039/C7RA05947G.

[114]

Wang X, Shi M, Wang J, et al. Hyperacmosins E-G, three new homoadamantane-type polyprenylated acylphloroglucinols from Hypericum acmosepalum. Fitoterapia. 2020;142:104535. https://doi.org/10.1016/j.fitote.2020.104535.

[115]

Tanaka N, Kashiwada Y, Kim SY, et al. Acylphloroglucinol, biyouyanagiol, biyouyanagin B, and related spiro-lactones from Hypericum chinense. J Nat Prod. 2009; 72(8):1447-1452. https://doi.org/10.1021/np900109y.

[116]

Tanaka N, Yano Y, Tatano Y, et al. Hypatulins A and B, meroterpenes from Hypericum patulum. Org Lett. 2016; 18(20):5360-5363. https://doi.org/10.1021/acs.orglett.6b02725.

[117]

Leisering S, Ponath S, Shakeri K, et al. Synthesis of 3-epi-hypatulin B featuring a late-stage photo-oxidation in flow. Org Lett. 2022; 24(24):4305-4309. https://doi.org/10.1021/acs.orglett.2c00689.

[118]

Jia X, Wu Y, Lei C, et al. Hyperinoids A and B, two polycyclic meroterpenoids from Hypericum patulum. Chin Chem Lett. 2020; 31(5):1263-1266. https://doi.org/10.1016/j.cclet.2019.10.014.

[119]

Zhang R, Ji Y, Zhang X, et al. Ethnopharmacology of Hypericum species in China: a comprehensive review on ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol. 2020;254:112686. https://doi.org/10.1016/j.jep.2020.112686.

[120]

Zhang R, Ji Y, Morcol T, et al. UPLC-QTof-MS chemical profiling and characterization of antiproliferative and anti-inflammatory compounds from seven Hypericum species in China. Ind Crop Prod. 2021;173:114156. https://doi.org/10.1016/j.indcrop.2021.114156.

[121]

Hu J, Gao W, Xu F, et al. Polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum scabrum. Bioorg Med Chem Lett. 2017; 27(21):4932-4936. https://doi.org/10.1016/j.bmcl.2017.09.001.

[122]

Gong CX, Lidsky T, Wegiel J, et al. Phosphorylation of microtubule-associated protein Tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J Biol Chem. 2000; 275(8):5535-5544. https://doi.org/10.1074/jbc.275.8.5535.

[123]

Vassar R.Bace 1. J Mol Neurosci. 2004; 23(1):105-113. https://doi.org/10.1385/JMN:23:1-2:105.

[124]

Tiwari S, Atluri V, Kaushik A, et al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed. 2019; 14:5541-5554. https://doi.org/10.2147/IJN.S200490.

[125]

Butterweck V. Mechanism of action of St John’s wort in depression what is known? CNS Drugs. 2003; 17(8):539-562. https://doi.org/10.2165/00023210-200317080-00001.

[126]

Ma J, Xia G, Zang Y, et al. Three new decarbonyl prenylphloroglucinols bearing unusual spirost subunits from Hypericum scabrum and their neuronal activities. Chin Chem Lett. 2020; 32:1173-1176. https://doi.org/10.1016/j.cclet.2020.07.037.

[127]

Tang Y, Xue Y, Du G, et al. Structural revisions of a class of natural products: scaffolds of aglycon analogues of fusicoccins and cotylenins isolated from fungi. Angew Chem Int Ed. 2016; 55(12):4069-4073. https://doi.org/10.1002/anie.201600313.

[128]

Navarro-Vazquez A.Computational structural revision of a 4-hydroxy-3-(1'-angeloyloxy-2',3'-epoxy-3'-methyl)butylacetophenone compound from Ageratina grandifolia. J Nat Prod. 2021; 84(7):2043-2047. https://doi.org/10.1021/acs.jnatprod.1c00398.

[129]

Grossman RB, Yang XW. Structural revision of garcinielliptin oxide and garcinielliptone E. J Nat Prod. 2020; 83(6):2041-2044. https://doi.org/10.1021/acs.jnatprod.0c00306.

PDF (17356KB)

144

Accesses

0

Citation

Detail

Sections
Recommended

/