Artificial intelligence in natural products research

Xiao Yuan , Xiaobo Yang , Qiyuan Pan , Cheng Luo , Xin Luan , Hao Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) : 1310 -1328.

PDF (4889KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) :1310 -1328. DOI: 10.1016/S1875-5364(25)60902-2
Review
research-article

Artificial intelligence in natural products research

Author information +
History +
PDF (4889KB)

Abstract

Artificial intelligence (AI) has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research. Natural medicines, characterized by their complex chemical compositions and multifaceted pharmacological mechanisms, demonstrate widespread application in treating diverse diseases. However, research and development face significant challenges, including component complexity, extraction difficulties, and efficacy validation. AI technology, particularly through deep learning (DL) and machine learning (ML) approaches, enables efficient analysis of extensive datasets, facilitating drug screening, component analysis, and pharmacological mechanism elucidation. The implementation of AI technology demonstrates considerable potential in virtual screening, compound optimization, and synthetic pathway design, thereby enhancing natural medicines’ bioavailability and safety profiles. Nevertheless, current applications encounter limitations regarding data quality, model interpretability, and ethical considerations. As AI technologies continue to evolve, natural medicines research and development will achieve greater efficiency and precision, advancing both personalized medicine and contemporary drug development approaches.

Keywords

Natural products / Artificial intelligence / Deep learning / Drug discovery / Model interpretability

Cite this article

Download citation ▾
Xiao Yuan, Xiaobo Yang, Qiyuan Pan, Cheng Luo, Xin Luan, Hao Zhang. Artificial intelligence in natural products research. Chinese Journal of Natural Medicines, 2025, 23(11): 1310-1328 DOI:10.1016/S1875-5364(25)60902-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mullowney MW, Duncan KR, Elsayed SS, et al. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov. 2023; 22(11):895-916. https://doi.org/10.1038/s41573-023-00774-7.

[2]

Chopra B, Dhingra AK. Natural products: a lead for drug discovery and development. Phytother Res. 2021; 35(9):4660-4702. https://doi.org/10.1002/ptr.7099.

[3]

Ren Y, Zhang X, Li Y, et al. Research progress and applications of iron-based nanozymes in colorimetric sensing of agricultural pollutants. Biosens Bioelectron. 2025;271:116999. https://doi.org/10.1016/j.bios.2024.116999.

[4]

Hu L, Wang J, Xu Y, et al. A critical review of persimmon-derived pectin: innovations in extraction, structural characterization, biological potentials, and health-promoting effects. Food Chem. 2025; 463(Pt 4):141453. https://doi.org/10.1016/j.foodchem.2024.141453.

[5]

Proctor ML, Murphy PA. Herbal and dietary therapies for primary and secondary dysmenorrhoea. Cochrane Database Syst Rev. 2001;3:CD002124. https://doi.org/10.1002/14651858.CD002124.

[6]

Fatima K, Alokaili H, Alharbi M, et al. Effectiveness of fish oil in controlling inflammation in adult patients undergoing hemodialysis: a systematic review and meta-analysis. SAGE Open Med. 2024; 12: 20503121241275467.https://doi.org/10.1177/20503121241275467.

[7]

Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 2006; 51:45-66. https://doi.org/10.1146/annurev.ento.51.110104.151146.

[8]

Wu Q, Zhou J. The application of polyphenols in food preservation. Adv Food Nutr Res. 2021; 98:35-99. https://doi.org/10.1016/bs.afnr.2021.02.005.

[9]

Muteeb G, Rehman MT, Shahwan M, et al. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. Pharmaceuticals (Basel). 2023; 16(11):1615. https://doi.org/10.3390/ph16111615.

[10]

Newman DJ, Cragg GM.Natural products as sources of new drugs over the nearly four decades from 01/ 1981 to 09/2019. J Nat Prod.2020; 83(3):770-803. https://doi.org/10.1021/acs.jnatprod.9b01285.

[11]

Lyddiard D, Jones GL, Greatrex BW. Keeping it simple: lessons from the golden era of antibiotic discovery. FEMS Microbiol Lett. 2016; 363(8):fnw084. https://doi.org/10.1093/femsle/fnw084.

[12]

Hautbergue T, Jamin EL, Coste F, et al. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat Prod Rep. 2018; 35(2):147-173. https://doi.org/10.1039/c7np00032d.

[13]

Zhang S, Liu Y, Wang Q, et al. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev. 2025; 54(1):396-464. https://doi.org/10.1039/d2cs00909a.

[14]

Yang R, Chen H, Li X, et al. Factors influencing surimi gelling properties and natural additive-based gel fortification strategies: a review. Compr Rev Food Sci Food Saf. 2025; 24(1):e70067. https://doi.org/10.1111/1541-4337.70067.

[15]

Sun P, Wang Y, Zhang L, et al. In pursuit of lead innovation: pharmaceutically important and distinct amide-free succinate dehydrogenase inhibitors. J Med Chem. 2025; 68(2):1051-1067. https://doi.org/10.1021/acs.jmedchem.4c02757.

[16]

Shang Y, Zhao H. Research progress of Chinese medicinal monomers in the process of melanoma occurrence. Pharm Biol. 2025; 63(1):53-67. https://doi.org/10.1080/13880209.2024.2445695.

[17]

Wang L, Liu R, Zhang Y, et al. Non-targeted metabonomics reveals the effect of linalyl alcohol on Brochothrix thermosphacta and its potential application. Food Res Int. 2025;201:115549. https://doi.org/10.1016/j.foodres.2024.115549.

[18]

Husain I, Ahmad A, Khan MS, et al. Evaluation of bioaccessibility, metabolic clearance and interaction with xenobiotic receptors (PXR and AhR) of cinnamaldehyde. Food Chem (Oxf). 2025;10:100237. https://doi.org/10.1016/j.fochms.2024.100237.

[19]

Fu W, Yang J, Li C, et al. Copper-luteolin nanocomplexes for mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease. Bioact Mater. 2025; 46:118-133. https://doi.org/10.1016/j.bioactmat.2024.12.004.

[20]

Liang X, Chen Y, Wang H, et al. Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing. Biomaterials. 2025;317:123076. https://doi.org/10.1016/j.biomaterials.2024.123076.

[21]

Subhash A, Kumar S, Sharma M, et al. Date seeds polysaccharides as novel capping agents for selenium nanoparticles: synthesis, characterization, stability, biological activities, and gut microbiota modulation. Food Chem. 2025;470:142746. https://doi.org/10.1016/j.foodchem.2024.142746.

[22]

Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015; 349(6245):255-260. https://doi.org/10.1126/science.aaa8415.

[23]

Mjolsness E, DeCoste D. Machine learning for science: state of the art and future prospects. Science. 2001; 293(5537):2051-2055. https://doi.org/10.1126/science.293.5537.2051.

[24]

Roy K, Gaur M, Sheth A, et al. Neurosymbolic artificial intelligence (why, what, and how). IEEE Intell Syst. 2023; 38(3):56-62. https://doi.org/10.1109/MIS.2023.3268724.

[25]

Aliferis C, Simon GJ. Foundations and properties of AI/ML systems[M]// Simon GJ, Aliferis C. Artificial intelligence and machine learning in health care and medical sciences:best practices and pitfalls. Cham (CH): Springer. 2024: 33-94.https://doi.org/10.1007/978-3-031-39355-6_2.

[26]

van Santen JA, Poynton EF, Iskakova D, et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent Sci. 2019; 5(11):1824-1833. https://doi.org/10.1021/acscentsci.9b00806.

[27]

Lanz J, Riedl R. Merging allosteric and active site binding motifs: de novo generation of target selectivity and potency via natural-product-derived fragments. ChemMedChem. 2015; 10(3):451-454. https://doi.org/10.1002/cmdc.201402478.

[28]

Wassermann AM, Lounkine E, Hoepfner D, et al. A screening pattern recognition method finds new and divergent targets for drugs and natural products. ACS Chem Biol. 2014; 9(7):1622-1631. https://doi.org/10.1021/cb5001839.

[29]

Ozturk H, Ozkirimli E, Ozgur A. Exploring chemical space using natural language processing methodologies for drug discovery. Drug Discov Today. 2020; 25(4):689-705. https://doi.org/10.1016/j.drudis.2020.01.020.

[30]

Boaro A, Caglioti C, Mosconi L, et al. Structure-function-guided design of synthetic peptides with anti-infective activity derived from wasp venom. Cell Rep Phys Sci. 2023; 4(7):101456. https://doi.org/10.1016/j.xcrp.2023.101459.

[31]

Torres MDT, Silva ON, Alves ESF, et al. Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Commun Biol. 2018;1:221. https://doi.org/10.1038/s42003-018-0224-2.

[32]

Pedron CN, Torres MDT, Silva ON, et al.Novel designed VmCT1 analogs with increased antimicrobial activity. Eur J Med Chem. 2017; 126:456-463. https://doi.org/10.1016/j.ejmech.2016.11.040.

[33]

Torres MT, Silva ON, Alves ESF, et al. Antimicrobial activity of leucine-substituted decoralin analogs with lower hemolytic activity. J Pept Sci. 2017; 23(11):818-823. https://doi.org/10.1002/psc.3029.

[34]

Baum ZJ, Yu X, Ayala PY, et al. Artificial intelligence in chemistry: current trends and future directions. J Chem Inf Model. 2021; 61(7):3197-3212. https://doi.org/10.1021/acs.jcim.1c00619.

[35]

Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020; 181(2):475-483. https://doi.org/10.1016/j.cell.2020.01.021.

[36]

Kretschmer F, Rastogi R, Korshunova M, et al. Coverage bias in small molecule machine learning. Nat Commun. 2025; 16(1):554. https://doi.org/10.1038/s41467-024-55462-w.

[37]

Cai Z, Liu X, Wang Y, et al. Style mixup enhanced disentanglement learning for unsupervised domain adaptation in medical image segmentation. Med Image Anal. 2024;101:103440. https://doi.org/10.1016/j.media.2024.103440.

[38]

Hastings J, Owen G, Dekker A, et al. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016; 44(D1):D1214-D1219. https://doi.org/10.1093/nar/gkv1031.

[39]

Wang Y, Xiao J, Suzek TO, et al.PubChem's BioAssay database. Nucleic Acids Res. 2012, 40(Database issue): D400-D412.https://doi.org/10.1093/nar/gkr1132.

[40]

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27-30. https://doi.org/10.1093/nar/28.1.27.

[41]

van Santen JA, Poynton EF, Iskakova D, et al. The natural products atlas 2.0:a database of microbially-derived natural products. Nucleic Acids Res. 2022; 50(D1):D1317-D1323. https://doi.org/10.1093/nar/gkab941.

[42]

Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012; 52(7):1757-1768. https://doi.org/10.1021/ci3001277.

[43]

Terlouw BR, Blin K, Navarro-Munoz JC, et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 2023; 51(D1):D603-D610. https://doi.org/10.1093/nar/gkac1049.

[44]

Lee YY, Wang M, Liu X, et al. HypoRiPPAtlas as an atlas of hypothetical natural products for mass spectrometry database search. Nat Commun. 2023; 14(1):4219. https://doi.org/10.1038/s41467-023-39905-4.

[45]

Wishart DS, Guo A, Oler E, et al. NP-MRD: the natural products magnetic resonance database. Nucleic Acids Res. 2022; 50(D1):D665-D677. https://doi.org/10.1093/nar/gkab1052.

[46]

Gallo K, Goede A, Preissner R, et al. SuperNatural 3.0-a database of natural products and natural product-based derivatives. Nucleic Acids Res. 2023; 51(D1):D654-D659. https://doi.org/10.1093/nar/gkac1008.

[47]

Winkelmann J, Schall P, Dijkstra M, et al.Corrected article: simulation and observation of line-slip structures in columnar structures of soft spheres [Phys. Rev. E 96, 012610 (2017)]. Phys Rev E.2017, 97(5-2): 059902. https://doi.org/10.1103/physreve.97.059902.

[48]

Niven DJ, Leigh JP, Stelfox HT. Les considerations ethiques relatives a la desadoption d'aspects inefficaces ou nuisibles des soins de sante. Healthc Manage Forum. 2016; 29(5):218-222. https://doi.org/10.1177/0840470416666576.

[49]

Wang P, Li X, Zhang Y, et al. Gut microbiota-derived 4-hydroxyphenylacetic acid from resveratrol supplementation prevents obesity through SIRT1 signaling activation. Gut Microbes. 2025; 17(1):2446391. https://doi.org/10.1080/19490976.2024.2446391.

[50]

Bhanukiran K, Priya V. Exploring multitarget potential of piper nigrum fruit constituents for Alzheimer’s disease: an AI-driven strategy. Phytomedicine. 2024;135:156108. https://doi.org/10.1016/j.phymed.2024.156108.

[51]

Chihomvu P, Moyo M, Ntuli N, et al. Phytochemicals in drug discovery-a confluence of tradition and innovation. Int J Mol Sci. 2024; 25(16):8945. https://doi.org/10.3390/ijms25168792.

[52]

Nicolaou KC, Hale CRH, Nilewski C, et al. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev. 2012; 41(15):5185-5238. https://doi.org/10.1039/c2cs35116a.

[53]

Ory L, Nazih EH, Daoud L, et al. Targeting bioactive compounds in natural extracts-development of a comprehensive workflow combining chemical and biological data. Anal Chim Acta. 2019; 1070:29-42. https://doi.org/10.1016/j.aca.2019.04.038.

[54]

Liu P, Wang Y, Zhang L, et al. Wutou decoction: a latest review on molecular mechanisms, clinical studies, quality control, pharmacokinetic studies, pharmacological effects, toxicity, and target prediction. J Ethnopharmacol. 2025;341:119307. https://doi.org/10.1016/j.jep.2024.119307.

[55]

Sun L, Chen H, Wang J, et al. Polysaccharides from traditional Chinese medicine and their nano-formulated delivery systems for cancer immunotherapy. Carbohydr Polym. 2025;357:123416. https://doi.org/10.1016/j.carbpol.2025.123416.

[56]

Saldivar-Gonzalez FI, Sanchez-Cruz N, Medina-Franco JL, et al. Natural product drug discovery in the artificial intelligence era. Chem Sci. 2022; 13(6):1526-1546. https://doi.org/10.1039/D1SC04471K.

[57]

Meunier M, Schinkovitz A, Derbre S. Current and emerging tools and strategies for the identification of bioactive natural products in complex mixtures. Nat Prod Rep. 2024; 41(11):1766-1786. https://doi.org/10.1039/d4np00006d.

[58]

Wolfender JL, Marti G, Thomas A, et al. Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography-high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal Chem. 2019; 91(1):704-742. https://doi.org/10.1021/acs.analchem.8b05112.

[59]

Menna M, Imperatore C, D'Aniello F, et al. Challenges in the configuration assignment of natural products a case-selective perspective. Nat Prod Rep. 2019; 36(3):476-489. https://doi.org/10.1039/c8np00053k.

[60]

Kussmann M, Abe Cunha DH, Berciano S. Bioactive compounds for human and planetary health. Front Nutr. 2023;10:1193848. https://doi.org/10.3389/fnut.2023.1193848.

[61]

Agrawal P, Khater S, Gupta M, et al. RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res. 2017; 45(W1):W80-W88. https://doi.org/10.1093/nar/gkx408.

[62]

Gangwal A, Lavecchia A. AI-driven drug discovery for rare diseases. J Chem Inf Model. 2025; 65(5):2214-2231. https://doi.org/10.1021/acs.jcim.4c01966.

[63]

Gangwal A, Lavecchia A. Artificial intelligence in natural product drug discovery: current applications and future perspectives. J Med Chem. 2025; 68(4):3948-3969. https://doi.org/10.1021/acs.jmedchem.4c01257.

[64]

Howarth A, Ermanis K, Goodman JM. DP4-AI automated NMR data analysis: straight from spectrometer to structure. Chem Sci. 2020; 11(17):4351-4359. https://doi.org/10.1039/d0sc00442a.

[65]

Duan FL, Wang Y, Zhang L, et al. AI-driven drug discovery from natural products. Advanced Agrochem. 2024; 3(3):185-187. https://doi.org/10.1016/j.aac.2024.06.003.

[66]

Marcarino MO, Ciceri D, Sarotti AM. A critical review on the use of DP4 + in the structural elucidation of natural products: the good, the bad and the ugly.a practical guide. Nat Prod Rep. 2022; 39(1):58-76. https://doi.org/10.1039/d1np00030f.

[67]

Marcarino MO, Zanardi MM, Sarotti AM. NMR calculations with quantum methods: development of new tools for structural elucidation and beyond. Acc Chem Res. 2020; 53(9):1922-1932. https://doi.org/10.1021/acs.accounts.0c00365.

[68]

Ozcelik R, Chithrananda S, Voelker A, et al. Chemical language modeling with structured state space sequence models. Nat Commun. 2024; 15(1):6176. https://doi.org/10.1038/s41467-024-50469-9.

[69]

Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015; 20(3):318-331. https://doi.org/10.1016/j.drudis.2014.10.012.

[70]

Nguyen L, Wang Y, Zhang X, et al. iANP-EC: identifying anticancer natural products using ensemble learning incorporated with evolutionary computation. J Chem Inf Model. 2022, 62(21): 5080-5089.https://doi.org/10.1021/acs.jcim.1c00920.

[71]

Astolfi R, Mencarelli A, Cangiotti M, et al. Essential oils as antimicrobials against acinetobacter baumannii: experimental and literature data to definite predictive quantitative composition-activity relationship models using machine learning algorithms. J Chem Inf Model. 2025; 65(3):1378-1391. https://doi.org/10.1021/acs.jcim.4c02389.

[72]

Hasselgren C, Oprea TI. Artificial intelligence for drug discovery: are we there yet?. Annu Rev Pharmacol Toxicol. 2024; 64:527-550. https://doi.org/10.1146/annurev-pharmtox-040323-040828.

[73]

Wang B, Zhang Y, Li X, et al. Explainable deep learning and virtual evolution identifies antimicrobial peptides with activity against multidrug-resistant human pathogens. Nat Microbiol. 2025; 10(2):332-347. https://doi.org/10.1038/s41564-024-01907-3.

[74]

Zhu S, Liu Y, Wang Q, et al. Computational advances in biosynthetic gene cluster discovery and prediction. Biotechnol Adv. 2025;79:108532. https://doi.org/10.1016/j.biotechadv.2025.108532.

[75]

Askr H, El-Sappagh S, Abuhmed T, et al. Exploring the anticancer activities of Sulfur and magnesium oxide through integration of deep learning and fuzzy rough set analyses based on the features of Vidarabine alkaloid. Sci Rep. 2025; 15(1):2224. https://doi.org/10.1038/s41598-024-82483-8.

[76]

Chen D, Gao K, Nguyen DD, et al. Algebraic graph-assisted bidirectional transformers for molecular property prediction. Nat Commun. 2021; 12(1):3521. https://doi.org/10.1038/s41467-021-23720-w.

[77]

Chiu YC, Chen HI, Zhang T, et al. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med Genomics. 2019; 12(Suppl 1):18. https://doi.org/10.1186/s12920-018-0460-9.

[78]

Wang Y, Zhang L, Chen H, et al. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Brief Bioinform. 2021; 22(5):bbab087. https://doi.org/10.1093/bib/bbab048.

[79]

Wang Y, Zhang X, Liu P, et al. New drug discovery and development from natural products: advances and strategies. Pharmacol Ther. 2024;264:108752. https://doi.org/10.1016/j.pharmthera.2024.108752.

[80]

Xu H, Wang J, Li Y, et al.Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1. Signal Transduct Target Ther. 2023; 8(1):51. https://doi.org/10.1038/s41392-022-01231-4.

[81]

Tang Y, Chen H, Wang L, et al. A review of botany, ethnomedicine, phytochemistry, pharmacology and toxicology of Sarcandra species. Phytomedicine. 2024;135:156008. https://doi.org/10.1016/j.phymed.2024.156008.

[82]

Singla RK, Dubey AK, Garg A, et al. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr. 2023; 63(33):11880-11924. https://doi.org/10.1080/10408398.2022.2097196.

[83]

Halverson JD. Micronutrient deficiencies after gastric bypass for morbid obesity. Am Surg. 1986; 52(11):594-598. https://doi.org/10.1007/s00394-021-02619-8.

[84]

Niu Q, Wang Y, Zhang L, et al. TCMFP: a novel herbal formula prediction method based on network target's score integrated with semi-supervised learning genetic algorithms. Brief Bioinform. 2023; 24(3):bbac598. https://doi.org/10.1093/bib/bbad102.

[85]

Ke JP, Wang Y, Chen H, et al. Unraveling anti-aging mystery of green tea in C. elegans: chemical truth and multiple mechanisms. Food Chem. 2024, 460(Pt 1): 140510.https://doi.org/10.1016/j.foodchem.2024.140510.

[86]

Ma Z, Liu P, Wang Y, et al. Comprehensive evaluation of the combined extracts of epimedii folium and ligustri lucidi fructus for PMOP in ovariectomized rats based on MLP-ANN methods. J Ethnopharmacol. 2021;268:113563. https://doi.org/10.1016/j.jep.2020.113563.

[87]

Marconato L, Palla G, Heumos L, et al. SpatialData: an open and universal data framework for spatial omics. Nat Methods. 2025; 22(1):58-62. https://doi.org/10.1038/s41592-024-02212-x.

[88]

Colby SM, Hoyt DW, Nothias LF, et al. Introducing molecular hypernetworks for discovery in multidimensional metabolomics data. J Proteome Res. 2024; 23(11):4789-4801. https://doi.org/10.1021/acs.jproteome.3c00634.

[89]

Durand M, Roux B, Courtois B, et al. Unlocking plant bioactive pathways: omics data harnessing and machine learning assisting. Curr Opin Biotechnol. 2024;87:103135. https://doi.org/10.1016/j.copbio.2024.103135.

[90]

Bai W, Zhang Y, Liu X, et al. Machine learning assists prediction of genes responsible for plant specialized metabolite biosynthesis by integrating multi-omics data. BMC Genomics. 2024; 25(1):418. https://doi.org/10.1186/s12864-024-10258-6.

[91]

Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021; 20(3):200-216. https://doi.org/10.1038/s41573-020-00114-z.

[92]

Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015; 14(2):111-129. https://doi.org/10.1038/nrd4510.

[93]

Mao Y, Wang Y, Zhang L, et al. Emerging artificial intelligence-driven precision therapies in tumor drug resistance: recent advances, opportunities, and challenges. Mol Cancer. 2025; 24(1):123. https://doi.org/10.1186/s12943-025-02321-x.

[94]

Lin A, Chen H, Wang J, et al. From chaos to order: optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy. Gut Microbes. 2025; 17(1):2452277. https://doi.org/10.1080/19490976.2025.2452277.

[95]

Shi H, Zhang X, Wang Y, et al. DRExplainer: quantifiable interpretability in drug response prediction with directed graph convolutional network. Artif Intell Med. 2025;163:103101. https://doi.org/10.1016/j.artmed.2025.103101.

[96]

Holzinger A, Langs G, Denk H, et al. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2019; 9(4):e1312. https://doi.org/10.1002/widm.1312.

[97]

Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019; 18(6):463-477. https://doi.org/10.1038/s41573-019-0024-5.

[98]

Ye M, Liu Y, Wang Q, et al.Network pharmacology, molecular docking integrated surface plasmon resonance technology reveals the mechanism of Toujie Quwen Granules against coronavirus disease 2019 pneumonia. Phytomedicine.2021; 85:153401. https://doi.org/10.1016/j.phymed.2020.153401.

[99]

Deng Q, Wang Y, Zhang L, et al. Based on network pharmacology, molecular docking and experimental verification to reveal the mechanism of Andrographis paniculata against solar dermatitis. Phytomedicine. 2024;135:156025. https://doi.org/10.1016/j.phymed.2024.156025.

[100]

Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018; 23(6):1241-1250. https://doi.org/10.1016/j.drudis.2018.01.039.

[101]

Ma S, Liu J, Li W, et al. Machine learning in TCM with natural products and molecules: current status and future perspectives. Chin Med. 2023; 18(1):43. https://doi.org/10.1186/s13020-023-00741-9.

[102]

Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115-118. https://doi.org/10.1038/nature21056.

[103]

Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018; 34(13):i457-i466. https://doi.org/10.1093/bioinformatics/bty294.

[104]

Gao L, Zhong L, Feng T, et al. An AI-driven strategy for active compounds discovery and non-destructive quality control in traditional Chinese medicine: a case of Xuefu Zhuyu Oral Liquid. Talanta. 2025;287:127627. https://doi.org/10.1016/j.talanta.2025.127627.

[105]

Maciejewska-Turska M, Georgiev MI, Kai G, et al. Advances in bioinformatic methods for the acceleration of the drug discovery from nature. Phytomedicine. 2025;139:156518. https://doi.org/10.1016/j.phymed.2025.156518.

[106]

Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873):583-589. https://doi.org/10.1038/s41586-021-03819-2.

[107]

Wang Y, Zhang Q, Chen Y, et al. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother. 2020;121:109570. https://doi.org/10.1016/j.biopha.2019.109570.

[108]

Liu Y, Fang C, Luo J, et al. Traditional Chinese medicine for cancer treatment. Am J Chin Med. 2024; 52(3):583-604. https://doi.org/10.1142/S0192415X24500253.

[109]

Wang K, Chen Q, Shao Y, et al. Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother. 2021;133:111044. https://doi.org/10.1016/j.biopha.2020.111044.

[110]

Nogales C, Mamdouh ZM, List M, et al. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci. 2022; 43(2):136-150. https://doi.org/10.1016/j.tips.2021.11.004.

[111]

Jager N. Bioinformatics workflows for clinical applications in precision oncology. Semin Cancer Biol. 2022; 84:103-112. https://doi.org/10.1016/j.semcancer.2020.12.020.

[112]

Cichonska A, Ravikumar B, Rahman R. AI for targeted polypharmacology: The next frontier in drug discovery. Curr Opin Struct Biol. 2024;84:102771. https://doi.org/10.1016/j.sbi.2023.102771.

[113]

Xerxa E, Bajorath J.Data-oriented protein kinase drug discovery. Eur J Med Chem. 2024;271:116413. https://doi.org/10.1016/j.ejmech.2024.116413.

[114]

Noor F, Asif M, Ashfaq UA, et al. Machine learning for synergistic network pharmacology: a comprehensive overview. Brief Bioinform. 2023; 24(3):bbad120. https://doi.org/10.1093/bib/bbad120.

[115]

Isigkeit L, Hormann T, Schallmayer E, et al. Automated design of multi-target ligands by generative deep learning. Nat Commun. 2024; 15(1):7946. https://doi.org/10.1038/s41467-024-52060-8.

[116]

Alshabrmi FM, Aba Alkhayl FF, Rehman A. Novel drug discovery: advancing Alzheimer's therapy through machine learning and network pharmacology. Eur J Pharmacol. 2024;976:176661. https://doi.org/10.1016/j.ejphar.2024.176661.

[117]

Li Z, Qu N, Zhou J, et al. KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning. Nucleic Acids Res. 2024; 52(W1):W489-W497. https://doi.org/10.1093/nar/gkae380.

[118]

Liang H, Fang C, Qiu M. The multi-target mechanism of action of Selaginella doederleinii Hieron in the treatment of nasopharyngeal carcinoma: a network pharmacology and multi-omics analysis. Sci Rep. 2025; 15(1):159. https://doi.org/10.1038/s41598-024-83921-3.

[119]

Tian J, Qin S, Han J, et al. A review of the ethnopharmacology, phytochemistry, pharmacology and toxicology of Fructus Gardeniae (Zhi-zi). J Ethnopharmacol. 2022;289:114984. https://doi.org/10.1016/j.jep.2022.114984.

[120]

Luo Y, Gao F, Chang R, et al. Metabolomics based comprehensive investigation of Gardeniae Fructus induced hepatotoxicity. Food Chem Toxicol. 2021;153:112250. https://doi.org/10.1016/j.fct.2021.112250.

[121]

Shao W, Xu H, Zeng K, et al. Advances in liver organoids: replicating hepatic complexity for toxicity assessment and disease modeling. Stem Cell Res Ther. 2025; 16(1):27. https://doi.org/10.1186/s13287-025-04139-2.

[122]

D'Alessio F, Koopman G, Houard S, et al. Workshop report:experimental animal models for universal influenza vaccines. Vaccine. 2018; 36(46):6895-6901. https://doi.org/10.1016/j.vaccine.2018.10.024.

[123]

Tabernilla A, et al.Dos Santos Rodrigues B, Pieters A, In vitro liver toxicity testing of chemicals: a pragmatic approach. Int J Mol Sci. 2021; 22(9):5038. https://doi.org/10.3390/ijms22095038.

[124]

Fruhwein H, Paul NW. "Lost in translation?" Animal research in the era of precision medicine. J Transl Med. 2025, 23(1): 152. https://doi.org/10.1186/s12967-025-06084-3.

[125]

Lin H, Li Z, Zeng T, et al. The crucial involvement of gamma-Mangostin and CYP1B1 in the mechanism underlying the toxicity caused by cigarette smoke extract: in silico and in vitro insights. Toxicology. 2025;510:154016. https://doi.org/10.1016/j.tox.2024.154016.

[126]

Jia C, Li X, Hu S, et al. Advanced mass-spectra-based machine learning for predicting the toxicity of traditional Chinese medicines. Anal Chem. 2025; 97(1):783-792. https://doi.org/10.1021/acs.analchem.4c05311.

[127]

Scheufen Tieghi R, Moreira-Filho JT, Martin HJ, et al. A novel machine learning model and a web portal for predicting the human skin sensitization effects of chemical agents. Toxics. 2024; 12(11):803. https://doi.org/10.3390/toxics12110803.

[128]

Debad SJ, Aungst J, Carstens K, et al. State of the science on assessing developmental neurotoxicity using new approach methods. ALTEX. 2025; 42(1):121-144. https://doi.org/10.14573/altex.2410231.

[129]

Kim JW, Kim HS, Kim HR, et al. Next generation risk assessment of biocides (PHMG-p and CMIT/MIT)-induced pulmonary fibrosis using adverse outcome pathway-based transcriptome analysis. J Hazard Mater. 2024;476:134986. https://doi.org/10.1016/j.jhazmat.2024.134986.

[130]

Franzen L, Olsson Lindvall M, Huhn M, et al. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat Genet. 2024; 56(8):1725-1736. https://doi.org/10.1038/s41588-024-01819-2.

[131]

Zhao Y, Yin N, Yang R, et al. Recent advances in environmental toxicology: exploring gene editing, organ-on-a-chip, chimeric animals, and in silico models. Food Chem Toxicol. 2024;193:115022. https://doi.org/10.1016/j.fct.2024.115022.

[132]

Cao A, Zhang L, Bu Y, et al. Machine learning prediction of on/off target-driven clinical adverse events. Pharm Res. 2024; 41(8):1649-1658. https://doi.org/10.1007/s11095-024-03742-x.

[133]

Yang Q, Fan L, Hao E, et al. Construction of an explanatory model for predicting hepatotoxicity: a case study of the potentially hepatotoxic components of Gardenia jasminoides. Drug Chem Toxicol. 2025; 48(1):107-119. https://doi.org/10.1080/01480545.2024.2364905.

[134]

Cai H, Zhang H, Zhao D, et al. FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction. Brief Bioinform. 2022; 23(6):bbac408. https://doi.org/10.1093/bib/bbac408.

[135]

Feinberg EN, Joshi E, Pande VS, et al. Improvement in ADMET prediction with multitask deep featurization. J Med Chem. 2020; 63(16):8835-8848. https://doi.org/10.1021/acs.jmedchem.9b02187.

[136]

Chopra H, Annu, Shin DK, et al. Revolutionizing clinical trials: the role of AI in accelerating medical breakthroughs. Int J Surg. 2023; 109(12):4211-4220. https://doi.org/10.1097/JS9.0000000000000705.

[137]

Gholap AD, Uddin MJ, Faiyazuddin M, et al. Advances in artificial intelligence for drug delivery and development: a comprehensive review. Comput Biol Med. 2024;178:108702. https://doi.org/10.1016/j.compbiomed.2024.108702.

[138]

Zhu T, Liu B, Chen N, et al. Artificial intelligence-driven innovations in pharmaceutical development and drug delivery systems. Curr Top Med Chem. 2025; 25(25):2937-2951. https://doi.org/10.2174/0115680266373236250411060857.

[139]

Serrano DR, Luciano FC, Anaya BJ, et al. Artificial intelligence (AI) applications in drug discovery and drug delivery: revolutionizing personalized medicine. Pharmaceutics. 2024; 16(10):1328. https://doi.org/10.3390/pharmaceutics16101328.

[140]

Liu Y, Ahmed Smait D, Yaseen Naser A, et al. Optimization and validation of drug solubility by development of advanced artificial intelligence models. J Mol Liq. 2023;372:121113. https://doi.org/10.1016/j.molliq.2022.121113.

[141]

MacIntyre MR, Cockerill RG, Mirza OF, et al. Ethical considerations for the use of artificial intelligence in medical decision-making capacity assessments. Psychiatry Res. 2023;328:115466. https://doi.org/10.1016/j.psychres.2023.115466.

[142]

Bittner MI, Farajnia S. AI in drug discovery: applications, opportunities, and challenges. Patterns (N Y). 2022; 3(6):100529. https://doi.org/10.1016/j.patter.2022.100529.

[143]

Chen W, Liu X, Zhang S, et al. Artificial intelligence for drug discovery: resources, methods, and applications. Mol Ther Nucleic Acids. 2023; 31:691-702. https://doi.org/10.1016/j.omtn.2023.02.019.

[144]

Kim S. Getting the most out of PubChem for virtual screening. Expert Opin Drug Discov. 2016; 11(9):843-855. https://doi.org/10.1080/17460441.2016.1216967.

[145]

Chevrette MG, Gavrilidou A, Mantri S, et al. The confluence of big data and evolutionary genome mining for the discovery of natural products. Nat Prod Rep. 2021; 38(11):2024-2040. https://doi.org/10.1039/d1np00013f.

[146]

Lynch C, Sakamuru S, Ooka M, et al. High-throughput screening to advance in vitro toxicology: accomplishments, challenges, and future directions. Annu Rev Pharmacol Toxicol. 2024; 64:191-209. https://doi.org/10.1146/annurev-pharmtox-112122-104310.

[147]

Yanofsky C. Transcription attenuation: once viewed as a novel regulatory strategy. J Bacteriol. 2000; 182(1):1-8. https://doi.org/10.1128/JB.182.1.1-8.2000.

[148]

Zhu H, Rusyn I, Richard A, et al. Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity. Environ Health Perspect. 2008; 116(4):506-513. https://doi.org/10.1289/ehp.10573.

[149]

Li Q, Wang Y, Bryant SH. A novel method for mining highly imbalanced high-throughput screening data in PubChem. Bioinformatics. 2009; 25(24):3310-3316. https://doi.org/10.1093/bioinformatics/btp589.

[150]

Cai C, Wang S, Xu Y, et al.Transfer learning for drug discovery. J Med Chem. 2020; 63(16):8683-8694. https://doi.org/10.1021/acs.jmedchem.9b02147.

[151]

Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. npj Digit Med. 2020;3:119. https://doi.org/10.1038/s41746-020-00323-1.

[152]

Kadurin A, Nikolenko S, Khrabrov K, et al. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm. 2017, 14(9): 3098-3104. https://doi.org/10.1021/acs.molpharmaceut.7b00346.

[153]

Wong F, Omori S, Li A, et al. An explainable deep learning platform for molecular discovery. Nat Protoc. 2025; 20:1020-1056.https://doi.org/10.1038/s41596-024-01084-x.

[154]

Pereira TO, Abbasi M, Arrais JP. ABIET: an explainable transformer for identifying functional groups in biological active molecules. Comput Biol Med. 2025;187:109740. https://doi.org/10.1016/j.compbiomed.2025.109740.

[155]

Budhkar A, Song Q, Su J, et al. Demystifying the black box: a survey on explainable artificial intelligence (XAI) in bioinformatics. Comput Struct Biotechnol J. 2025; 27:346-359. https://doi.org/10.1016/j.csbj.2024.12.027.

[156]

Cath C. Governing artificial intelligence: ethical, legal and technical opportunities and challenges. Philos Trans A Math Phys Eng Sci.2018; 376(2133):20180080. https://doi.org/10.1098/rsta.2018.0080.

[157]

Chen P, Dong W, Wang J, et al. Interpretable clinical prediction via attention-based neural network. BMC Med Inform Decis Mak. 2020; 20(Suppl 3):131. https://doi.org/10.1186/s12911-020-1110-7.

[158]

Tang Q, Nie F, Zhao Q, et al. A merged molecular representation deep learning method for blood-brain barrier permeability prediction. Brief Bioinform. 2022; 23(5):bbac357. https://doi.org/10.1093/bib/bbac357.

[159]

Qadri YA, Shaikh S, Ahmad K, et al. Explainable artificial intelligence: a perspective on drug discovery. Pharmaceutics. 2025; 17(9):1119. https://doi.org/10.3390/pharmaceutics17091119.

[160]

Zhang Z, Beck MW, Winkler DA, et al. Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Ann Transl Med. 2018; 6(11):216. https://doi.org/10.21037/atm.2018.05.32.

[161]

Yin Z, Zhang M, Liu R, et al. Explainable machine learning models enhance prediction of PFAS bioactivity using quantitative molecular surface analysis-derived representation. Water Res. 2025;280:123500. https://doi.org/10.1016/j.watres.2025.123500.

[162]

Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018; 2(10):749-760. https://doi.org/10.1038/s41551-018-0304-0.

[163]

Schneider P, Walters WP, Plowright AT, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020; 19(5):353-364. https://doi.org/10.1038/s41573-019-0050-3.

[164]

Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017; 45(D1):D945-D954. https://doi.org/10.1093/nar/gkw1074.

[165]

Sakano K, Furui K, Ohue M. NPGPT: natural product-like compound generation with GPT-based chemical language models. J Supercomput. 2024; 81(1):352. https://doi.org/10.1007/s11227-024-06860-w.

[166]

Huang K, Xiao C, Glass LM, et al. MolTrans: molecular interaction transformer for drug-target interaction prediction. Bioinformatics. 2021; 37(6):830-836. https://doi.org/10.1093/bioinformatics/btaa880.

[167]

Shen X, Zeng T, Chen N, et al. NIMO: a natural product-inspired molecular generative model based on conditional transformer. Molecules. 2024; 29(8):1867. https://doi.org/10.3390/molecules29081867.

[168]

Srinivasan S, Bajorath J. Protocol to generate dual-target compounds using a transformer chemical language model. STAR Protoc. 2025; 6(1):103584. https://doi.org/10.1016/j.xpro.2024.103584.

[169]

Chen L, Li Y, Ma Y, et al. Multiscale graph equivariant diffusion model for 3D molecule design. Sci Adv. 2025; 11(16):eadv0778. https://doi.org/10.1126/sciadv.adv0778.

[170]

Wang Y, Song M, Liu F, et al. Artificial intelligence using a latent diffusion model enables the generation of diverse and potent antimicrobial peptides. Sci Adv. 2025; 11(6):eadp7171. https://doi.org/10.1126/sciadv.adp7171.

[171]

Jung W, Goo S, Hwang T, et al. Absorption distribution metabolism excretion and toxicity property prediction utilizing a pre-trained natural language processing model and its applications in early-stage drug development. Pharmaceuticals (Basel). 2024; 17(3):382. https://doi.org/10.3390/ph17030382.

[172]

Ancajas CMF, Oyedele AS, Butt CM, et al. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep. 2024; 41(10):1543-1578. https://doi.org/10.1039/d4np00009a.

[173]

Li Y, Duan Z, Li Z, et al. Data and AI-driven synthetic binding protein discovery. Trends Pharmacol Sci. 2025; 46(2):132-144. https://doi.org/10.1016/j.tips.2024.12.002.

[174]

Gangwal A, Ansari A, Ahmad I, et al. Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities. Front Pharmacol. 2024;15:1331062. https://doi.org/10.3389/fphar.2024.1331062.

[175]

Guo SB, Meng Y, Lin L, et al. Artificial intelligence alphafold model for molecular biology and drug discovery: a machine-learning-driven informatics investigation. Mol Cancer. 2024; 23(1):223. https://doi.org/10.1186/s12943-024-02140-6.

[176]

He F, Aebersold R, Baker MS, et al. pi-HuB: the proteomic navigator of the human body. Nature. 2024, 636(8042): 322-331. https://doi.org/10.1038/s41586-024-08280-5.

[177]

Zdouc MM, Blin K, Louwen NLL, et al. MIBiG 4.0: advancing biosynthetic gene cluster curation through global collaboration. Nucleic Acids Res. 2025; 53(D1):D678-D690. https://doi.org/10.1093/nar/gkae1115.

[178]

Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019; 24(3):773-780. https://doi.org/10.1016/j.drudis.2018.11.014.

[179]

Price WN, 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019; 25(1):37-43. https://doi.org/10.1038/s41591-018-0272-7.

[180]

Yaraghi N, Gopal RD. The role of HIPAA omnibus rules in reducing the frequency of medical data breaches: insights from an empirical study. Milbank Q. 2018; 96(1):144-166. https://doi.org/10.1111/1468-0009.12314.

[181]

Appelbaum PS. Privacy in psychiatric treatment: threats and responses. Am J Psychiatry. 2002; 159(11):1809-1818. https://doi.org/10.1176/appi.ajp.159.11.1809.

[182]

Floridi L, Cowls J, King TC, et al. How to design AI for social good: seven essential factors. Sci Eng Ethics. 2020; 26(3):1771-1796. https://doi.org/10.1007/s11948-020-00213-5.

[183]

Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021; 26(1):80-93. https://doi.org/10.1016/j.drudis.2020.10.010.

[184]

Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019; 25(1):24-29. https://doi.org/10.1038/s41591-018-0316-z.

[185]

Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems. J Glob Health. 2018; 8(2):020303. https://doi.org/10.7189/jogh.08.020303.

[186]

Force AAT, Parasa S, Berzin T, et al. Consensus statements on the current landscape of artificial intelligence applications in endoscopy, addressing roadblocks, and advancing artificial intelligence in gastroenterology. Gastrointest Endosc. 2025; 101(1):2-9. https://doi.org/10.1016/j.gie.2023.12.003.

[187]

Silver LL.Challenges of antibacterial discovery. Clin Microbiol Rev. 2011; 24(1):71-109. https://doi.org/10.1128/CMR.00030-10.

[188]

Merwin NJ, Mousa WK, Dejong CA, et al. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Proc Natl Acad Sci U S A. 2020; 117(1):371-380. https://doi.org/10.1073/pnas.1901493116.

[189]

Louwen JJR, van der Hooft JJJ. Comprehensive large-scale integrative analysis of omics data to accelerate specialized metabolite discovery. mSystems. 2021; 6(4):e0072621. https://doi.org/10.1128/mSystems.00726-21.

[190]

Huber F, van der Burg S, van der Hooft JJJ, et al. MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra. J Cheminform. 2021; 13(1):84. https://doi.org/10.1186/s13321-021-00558-4.

[191]

Kim HW, Wang M, Leber CA, et al. NPClassifier: a deep neural network-based structural classification tool for natural products. J Nat Prod. 2021; 84(11):2795-2807. https://doi.org/10.1021/acs.jnatprod.1c00399.

[192]

Schneider P, Schneider G. A computational method for unveiling the target promiscuity of pharmacologically active compounds. Angew Chem Int Ed Engl. 2017; 56(38):11520-11524. https://doi.org/10.1002/anie.201706376.

[193]

Sahayasheela VJ, Lankadasari MB, Dan VM, et al. Artificial intelligence in microbial natural product drug discovery: current and emerging role. Nat Prod Rep. 2022; 39(12):2215-2230. https://doi.org/10.1039/d2np00035k.

[194]

Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet. Drug Discov Today. 2021; 26(2):511-524. https://doi.org/10.1016/j.drudis.2020.12.009.

[195]

Cech NB, Medema MH, Clardy J. Benefiting from big data in natural products: importance of preserving foundational skills and prioritizing data quality. Nat Prod Rep. 2021; 38(11):1947-1953. https://doi.org/10.1039/d1np00061f.

[196]

van Santen JA, Kautsar SA, Medema MH, et al. Microbial natural product databases: moving forward in the multi-omics era. Nat Prod Rep. 2021; 38(1):264-278. https://doi.org/10.1039/d0np00053a.

[197]

Fang Y, Zhang Q, Zhang N, et al. Knowledge graph-enhanced molecular contrastive learning with functional prompt. Nat Mach Intell. 2023; 5(5):542-553. https://doi.org/10.1038/s42256-023-00654-0.

[198]

Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell. 2020; 2(10):573-584. https://doi.org/10.1038/s42256-020-00236-4.

[199]

Ding Y, Fei Y, Lu B. Emerging new concepts of degrader technologies. Trends Pharmacol Sci. 2020; 41(7):464-474. https://doi.org/10.1016/j.tips.2020.04.005.

[200]

Rishikesh Magar, Yuyang Wang, Cooper Lorsung, et al. AugLiChem: data augmentation library of chemical structures for machine learning. Mach Learn Sci Technol. 2022;3:045015. https://doi.org/10.1088/2632-2153/ac9c84.

[201]

Huanbutta K, Burapapadh K, Kraisit P, et al. Artificial intelligence-driven pharmaceutical industry: a paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. Eur J Pharm Sci. 2024;203:106938. https://doi.org/10.1016/j.ejps.2024.106938.

[202]

Farghali H, Kutinova Canova N, Arora M. The potential applications of artificial intelligence in drug discovery and development. Physiol Res. 2021; 70(Suppl4):S715-S722. https://doi.org/10.33549/physiolres.934765.

[203]

Sandeep Ganesh G, Kolusu AS, Prasad K, et al. Advancing health care via artificial intelligence: from concept to clinic. Eur J Pharmacol. 2022;934:175320. https://doi.org/10.1016/j.ejphar.2022.175320.

[204]

Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011; 10(3):188-195. https://doi.org/10.1038/nrd3368.

[205]

Graziano G, Stefanachi A, Contino M, et al. Multicomponent reaction-assisted drug discovery: a time- and cost-effective green approach speeding up identification and optimization of anticancer drugs. Int J Mol Sci. 2023; 24(7):6581. https://doi.org/10.3390/ijms24076581.

[206]

Ganem B. Strategies for innovation in multicomponent reaction design. Acc Chem Res. 2009; 42(3):463-472. https://doi.org/10.1021/ar800214s.

[207]

Dos Santos JA, de Castro PP, de Oliveira KT, et al. Multicomponent reactions applied to total synthesis of biologically active molecules: a short review. Curr Top Med Chem. 2023; 23(11):990-1003. https://doi.org/10.2174/1568026623666230403102437.

[208]

Koromina M, Pandi MT, Patrinos GP. Rethinking drug repositioning and development with artificial intelligence, machine learning, and omics. OMICS. 2019; 23(11):539-548. https://doi.org/10.1089/omi.2019.0151.

[209]

Zhang X, Han X, Xiang T, et al. From high resolution tandem mass spectrometry to pollutant toxicity AI-based prediction: a case study of 7 endocrine disruptors endpoints. Environ Sci Technol. 2025; 59(9):4505-4517. https://doi.org/10.1021/acs.est.4c11417.

[210]

Kim J, Lee SJ, Jung D, et al. Development of a deep neural network model based on high throughput screening data for predicting synergistic estrogenic activity of binary mixtures for consumer products. J Hazard Mater. 2025;489:137650. https://doi.org/10.1016/j.jhazmat.2025.137650.

[211]

Hang R, Yao X, Bai L, et al. Evolving biomaterials design from trial and error to intelligent innovation. Acta Biomater. 2025; 197:29-47. https://doi.org/10.1016/j.actbio.2025.03.013.

[212]

Xu Y, Ma S, Cui H, et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat Commun. 2024; 15(1):6305. https://doi.org/10.1038/s41467-024-50619-z.

[213]

Li F, Mou M, Li X, et al. DrugMAP 2.0: molecular atlas and pharma-information of all drugs. Nucleic Acids Res. 2025; 53(D1):D1372-D1382. https://doi.org/10.1093/nar/gkae791.

[214]

Ferrarezi AA, de Souza JVP, Maigret B, et al. Rational design and synthesis of pyrazole derivatives as potential SARS-CoV-2 M(pro) inhibitors: an integrated approach merging combinatorial chemistry, molecular docking, and deep learning. Bioorg Med Chem. 2025;120:118095. https://doi.org/10.1016/j.bmc.2025.118095.

[215]

Basnet BB, Zhou ZY, Wei B, et al. Advances in AI-based strategies and tools to facilitate natural product and drug development. Crit Rev Biotechnol. 2025: 1-32. https://doi.org/10.1080/07388551.2025.2478094.

[216]

Vasighi M, Romanova J, Nedyalkova M.A multilevel approach for screening natural compounds as an antiviral agent for COVID-19. Comput Biol Chem. 2022;98:107694. https://doi.org/10.1016/j.compbiolchem.2022.107694.

[217]

Zhang H, Guo J, Li H, et al. Machine learning for artemisinin resistance in malaria treatment across in vivo-in vitro platforms. iScience. 2022; 25(3):103910. https://doi.org/10.1016/j.isci.2022.103910.

[218]

Jia XN, Wang WJ, Yin B, et al. Deep learning promotes the screening of natural products with potential microtubule inhibition activity. ACS Omega. 2022; 7(32):28334-28341. https://doi.org/10.1021/acsomega.2c02854.

[219]

Wang H, Xie M, Rizzi G, et al. Identification of sclareol as a natural neuroprotective ca(v) 1.3-antagonist using synthetic parkinson-mimetic gene circuits and computer-aided drug discovery. Adv Sci (Weinh). 2022; 9(7):e2102855. https://doi.org/10.1002/advs.202102855.

[220]

Yang R, Zhao G, Yan B. Discovery of novel c-jun n-terminal kinase 1 inhibitors from natural products: integrating artificial intelligence with structure-based virtual screening and biological evaluation. Molecules. 2022; 27(19):6249. https://doi.org/10.3390/molecules27196249.

[221]

Barbosa H, Espinoza GZ, Amaral M, et al. Andrographolide: a diterpenoid from cymbopogon schoenanthus identified as a new hit compound against trypanosoma cruzi using machine learning and experimental approaches. J Chem Inf Model. 2024; 64(7):2565-2576. https://doi.org/10.1021/acs.jcim.3c01410.

[222]

Wang Y, Xiao J, Suzek TO, et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009, 37(Web Server issue): W623-W633. https://doi.org/10.1093/nar/gkp456.

[223]

Sterling T, Irwin JJ. ZINC 15--ligand discovery for everyone. J Chem Inf Model. 2015, 55(11): 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559.

[224]

Ogata H, Goto S, Sato K, et al. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999; 27(1):29-34. https://doi.org/10.1093/nar/27.1.29.

[225]

Sorokina M, Steinbeck C. Review on natural products databases: where to find data in 2020. J Cheminform. 2020; 12(1):20. https://doi.org/10.1186/s13321-020-00424-9.

[226]

Al Sharie AH, El-Elimat T, Al Zu'bi YO, et al. Chemical space and diversity of seaweed metabolite database (SWMD): a cheminformatics study. J Mol Graph Model. 2020; 100:107702. https://doi.org/10.1016/j.jmgm.2020.107702.

[227]

Cockroft NT, Cheng X, Fuchs JR. STarFish: a stacked ensemble target fishing approach and its application to natural products. J Chem Inf Model. 2019; 59(11):4906-4920. https://doi.org/10.1021/acs.jcim.9b00489.

[228]

Reker D, Rodrigues T, Schneider P, et al. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A. 2014; 111(11):4067-4072. https://doi.org/10.1073/pnas.1320001111.

PDF (4889KB)

74

Accesses

0

Citation

Detail

Sections
Recommended

/