(+)-Strebloside induces Non-Hodgkin lymphoma cell death through the STEAP3-Mediated Ferroptosis and MAPK pathway

Yu Zhao , Jing Cai , Ying Yang , Dongmei Zhang , Jiayi Ren , Shuyun Xiao , Jian Xu , Feng Feng , Rong Wu , Jie Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) : 1221 -1231.

PDF (6767KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) :1221 -1231. DOI: 10.1016/S1875-5364(25)60873-9
Original article
research-article

(+)-Strebloside induces Non-Hodgkin lymphoma cell death through the STEAP3-Mediated Ferroptosis and MAPK pathway

Author information +
History +
PDF (6767KB)

Abstract

(+)-Strebloside, a significant bioactive compound isolated from the roots of Streblus asper Lour., demonstrates inhibitory effects against multiple malignancies. However, its specific function and underlying mechanistic pathways in Non-Hodgkin lymphoma (NHL) remain unexplored. This investigation sought to elucidate the role and potential mechanisms of (+)-strebloside-induced NHL cell death. The results demonstrated that (+)-strebloside significantly induced apoptosis and ferroptosis in NHL cells, including those from Raji cell-derived xenograft models. Mechanistic analyses revealed that (+)-strebloside enhanced six-transmembrane epithelial antigen of prostate 3 (STEAP3)-induced ferroptosis in NHL, and STEAP3 inhibition reduced the proliferation-inhibitory effects of (+)-strebloside. Furthermore, (+)-strebloside suppressed NHL proliferation through the mitogen-activated protein kinase (MAPK) pathway, and extracellular signal-regulated kinase (ERK) inhibition diminished the proliferation-inhibitory activity induced by (+)-strebloside. These findings indicate that (+)-strebloside presents promising therapeutic potential for NHL treatment.

Keywords

Non-Hodgkin lymphoma / (+)-Strebloside / Antitumor activity / MAPK / Ferroptosis

Cite this article

Download citation ▾
Yu Zhao, Jing Cai, Ying Yang, Dongmei Zhang, Jiayi Ren, Shuyun Xiao, Jian Xu, Feng Feng, Rong Wu, Jie Zhang. (+)-Strebloside induces Non-Hodgkin lymphoma cell death through the STEAP3-Mediated Ferroptosis and MAPK pathway. Chinese Journal of Natural Medicines, 2025, 23(10): 1221-1231 DOI:10.1016/S1875-5364(25)60873-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armitage JO, Gascoyne RD, Lunning MA, et al. Non-Hodgkin lymphoma. Lancet. 2017; 390(10091):298-310. https://doi.org/10.1016/S0140-6736(16)32407-2.

[2]

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin.2016; 66(1):7-30. https://doi.org/10.3322/caac.21332.

[3]

Castillo JJ, Winer ES, Stachurski D, et al. Prognostic factors in chemotherapy-treated patients with HIV-associated Plasmablastic lymphoma. Oncologist. 2010; 15(3):293-299. https://doi.org/10.1634/theoncologist.2009-0304.

[4]

Feugier P, Van Hoof A, Sebban C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol. 2005; 23(18):4117-4126. https://doi.org/10.1200/JCO.2005.09.131.

[5]

Susanibar-Adaniya S, Barta SK. 2021 Update on diffuse large B cell lymphoma: a review of current data and potential applications on risk stratification and management. Am J Hematol.2021; 96(5):617-629. https://doi.org/10.1002/ajh.26151.

[6]

Wei J, Liu Y, Wang C, et al. The model of cytokine release syndrome in CAR T-cell treatment for B-cell non-Hodgkin lymphoma. Signal Transduct Target Ther. 2020; 5(1):134. https://doi.org/10.1038/s41392-020-00256-x.

[7]

Falchi L, Vardhana SA, Salles GA. Bispecific antibodies for the treatment of B-cell lymphoma: promises, unknowns, and opportunities. Blood. 2023; 141(5):467-480. https://doi.org/10.1182/blood.2021011994.

[8]

Harker-Murray PD, Pommert L, Barth MJ. Novel therapies potentially available for pediatric B-cell non-Hodgkin lymphoma. J Natl Compr Canc Netw. 2020; 18(8):1125-1134. https://doi.org/10.6004/jnccn.2020.7608.

[9]

Witzig TE, Nowakowski GS, Habermann TM, et al. A comprehensive review of lenalidomide therapy for B-cell non-Hodgkin lymphoma. Ann Oncol. 2015; 26(8):1667-1677. https://doi.org/10.1093/annonc/mdv102.

[10]

Maffei R, Fiorcari S, Martinelli S, et al. Targeting neoplastic B cells and harnessing microenvironment: the "double face" of ibrutinib and idelalisib. J Hematol Oncol. 2015;8:60. https://doi.org/10.1186/s13045-015-0157-x.

[11]

Oyama T, Yamamoto K, Asano N, et al. Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res. 2007; 13(17):5124-5132. https://doi.org/10.1158/1078-0432.CCR-06-2823.

[12]

Morales D, Beltran B, De Mendoza FH, et al. Epstein-Barr virus as a prognostic factor in de novo nodal diffuse large B-cell lymphoma. Leuk Lymphoma. 2010; 51(1):66-72. https://doi.org/10.3109/10428190903308015.

[13]

Park S, Lee J, Ko YH, et al. The impact of Epstein-Barr virus status on clinical outcome in diffuse large B-cell lymphoma. Blood. 2007; 110(3):972-978. https://doi.org/10.1182/blood-2007-01-067769.

[14]

Schatzmann HJ, Räss B. Inhibition of the active Na-K-transport and Na-K-activated membrane ATP-ase of erythrocyte stroma by ouabain. Helv Physiol Pharmacol Acta. 1965; 65(1):C47-49.

[15]

Bai Y, Zhu W, Xu Y, et al. Characterization, quantitation, similarity evaluation and combination with Na+, K+-ATPase of cardiac glycosides from Streblus asper. Bioorg Chem. 2019; 87:265-275. https://doi.org/10.1016/j.bioorg.2019.03.049.

[16]

Cai J, Zhang BD, Li YQ, et al. Cardiac glycosides from the roots of Streblus asper Lour. with activity against Epstein-Barr virus lytic replication. Bioorg Chem. 2022;127:106004. https://doi.org/10.1016/j.bioorg.2022.106004.

[17]

Chen WL, Ren Y, Ren J, et al. (+)-Strebloside-induced cytotoxicity in ovarian cancer cells is mediated through cardiac glycoside signaling networks. J Nat Prod. 2017; 80(3):659-669. https://doi.org/10.1021/acs.jnatprod.6b01150.

[18]

Geng X, Wang F, Tian D, et al. Cardiac glycosides inhibit cancer through Na/K-ATPase-dependent cell death induction. Biochem Pharmacol. 2020;182:114226. https://doi.org/10.1016/j.bcp.2020.114226.

[19]

Murphy MP. Metabolic control of ferroptosis in cancer. Nat Cell Biol. 2018; 20(10):1104-1105. https://doi.org/10.1038/s41556-018-0209-x.

[20]

Yuan Y, Xu J, Jiang Q, et al. Ficolin 3 promotes ferroptosis in HCC by downregulating IR/SREBP axis-mediated MUFA synthesis. J Exp Clin Cancer Res. 2024; 43(1):133. https://doi.org/10.1186/s13046-024-03047-2.

[21]

Zhang F, Tao Y, Zhang Z, et al. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica. 2012; 97(12):1826-1835. https://doi.org/10.3324/haematol.2012.063974.

[22]

Meng F, Fleming BA, Jia X, et al. Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases. Blood Adv. 2022; 6(6):1692-1707. https://doi.org/10.1182/bloodadvances.2021005609.

[23]

Wu L, Tian X, Zuo H, et al. miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia-reperfusion injury in steatotic grafts. J Nanobiotechnol. 2022; 20(1):196. https://doi.org/10.1186/s12951-022-01407-8.

[24]

Elhassadi E, Hennessy B, Kumar S, et al. Impact of p 53 disruption on mantle cell lymphoma (MCL) treatment out-come, multi-centre retrospective study. Blood. 2021; 138(Supplement 1):4514-4514. https://doi.org/10.1182/blood-2021-149653.

[25]

Chang CC, Cho SF, Chen YW, et al. SUV on dual-phase FDG PET/CT correlates with the Ki-67 proliferation index in patients with newly diagnosed non-Hodgkin lymphoma. Clin Nucl Med. 2012; 37(8):e189-e195. https://doi.org/10.1097/RLU.0b013e318251e16e.

[26]

Battaglia AM, Chirillo R, Aversa I, et al. Ferroptosis and cancer: mitochondria meet the "iron maiden" cell death. Cells. 2020; 9;(6):1505. https://doi.org/10.3390/cells9061505.

[27]

Yagoda N, et al.von Rechenberg M, Zaganjor E, RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007; 447(7146):864-868. https://doi.org/10.1038/nature05859.

[28]

Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 2023; 14(3):205. https://doi.org/10.1038/s41419-023-05716-0.

[29]

Sun Y, Liu W-Z, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Sig Transd. 2015; 35(6):600-604. https://doi.org/10.3109/10799893.2015.1030412.

[30]

Wang Z, Zheng M, Li Z, et al. Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition. Cancer Res. 2009; 69(16):6556-6564. https://doi.org/10.1158/0008-5472.CAN-09-0891.

[31]

Zhu L, Cao P, Yang S, et al. Prolonged exposure to environmental levels of microcystin-LR triggers ferroptosis in brain via the activation of Erk/MAPK signaling pathway. Ecotoxicol Environ Saf. 2023;267:115651. https://doi.org/10.1016/j.ecoenv.2023.115651.

[32]

Li J, Gao H, Wang P, et al. Plumbagin induces G2/M arrest and apoptosis and ferroptosis via ROS/p38 MAPK pathway in human osteosarcoma cells. Alex Eng J. 2024; 103:222-236. https://doi.org/10.1016/j.aej.2024.06.015.

[33]

Yang Y, Liu Q, Shi X, et al. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res. 2021; 44(11):987-1011. https://doi.org/10.1007/s12272-021-01355-1.

[34]

Rahimtoola SH, Tak T. The use of digitalis in heart failure. Curr Prob Cardiol. 1996; 21(12):781-853. https://doi.org/10.1016/S0146-2806(96)80001-6.

[35]

Shiratori O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: in vitro and in vivo studies. Gan. 1967; 58(6):521-528. https://doi.org/10.20772/CANCERSCI1959.58.6_521.

[36]

Kometiani P, Liu L, Askari A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol Pharmacol. 2005; 67(3):929-936. https://doi.org/10.1124/mol.104.007302.

[37]

Bielawski K, Winnicka K, Bielawska A. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol Pharm Bull. 2006; 29(7):1493-1497. https://doi.org/10.1016/S0006-2952(03)00281-8.

[38]

López-Lázaro M, Pastor N, Azrak SS, et al. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J Nat Prod. 2005; 68(11):1642-1645. https://doi.org/10.1021/np050226l.

[39]

McConkey DJ, Lin Y, Nutt LK, et al. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000; 60(14):3807-3812. https://doi.org/10.1016/S0165-4608(00)00214-4.

[40]

Huang YT, Chueh SC, Teng CM, et al. Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells. Biocheml Pharmacol. 2004; 67(4):727-733. https://doi.org/10.1016/j.bcp.2003.10.013.

[41]

Yeh JY, Huang WJ, Kan SF, et al. Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells. The Prostate. 2002; 54(2):112-124. https://doi.org/10.1002/pros.10172.

[42]

Newman RA, Yang P, Hittelman WN, et al. Oleandrin-mediated oxidative stress in human melanoma cells. J Exp Therapeut Oncol. 2006; 5(3):167-181.

[43]

Newman RA, Kondo Y, Yokoyama T, et al. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr Cancer Ther. 2007; 6(4):354-364. https://doi.org/10.1177/1534735407309623.

[44]

Mijatovic T, Op De Beeck A, et al.Van Quaquebeke E, The cardenolide UNBS1450 is able to deactivate nuclear factor κB-mediated cytoprotective effects in human non-small cell lung cancer cells. Mol Cancer Therapeut. 2006; 5(2):391-399. https://doi.org/10.1158/1535-7163.MCT-05-0367.

[45]

Frese S, Frese-Schaper M, Andres AC, et al.Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5. Cancer Res. 2006; 66(11):5867-5874. https://doi.org/10.1158/0008-5472.CAN-05-3544.

[46]

Kulikov A, Eva A, Kirch U, et al. Ouabain activates signaling pathways associated with cell death in human neuroblastoma. BBA-Biomembranes. 2007; 1768(7):1691-1702. https://doi.org/10.1016/j.bbamem.2007.04.012.

[47]

Masuda Y, Kawazoe N, Nakajo S, et al. Bufalin induces apoptosis and influences the expression of apoptosis-related genes in human leukemia cells. Leukemia Res. 1995; 19(8):549-556. https://doi.org/10.1016/0145-2126(95)00031-I.

[48]

Daniel D, Susal C, Kopp B, et al. Apoptosis-mediated selective killing of malignant cells by cardiac steroids: maintenance of cytotoxicity and loss of cardiac activity of chemically modified derivatives. Int Immunopharmacol. 2003; 3(13-14):1791-1801. https://doi.org/10.1016/j.intimp.2003.08.004.

[49]

Watabe M, Kawazoe N, Masuda Y, et al. Bcl-2 protein inhibits bufalin-induced apoptosis through inhibition of mitogen-activated protein kinase activation in human leukemia U937 cells. Cancer Res. 1997; 57(15):3097-3100.

[50]

Platz EA, Yegnasubramanian S, Liu JO, et al. A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov. 2011; 1(1):68-77. https://doi.org/10.1158/2159-8274.CD-10-0020.

[51]

Galluzzi L, Senovilla L, Zitvogel L, et al. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov. 2012; 11(3):215-233. https://doi.org/10.1038/nrd3626.

[52]

Roth MT, Cardin DB, Borazanci EH, et al. A phase II, single-arm, open-label, bayesian adaptive efficacy and safety study of PBI-05204 in patients with stage IV metastatic pancreatic adenocarcinoma. Oncologist. 2020; 25(10):e1446-e1450. https://doi.org/10.1634/theoncologist.2020-0440.

[53]

Hong DS, Henary H, Falchook GS, et al. First-in-human study of pbi-05204, an oleander-derived inhibitor of akt, fgf-2, nf-kappaBeta and p70s6k, in patients with advanced solid tumors. Invest New Drugs. 2014; 32(6):1204-1212. https://doi.org/10.1007/s10637-014-0127-0.

PDF (6767KB)

110

Accesses

0

Citation

Detail

Sections
Recommended

/