Bisdemethoxycurcumin suppresses liver fibrosis-associated hepatocellular carcinoma via inhibiting CXCL12-induced macrophage polarization

Wei Yuan , Xinxin Zeng , Bin Chen , Sihan Yin , Jing Peng , Xiong Wang , Xingxing Yuan , Kewei Sun

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) : 1232 -1247.

PDF (15572KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) :1232 -1247. DOI: 10.1016/S1875-5364(25)60871-5
Original article
research-article

Bisdemethoxycurcumin suppresses liver fibrosis-associated hepatocellular carcinoma via inhibiting CXCL12-induced macrophage polarization

Author information +
History +
PDF (15572KB)

Abstract

Chronic, unresolved inflammation correlates with persistent hepatic injury and fibrosis, ultimately progressing to hepatocellular carcinoma (HCC). Bisdemethoxycurcumin (BDMC) demonstrates therapeutic potential against HCC, yet its mechanism in preventing hepatic "inflammation-carcinoma transformation" remains incompletely understood. In the current research, clinical HCC specimens underwent analysis using hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC) to evaluate the expression of fibrosis markers, M2 macrophage markers, and CXCL12. In vitro, transforming growth factor-β1 (TGF-β1)-induced LX-2 cells and a co-culture system of LX-2, THP-1, and HCC cells were established. Cell functions underwent assessment through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and Transwell assays. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blotting and immunofluorescence evaluated the differential expression of molecules. The interaction between β-catenin/TCF4 and CXCL12 was examined using co-immunoprecipitation (Co-IP), dual luciferase, and chromatin immunoprecipitation (ChIP) assays. A DEN-induced rat model was developed to investigate BDMC’s role in liver fibrosis-associated HCC (LFAHCC) development in vivo. Our results showed that clinical HCC tissues exhibited elevated fibrosis and enriched M2 macrophages. BDMC delayed liver fibrosis progression to HCC in vivo. BDMC inhibited the inflammatory microenvironment induced by activated hepatic stellate cells (HSCs). Furthermore, BDMC suppressed M2 macrophage-induced fibrosis and HCC cell proliferation and metastasis. Mechanistically, BDMC repressed TCF4/β-catenin complex formation, thereby reducing CXCL12 transcription in LX-2 cells. Moreover, CXCL12 overexpression reversed BDMC’s inhibitory effect on macrophage M2 polarization and its mediation of fibrosis, as well as HCC proliferation and metastasis. BDMC significantly suppressed LFAHCC development through CXCL12 in rats. In conclusion, BDMC inhibited LFAHCC progression by reducing M2 macrophage polarization through suppressing β-catenin/TCF4-mediated CXCL12 transcription.

Keywords

Liver fibrosis-associated hepatocellular carcinom / Bisdemethoxycurcumin / CXCL12 / β-Catenin/TCF4 / M2 macrophage polarization

Cite this article

Download citation ▾
Wei Yuan, Xinxin Zeng, Bin Chen, Sihan Yin, Jing Peng, Xiong Wang, Xingxing Yuan, Kewei Sun. Bisdemethoxycurcumin suppresses liver fibrosis-associated hepatocellular carcinoma via inhibiting CXCL12-induced macrophage polarization. Chinese Journal of Natural Medicines, 2025, 23(10): 1232-1247 DOI:10.1016/S1875-5364(25)60871-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay F, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin.2021; 71:209-249. https://doi.org/10.3322/caac.21660.

[2]

Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res. 2021; 149:1-61. https://doi.org/10.1016/bs.acr.2020.10.001.

[3]

Korbecki J, Simińska D, Gąssowska-Dobrowolska M, et al. Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-κB activation. Int J Mol Sci. 2021; 22(9):10701. https://doi.org/10.3390/ijms221910701.

[4]

Ding YF, Wu ZH, Wei YJ, et al. Hepatic inflammation-fibrosis-cancer axis in the rat hepatocellular carcinoma induced by diethylnitrosamine. J Cancer Res Clin Oncol. 2017; 143(5):821-834. https://doi.org/10.1007/s00432-017-2364-z.

[5]

Ringelhan M, Pfister D, O'Connor T, et al.The immunology of hepatocellular carcinoma. Nat Immunol. 2018; 19(3):222-232. https://doi.org/10.1038/s41590-018-0044-z.

[6]

Myojin Y, Hikita H, Sugiyama M, et al. Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differentiation factor 15 production. Gastroenterology. 2021; 160(5):1741-1754.e16. https://doi.org/10.1053/j.gastro.2020.12.015.

[7]

Zhang R, Yao RR, Li JH, et al. Activated hepatic stellate cells secrete periostin to induce stem cell-like phenotype of residual hepatocellular carcinoma cells after heat treatment. Sci Rep. 2017;7:2164. https://doi.org/10.1038/s41598-017-01177-6.

[8]

Zheng X, Jiang Q, Han M, et al. FBXO38 regulates macrophage polarization to control the development of cancer and colitis. Cell Mol Immunol. 2023; 20(12):1367-1378. https://doi.org/10.1038/s41423-023-01081-2.

[9]

Vitale I, Manic G, Coussens LM, et al. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019; 30(1):36-50. https://doi.org/10.1016/j.cmet.2019.06.001.

[10]

Yin L, Shi C, Zhang Z, et al. Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages. Korean J Physiol Pharmacol. 2021; 25(5):395-401. https://doi.org/10.4196/kjpp.2021.25.5.395.

[11]

Cao D, Naiyila X, Li J, et al. Potential strategies to improve the effectiveness of drug therapy by changing factors related to tumor microenvironment. Front Cell Dev Biol. 2021;9:705280. https://doi.org/10.3389/fcell.2021.705280.

[12]

Matsuda M, Seki E. Hepatic stellate cell-macrophage crosstalk in liver fibrosis and carcinogenesis. Semin Liver Dis. 2020; 40(3):307-320. https://doi.org/10.1055/s-0040-1708876.

[13]

Hao X, Zheng Z, Liu H, et al. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol. 2022;56:102463. https://doi.org/10.1016/j.redox.2022.102463.

[14]

Casari M, Siegl D, Deppermann C, et al. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front Immunol. 2023;14:1277808. https://doi.org/10.3389/fimmu.2023.1277808.

[15]

Wu S, Yuan W, Luo W, et al. miR-126 downregulates CXCL12 expression in intestinal epithelial cells to suppress the recruitment and function of macrophages and tumorigenesis in a murine model of colitis-associated colorectal cancer. Mol Oncol. 2022; 16(18):3465-3489. https://doi.org/10.1002/1878-0261.13218.

[16]

Chiraunyanann T, Changsri K, Sretapunya W, et al. CXCL12 G801A polymorphism is associated with significant liver fibrosis in HIV-infected Thais: a cross-sectional study. Asian Pac J Allergy Immunol. 2019; 37(3):162-170. https://doi.org/10.12932/AP-160917-0162.

[17]

Chalin A, Lefevre B, Devisme C, et al. Circulating levels of CXCL11 and CXCL12 are biomarkers of cirrhosis in patients with chronic hepatitis C infection. Cytokine. 2019; 117:72-78. https://doi.org/10.1016/j.cyto.2019.02.006.

[18]

Yang R, Shen H, Wang M, et al. Expression of SDF-1/CXCR4 and related inflammatory factors in sodium fluoride-treated hepatocytes. PLoS One. 2024; 19(1):e0302530. https://doi.org/10.1371/journal.pone.0302530.

[19]

Miklasova N, Herich P, Davila-Becerril JC, et al. Evaluation of antiproliferative palladium (II) complexes of synthetic bisdemethoxycurcumin towards in vitro cytotoxicity and molecular docking on DNA sequence. Molecules. 2021; 26(4):1048. https://doi.org/10.3390/molecules26144369.

[20]

Gan Y, Zheng S, Zhao J, et al. Protein network module-based identification of key pharmacological pathways of Curcuma phaeocaulis Val. acting on hepatitis. J Ethnopharmacol. 2018; 221:10-19. https://doi.org/10.1016/j.jep.2018.03.004.

[21]

Lee PJ, Woo SJ, Jee JG, et al.Bisdemethoxycurcumin induces apoptosis in activated hepatic stellate cells via cannabinoid receptor 2. Molecules. 2015; 20(7):1277-1292. https://doi.org/10.3390/molecules20011277.

[22]

Qiu C, Liu K, Zhang S, et al. Bisdemethoxycurcumin inhibits hepatocellular carcinoma proliferation through Akt inactivation via CYLD-mediated deubiquitination. Drug Des Devel Ther. 2020; 14:993-1001. https://doi.org/10.2147/DDDT.S231814.

[23]

Katoh M. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation. Int J Mol Med. 2018; 42(2):713-725. https://doi.org/10.3892/ijmm.2018.3689.

[24]

Akcora BO, Storm G, Bansal R.Inhibition of canonical WNT signaling pathway by β-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12. Biochim Biophys Acta Mol Basis Dis. 2018; 1864(3):804-818. https://doi.org/10.1016/j.bbadis.2017.12.001.

[25]

Vilchez V, Turcios L, Marti F, et al. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol. 2016; 22(2):823-832. https://doi.org/10.3748/wjg.v22.i2.823.

[26]

Liu YL, Yang HP, Zhou XD, et al. The hypomethylation agent bisdemethoxycurcumin acts on the WIF-1 promoter, inhibits the canonical Wnt pathway and induces apoptosis in human non-small-cell lung cancer. Curr Cancer Drug Targets. 2011; 11(9):1098-1110. https://doi.org/10.2174/156800911798073041.

[27]

Tang Y, Jiang M, Chen A, et al. Porcupine inhibitor LGK974 inhibits Wnt/β-catenin signaling and modifies tumor-associated macrophages resulting in inhibition of the malignant behaviors of non-small cell lung cancer cells. Mol Med Rep. 2021; 24(4):710. https://doi.org/10.3892/mmr.2021.12189.

[28]

Tewari D, Bawari S, Sharma S, et al. Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: a novel strategy for cancer prevention and therapy. Pharmacol Ther. 2021;227:107876. https://doi.org/10.1016/j.pharmthera.2021.107876.

[29]

Blosser SL, Sawyer N, Maksimovic I, et al. Covalent and noncovalent targeting of the Tcf4/β-catenin strand interface with β-hairpin mimics. ACS Chem Biol. 2021; 16(8):1518-1525. https://doi.org/10.1021/acschembio.1c00389.

[30]

García de Herreros A, Dunach M. Intracellular signals activated by canonical Wnt ligands independent of GSK3 inhibition and β-catenin stabilization. Cells. 2019; 8(10):1148. https://doi.org/10.3390/cells8101148.

[31]

Kim H, Jung J, Lee M, et al. Curcuma longa L. extract exhibits anti-inflammatory and cytoprotective functions in the articular cartilage of monoiodoacetate-injected rats. Food Nutr Res. 2024;68:10402 https://doi.org/10.29219/fnr.v68.10402.

[32]

Ding YF, Peng ZX, Ding L, et al. Baishouwu extract suppresses the development of hepatocellular carcinoma via TLR4/MyD88/NF-κB pathway. Front Pharmacol. 2019;10:389. https://doi.org/10.3389/fphar.2019.00389.

[33]

Li X, Huai Q, Zhu C, et al. GDF15 ameliorates liver fibrosis by metabolic reprogramming of macrophages to acquire anti-inflammatory properties. Cell Mol Gastroenterol Hepatol. 2023; 16:711-734. https://doi.org/10.1016/j.jcmgh.2023.07.009.

[34]

Colapietro A, Yang P, Rossetti A, et al. The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, inhibits growth of human glioblastoma, reduces Akt/mTOR activities, and modulates GSC cell-renewal properties. Front Pharmacol. 2020;11:552428. https://doi.org/10.3389/fphar.2020.552428.

[35]

Xue J, Xiao T, Wei S, et al. miR-21-regulated M2 polarization of macrophage is involved in arsenicosis-induced hepatic fibrosis through the activation of hepatic stellate cells. J Cell Physiol. 2021; 236:6025-6041. https://doi.org/10.1002/jcp.30288.

[36]

Vallée A, Lecarpentier Y, Vallée JN, et al. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res. 2019;38:323. https://doi.org/10.1186/s13046-019-1320-y.

[37]

Yang YM, Kim SY, Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets. Semin Liver Dis. 2019; 39:26-42. https://doi.org/10.1055/s-0038-1676806.

[38]

Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017; 66:1300-1312. https://doi.org/10.1016/j.jhep.2017.02.026.

[39]

Sica A, Invernizzi P, Mantovani A, et al. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014; 59:2034-2042. https://doi.org/10.1002/hep.26754.

[40]

Caligiuri A, Gentilini A, Pastore M, et al. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells. 2021;10:231. https://doi.org/10.3390/cells10102759.

[41]

Martínez-Esparza M, Tristán-Manzano M, Ruiz-Alcaraz AJ, et al. Inflammatory status in human hepatic cirrhosis. World J Gastroenterol. 2015; 21:11522-11541. https://doi.org/10.3748/wjg.v21.i41.11522.

[42]

Ma PF, Gao CC, Yi J, et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 2017; 67:770-779. https://doi.org/10.1016/j.jhep.2017.05.022.

[43]

Pivovarova-Ramich O, Loske J, Hornemann S, et al. Hepatic WISP1/CCN4 associates with markers of liver fibrosis in severe obesity. Cells. 2021;10:1048. https://doi.org/10.3390/cells10051048.

[44]

Yan Q, Pan L, Qi S, et al. RNF2 mediates hepatic stellate cells activation by regulating ERK/p38 signaling pathway in LX-2 cells. Front Cell Dev Biol. 2021;9:634902. https://doi.org/10.3389/fcell.2021.634902.

[45]

Robert S, Gicquel T, Bodin A, et al. Influence of inflammasome pathway activation in macrophages on the matrix metalloproteinase expression of human hepatic stellate cells. Int Immunopharmacol. 2019; 72:12-20. https://doi.org/10.1016/j.intimp.2019.03.060.

[46]

Guo F, Xia T, Xiao P, et al. A supramolecular complex of hydrazide-pillar[5]arene and bisdemethoxycurcumin with potential anti-cancer activity. Bioorg Chem. 2021;110:104764. https://doi.org/10.1016/j.bioorg.2021.104764.

[47]

Liao CL, Chu YL, Lin HY, et al. Bisdemethoxycurcumin suppresses migration and invasion of human cervical cancer HeLa cells via inhibition of NF-κB, MMP-2 and -9 pathways. Anticancer Res. 2018; 38:3989-3997. https://doi.org/10.21873/anticanres.12686.

[48]

Huang C, Lu HF, Chen YH, et al. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and -independent apoptosis via Smad or Akt signaling pathways in HOS cells. BMC Complement Med Ther. 2020;20:68. https://doi.org/10.1186/s12906-020-2857-1.

[49]

Zhang C, Hang Y, Tang W, et al. Dually active polycation/miRNA nanoparticles for the treatment of fibrosis in alcohol-associated liver disease. Pharmaceutics. 2022;14:425. https://doi.org/10.3390/pharmaceutics14030669.

[50]

Akasu M, Shimada S, Kabashima A, et al. Intrinsic activation of β-catenin signaling by CRISPR/Cas9-mediated exon skipping contributes to immune evasion in hepatocellular carcinoma. Sci Rep. 2021;11:16732. https://doi.org/10.1038/s41598-021-96167-0.

[51]

Low JL, Du W, Gocha T, et al. Molecular docking-aided identification of small molecule inhibitors targeting β-catenin-TCF4 interaction. iScience. 2021;24:102544. https://doi.org/10.1016/j.isci.2021.102544.

[52]

Joshi P, Joshi S, Semwal D, et al. Curcumin: an insight into molecular pathways involved in anticancer activity. Mini Rev Med Chem. 2021; 21:2420-2457. https://doi.org/10.2174/1389557521666210122153823.

[53]

Sun J, Ma Q, Li B, et al. RPN2 is targeted by miR-181c and mediates glioma progression and temozolomide sensitivity via the Wnt/β-catenin signaling pathway. Cell Death Dis. 2020;11:890. https://doi.org/10.1038/s41419-020-03113-5.

PDF (15572KB)

78

Accesses

0

Citation

Detail

Sections
Recommended

/