Anti-inflammatory and hepatoprotective triterpenoids from the traditional Mongolian medicine Gentianopsis barbata

Huizhen Cheng , Huan Liu , Xiaoyu Qi , Yuzhou Fan , Zhongzhu Yuan , Yuanliang Xu , Yanchun Liu , Yan Liu , Kai Guo , Shenghong Li

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1111 -1121.

PDF (2068KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) :1111 -1121. DOI: 10.1016/S1875-5364(25)60870-3
Original article
research-article

Anti-inflammatory and hepatoprotective triterpenoids from the traditional Mongolian medicine Gentianopsis barbata

Author information +
History +
PDF (2068KB)

Abstract

Gentianopsis barbata (G. barbata) represents a significant plant species with considerable ornamental and medicinal value in China. This investigation sought to elucidate the primary constituents within the plant and investigate their pharmacological properties. Fifty triterpenoids (1−50), including nine previously undescribed compounds (1, 2, 7, 10, 20, 28, 29, 37, and 41) were isolated and characterized from the whole plants of G. barbata. Notably, compounds 1 and 2 exhibited the novel 3,4;9,10-diseco-24-homo-cycloartane triterpenoid skeleton. The isolated triterpenoids demonstrated substantial anti-inflammatory activity through inhibition of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) cytokine secretion in LPS-induced RAW264.7 macrophages, and hepatoprotective effects by preventing tert-butyl hydroperoxide (t-BHP)-induced oxidative injury in HepG2 cells. These results demonstrate both the presence of diverse triterpenoids in G. barbata and their therapeutic potential for inflammatory and hepatic conditions, providing scientific evidence supporting the clinical application of this traditional Mongolian medicinal plant.

Keywords

Gentianopsis barbata / Gentianaceae / Triterpenoids / Anti-inflammatory activity / Hepatoprotective activity

Cite this article

Download citation ▾
Huizhen Cheng, Huan Liu, Xiaoyu Qi, Yuzhou Fan, Zhongzhu Yuan, Yuanliang Xu, Yanchun Liu, Yan Liu, Kai Guo, Shenghong Li. Anti-inflammatory and hepatoprotective triterpenoids from the traditional Mongolian medicine Gentianopsis barbata. Chinese Journal of Natural Medicines, 2025, 23(9): 1111-1121 DOI:10.1016/S1875-5364(25)60870-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y, Wang J, Li L, et al. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep. 2023; 40:1303-1353. https://doi.org/10.1039/D2NP00063F.

[2]

Guinda A, Rada M, Delgado T, et al. Pentacyclic triterpenoids from olive fruit and leaf. J Agric Food Chem. 2010; 58(17):9685-9691. https://doi.org/10.1021/jf102039t.

[3]

Liu ZQ. Chemical insights into ginseng as a resource for natural antioxidants. Chem Rev. 2012; 112(6):3329-3355. https://doi.org/10.1021/cr100174k.

[4]

Salvador JAR, Moreira VM, Goncalves BMF, et al. Ursane-type pentacyclic triterpenoids as useful platforms to discover anticancer drugs. Nat Prod Rep. 2012; 29:1463-1479. https://doi.org/10.1039/c2np20060k.

[5]

Topҫu G. Bioactive triterpenoids from Salvia species. J Nat Prod. 2006; 69:482-487. https://doi.org/10.1021/np0600402.

[6]

Feng Z, Zheng Y, Jiang Y, et al. Complete chloroplast genome of Gentianopsis barbata and comparative analysis with related species from Gentianaceae. Genome. 2022; 65(7):363-375. https://doi.org/10.1139/gen-2021-0080.

[7]

Cui ZH, Li Y, Wang ZW, et al. Chemical constituents from Gentianopsis barbata var. sinensis Ma (Gentianaceae). Biochem Syst Ecol. 2013; 47:101-103. https://doi.org/10.1016/j.bse.2012.11.003.

[8]

Xi G, Wang T, Bao G, et al. Chemical constituents from Gentianopsis barbata. Chin Tradit Pat Med. 2022; 44(6):1850-1854. https://doi.org/10.3969/j.issn.1001-1528.2022.06.022.

[9]

Ferreira MDL, Fernandes DA, Nunes FC, et al. Phytochemical study of Waltheria viscosissima and evaluation of its larvicidal activity against Aedes aegypti. Rev Bras Farmacogn. 2019; 29(5):582-590. https://doi.org/10.1016/j.bjp.2019.05.008.

[10]

Ikeda Y, Sugiura M, Fukaya C, et al. Periandradulcins A, B and C: phosphodiesterase inhibitors from Periandra dulcis Mart. Chem Pharm Bull. 1991; 39(3):566-571. https://doi.org/10.1248/cpb.39.566.

[11]

Ikuta A, Morikawa A. Triterpenes from Stauntonia hexaphylla callus tissues. J Nat Prod. 1992; 55(9):1230-1233. https://doi.org/10.1021/np50087a008.

[12]

Tanaka R, Ida T, Takaoka Y, et al. 3,4-Seco-oleana-4(23),18-dien-3-oic acid and other triterpenes from Euphorbia chamaesyce. Phytochemistry. 1994; 36(1):129-132. https://doi.org/10.1016/S0031-9422(00)97025-0.

[13]

Benyahia S, Benayache S, Benayache F, et al. Cladocalol, a pentacyclic 28-nor-triterpene from Eucalyptus cladocalyx with cytotoxic activity. Phytochemistry. 2005; 66(6):627-632. https://doi.org/10.1016/j.phytochem.2004.12.018.

[14]

Ames TR, Beton JL, Bowers A, et al. The chemistry of the triterpenes and related compounds. Part XXIII. The structure of taraxasterol, ψ-taraxasterol (heterolupeol), and lupenol-I. J Chem Soc. 1954:1905-1919. https://doi.org/10.1039/jr9540001902.

[15]

Alves JS, Castro JCM, Freire MO, et al. Complete assignment of the 1H and 13C NMR spectra of four triterpenes of the ursane, artane, lupane and friedelane groups. Magn Reson Chem. 2000; 38(3):201-206. https://doi.org/10.1002/(SICI)1097-458X(200003)38:3<201::AID-MRC622>3.0.CO;2-0.

[16]

Pinto CA, Baker PM, Gilbert B, et al. Vellozone, a tetracyclic triterpene from Vellozia stipitata. Phytochemistry. 1980; 19(11):2486-2487. https://doi.org/10.1016/S0031-9422(00)91063-X.

[17]

Mai HL, Grellier P, Prost E, et al. Triterpenes from the exudate of Gardenia urvillei. Phytochemistry. 2016; 122:193-202. https://doi.org/10.1016/j.phytochem.2015.11.001.

[18]

Zhong HT, Li F, Chen B, et al. Euphane triterpenes from the bark of Broussonetia papyrifera. Helv Chim Acta. 2011; 94(11):2061-2065. https://doi.org/10.1002/hlca.201100136.

[19]

Niu XF, Liu X, Pan L, et al. Oleanene triterpenes from Sedum lineare Thunb. Fitoterapia. 2011; 82(7):960-963. https://doi.org/10.1016/j.fitote.2011.05.011.

[20]

Marner FJ, Freyer A, Lex J. Triterpenoids from gum mastic, the resin of Pistacia lentiscus. Phytochemistry. 1991; 30(11):3709-3712. https://doi.org/10.1016/0031-9422(91)80095-I.

[21]

Ji F, Li ZL, Niu SL, et al. Studies on the chemical constituents of the barks of Garcinia xanthochymus. Chin J Med Chem. 2012;22:507-510.

[22]

Cao S, Guza RC, Miller J, et al. Cytotoxic triterpenoids from Acridocarpus vivy from the Madagascar rain forest. J Nat Prod. 2004; 67(6):986-989. https://doi.org/10.1021/np040058h.

[23]

Takahashi H, Iuchi M, Fujita Y, et al. Coumaroyl triterpenes from Casuarina equisetifolia. Phytochemistry. 1999; 51(4):543-550. https://doi.org/10.1016/S0031-9422(99)00070-9.

[24]

Huang Y, Aisa HA, Isaev MI. Isoprenoids of Euphorbia sororia. I. Triterpenoids. Chem Nat Comp. 2009; 45:921-924. https://doi.org/10.1007/s10600-010-9459-y.

[25]

Seebacher W, Simic N, Weis R, et al. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn Reson Chem. 2003; 41(8):636-638. https://doi.org/10.1002/mrc.1214.

[26]

Mahato SB, Kundu AP. 13C NMR spectra of pentacyclic triterpenoids-a compilation and salient features. Phytochemistry. 1994; 37(6):1517-1575. https://doi.org/10.1016/S0031-9422(00)89569-2.

[27]

Ikuta A, Kamiya K, Satakek T, et al. Triterpenoids from callus tissue cultures of Paeonia species. Phytochemistry. 1995; 38(5):1203-1207. https://doi.org/10.1016/0031-9422(94)00445-Y.

[28]

Merfort I, Buddrus J, Nawwar MAM, et al. A triterpene from the bark of Tamarix aphylla. Phytochemistry. 1992; 1(11):4031-4032. https://doi.org/10.1016/S0031-9422(00)97580-0.

[29]

Khalilov LM, Khalilova AZ, Shakurova ER, et al. PMR and 13C NMR spectra of biologically active compounds. XII. Taraxasterol and its acetate from the aerial part of Onopordum acanthium. Chem Nat Comp. 2003; 39:285-288. https://doi.org/10.1023/A:1025478720459.

[30]

Tanaka N, Duan H, Takaishi Y, et al. Terpenoids from Tripterygium doianum (Celastraceae). Phytochemistry. 2002; 61(1):93-98. https://doi.org/10.1016/S0031-9422(02)00219-4.

[31]

Yamashita H, Matsuzaki M, Kurokawa Y, et al. Four new triterpenoids from the bark of Euonymus alatus forma ciliato-dentatus. Phytochem Lett. 2019; 31:140-146. https://doi.org/10.1016/j.phytol.2019.03.015.

[32]

Tanaka H, Noguchi H, Abe I. 1-Methylidenesqualene and 25-methylidenesqualene as active-site probes for bacterial squalene: hopene cyclase. Org Lett. 2004; 6(5):803-806. https://doi.org/10.1021/ol036509r.

[33]

Long L, Yang Y, Zhu T, et al. New pentacyclic triterpenoids isolated from Leptopus chinensis and their hepatoprotective activities on tert-butyl hydroperoxide-induced oxidative injury. RSC Adv. 2021; 11(21):12784-12793. https://doi.org/10.1039/D1RA00962A.

[34]

Guo K, Zhou TT, Luo SH, et al. Leucosceptrane sesterterpenoids as a new type of natural immunosuppressive agents in treating sepsis. J Med Chem. 2024; 67(1):513-528. https://doi.org/10.1021/acs.jmedchem.3c01759.

[35]

Chen YG, Li DS, Ling Y, et al. A cryptic plant terpene cyclase producing unconventional 18- and 14-membered macrocyclic C25 and C20 terpenoids with immunosuppressive activity. Angew Chem Int Ed. 2021; 133(48):25672-25680. https://doi.org/10.1002/ange.202110842.

[36]

Chen LZ, Sun WW, Bo L, et al. New arylpyrazoline-coumarins: synthesis and anti-inflammatory activity. Eur J Med Chem. 2017; 138:170-181. https://doi.org/10.1016/j.ejmech.2017.06.044.

[37]

Li B, Bo S, Sheng Z, et al. Hepatoprotective activity and mechanisms of prenylated stilbenoids. J Agric Food Chem. 2024; 72(3):1618-1629. https://doi.org/10.1021/acs.jafc.3c09515.

PDF (2068KB)

103

Accesses

0

Citation

Detail

Sections
Recommended

/