Compatibility of cold herb CP and hot herb AZ in Huanglian Ganjiang decoction alleviates colitis mice through M1/M2 macrophage polarization balance via PDK4-mediated glucose metabolism reprogramming

Yanyang Li , Chang Liu , Yi Wang , Peiqi Chen , Shihua Xu , Yequn Wu , Lingzhi Ren , Yang Yu , Lei Yang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) : 1183 -1194.

PDF (10026KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) :1183 -1194. DOI: 10.1016/S1875-5364(25)60869-7
Original article
research-article

Compatibility of cold herb CP and hot herb AZ in Huanglian Ganjiang decoction alleviates colitis mice through M1/M2 macrophage polarization balance via PDK4-mediated glucose metabolism reprogramming

Author information +
History +
PDF (10026KB)

Abstract

Ulcerative colitis (UC) is a chronic and non-specific inflammatory bowel disease (IBD). Huanglian Ganjiang decoction (HGD), derived from ancient book Beiji Qianjin Yao Fang, has demonstrated efficacy in treating UC patients traditionally. Previous research established that the compatibility of cold herb Coptidis Rhizoma + Phellodendri Chinensis Cortex (CP) and hot herb Angelicae Sinensis Radix + Zingiberis Rhizoma (AZ) in HGD synergistically improved colitis mice. This study investigated the compatibility mechanisms through which CP and AZ regulated inflammatory balance in colitis mice. The experimental colitis model was established by administering 3% dextran sulphate sodium (DSS) to mice for 7 days, followed by CP, AZ and CPAZ treatment for an additional 7 days. M1/M2 macrophage polarization levels, glucose metabolites levels and pyruvate dehydrogenase kinase 4 (PDK4) expression were analyzed using flow cytometry, Western blot, immunofluorescence and targeted glucose metabolomics. The findings indicated that CP inhibited M1 macrophage polarization, decreased inflammatory metabolites associated with tricarboxylic acid (TCA) cycle, and suppressed PDK4 expression and pyruvate dehydrogenase (PDH) (Ser-293) phosphorylation level. AZ enhanced M2 macrophage polarization, increased lactate axis metabolite lactate levels, and upregulated PDK4 expression and PDH (Ser-293) phosphorylation level. TCA cycle blocker AG-221 and adeno-associated virus (AAV)-PDK4 partially negated CP’s inhibition of M1 macrophage polarization. Lactate axis antagonist oxamate and PDK4 inhibitor dichloroacetate (DCA) partially reduced AZ’s activation of M2 macrophage polarization. In conclusion, the compatibility of CP and AZ synergistically alleviated colitis in mice through M1/M2 macrophage polarization balance via PDK4-mediated glucose metabolism reprogramming. Specifically, CP reduced M1 macrophage polarization by restoration of TCA cycle via PDK4 inhibition, while AZ increased M2 macrophage polarization through activation of PDK4/lactate axis.

Keywords

Compatibility / Colitis / Cold herb / Hot herb / Huanglian Ganjiang decoction / M1/M2 macrophage polarization / PDK4 / Glucose metabolism reprogramming.

Cite this article

Download citation ▾
Yanyang Li, Chang Liu, Yi Wang, Peiqi Chen, Shihua Xu, Yequn Wu, Lingzhi Ren, Yang Yu, Lei Yang. Compatibility of cold herb CP and hot herb AZ in Huanglian Ganjiang decoction alleviates colitis mice through M1/M2 macrophage polarization balance via PDK4-mediated glucose metabolism reprogramming. Chinese Journal of Natural Medicines, 2025, 23(10): 1183-1194 DOI:10.1016/S1875-5364(25)60869-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kobayashi T, Siegmund B, Le B, et al. Ulcerative colitis. Nat Rev Dis Primers. 2020; 6(1):74. https://doi.org/10.1038/s41572-020-0205-x.

[2]

Kaluzna A, Oilczyk P, Komosinska K. The role of innate and adaptive immune cells in the pathogenesis and development of the inflammatory response in ulcerative colitis. J Clin Med. 2022; 11(2):400. https://doi.org/10.3390/jcm11020400.

[3]

Ahmad H, Kumar VL. Pharmacotherapy of ulcerative colitis--current status and emerging trends. J Basic Clin Physiol Pharmacol. 2018; 29(6):581-592. https://doi.org/10.1515/jbcpp-2016-0014.

[4]

Harbord M, Eliakim R, Bettenworth D, et al. Third european evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: current management. J Crohns Colitis. 2017; 11(7):769-784. https://doi.org/10.1093/ecco-jcc/jjx009.

[5]

Mas E, Calvo X. Selecting the best combined biological therapy for refractory inflammatory bowel disease patients. J Clin Med. 2022; 11(4):1076. https://doi.org/10.3390/jcm11041076.

[6]

Na Y, Stakenborg M, Seok S, et al. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019; 16(9):531-543. https://doi.org/10.1038/s41575-019-0172-4.

[7]

Zhu W, Yu J, NIe Y, et al. Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunol Invest. 2014; 43(7):638-652. https://doi.org/10.3109/08820139.2014.909456.

[8]

Hou X, Zhang L, Han L, et al. Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation. J Cell Sci. 2015; 128(13):2319-2329. https://doi.org/10.1242/jcs.167049.

[9]

Lee H, Jeon JH, Lee Y, et al. Inhibition of pyruvate dehydrogenase kinase 4 in CD4+ T cells ameliorates intestinal inflammation. Cell Mol Gastroenterol Hepatol. 2023; 15(2):439-461. https://doi.org/10.1016/j.jcmgh.2022.09.016.

[10]

Zou X, Liu D, Ding M, et al. Clinical effects of TCM syndrome differentiation and treatment on sixty-cases with ulcerative colitis. Henan Tradit Chin Med. 2015; 35(7):1628-1630. https://doi.org/10.16367/j.issn.1003-5028.2015.07.0686.

[11]

Du B, Xu Z. Wumei pill combined with traditional Chinese medicine enema for treatment of cold and hot miscellaneous ulcerative colitis. World J Integr Tradit West Med. 2020; 15(11):2098-2101. https://doi.org/10.13935/j.cnki.sjzx.201128.

[12]

Wu Q, Zhang S, Wang R, et al. Discussion in invaluable prescriptions for ready reference for recurrent dysentery from cold-heat syndrome. China J Tradit Chin Med Pharm. 2020; 35(11):5427-5430.

[13]

Xie Q, Li H, Ma R, et al. Effect of Coptis chinensis Franch and Magnolia officinalis on intestinal flora and intestinal barrier in a TNBS-induced ulcerative colitis rats model. Phytomedicine. 2022;97:153927. https://doi.org/10.1016/j.phymed.2022.153927.

[14]

He Y, Li Y, Wu Y, et al. Huanglian Ganjiang decoction alleviates ulcerative colitis by restoring gut barrier via APOC1-JNK/P38 MAPK signal pathway based on proteomic analysis. J Ethnopharmacol. 2024;318(Pt B):116994. https://doi.org/10.1016/j.jep.2023.116994.

[15]

Li Y, He Y, Wu Y, et al. Compatibility between cold-natured medicine CP and hot-natured medicine AZ synergistically mitigates colitis mice through attenuating inflammation and restoring gut barrier. J Ethnopharmacol. 2023;303:115902. https://doi.org/10.1016/j.jep.2022.115902.

[16]

Li Y, Wang X, Su Y, et al. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol Sin. 2022; 43(6):1495-1507. https://doi.org/10.1038/s41401-021-00781-7.

[17]

Zhuang H, Lv Q, Zhong C, et al. Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway. Front Immunol. 2021;12:649463. https://doi.org/10.3389/fimmu.2021.649463.

[18]

Weisser S, Van R, Sly L. Depletion and reconstitution of macrophages in mice. Jove-J Vis Exp. 2012;(66): 4105. https://doi.org/10.3791/4105.

[19]

Phan K, Ng W, Lu V, et al. Association between IDH1 and IDH2 mutations and preoperative seizures in patients with low-grade versus high-grade glioma: a systematic review and meta-analysis. World Neurosurg. 2018;111:E539-E545. https://doi.org/10.1016/j.wneu.2017.12.112.

[20]

Panaccione R, Ghosh S, Middleton S, et al. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology. 2014; 146(2):392-400. https://doi.org/10.1053/j.gastro.2013.10.052.

[21]

Ji S, He D, Su Z, et al. P450 enzymes-based metabolic interactions between monarch drugs and the other constituent herbs: a strategy to explore compatibility mechanism of Sangju-Yin. Phytomedicine. 2019;58:152866. https://doi.org/10.1016/j.phymed.2019.152866.

[22]

Wang S, Hu Y, Tan W. et al. Compatibility art of traditional Chinese medicine: from the perspective of herb pairs. J Ethnopharmacol. 2012; 143(2):412-423. https://doi.org/10.1016/j.jep.2012.07.033.

[23]

Yang Z, Lin S, Feng W, et al. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: macrophage polarization. Front Pharmacol. 2022;13:999179. https://doi.org/10.3389/fphar.2022.999179.

[24]

Kim M, Lee H, Chanda D. et al. The role of pyruvate metabolism in mitochondrial quality control and inflammation. Mol Cells. 2023; 46(5):259-267. https://doi.org/10.14348/molcells.2023.2128.

[25]

Angajala A, Lim S, Phillips J, et al. Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol. 2018;9:1605. https://doi.org/10.3389/fimmu.2018.01605.

[26]

Infantino V, Convertini P, Cucci L, et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem J. 2011; 438:433-436. https://doi.org/10.1042/BJ20111275.

[27]

Everts B, Amiel E, Huang S, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nature Immunol. 2014; 15(4):323-332. https://doi.org/10.1038/ni.2833.

[28]

Infantino V, Iacobazzi V, Palmieri F, et al. ATP-citrate lyase is essential for macrophage inflammatory response. Biochem Biophys Res Commun. 2013; 440(1):105-111. https://doi.org/10.1016/j.bbrc.2013.09.037.

[29]

Liu P, Wang H, Li X, et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nature Immunol. 2017; 18(9):985-994. https://doi.org/10.1038/ni.3796.

[30]

Tannahill G, Curtis A, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013; 496(7444):238-242. https://doi.org/10.1038/nature11986.

[31]

Wang F, Wang K, Xu W, et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Rep. 2017; 19(11):2331-2344. https://doi.org/10.1016/j.celrep.2017.05.065.

[32]

Ivashkiv L.The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol. 2020; 20(2):85-86. https://doi.org/10.1038/s41577-019-0259-8.

[33]

Mu X, Shi W, Xu Y, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle. 2018; 17(4):428-438. https://doi.org/10.1080/15384101.2018.1444305.

[34]

Locatelli S, Careddu G, Serio S, et al.Targeting cancer cells and tumor microenvironment in preclinical and clinical models of hodgkin lymphoma using the dual PI3Kδ/γ inhibitor RP6530. Clin Cancer Res. 2019; 25(3):1098-1112. https://doi.org/10.1158/1078-0432.CCR-18-1133.

[35]

Liu N, Luo J, Kuang D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019; 129(2):631-646. https://doi.org/10.1172/JCI123027.

[36]

Zhou H, Yan X, Yu W, et al. Lactic acid in macrophage polarization: the significant role in inflammation and cancer. Int Rev Immunol. 2022; 41(1):4-18. https://doi.org/10.1080/08830185.2021.1955876.

[37]

Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019; 575-580(7779):575-580. https://doi.org/10.1038/s41586-019-1678-1.

[38]

Chen Y, Wu G, Li M, et al. LDHA-mediated metabolic reprogramming promoted cardiomyocyte proliferation by alleviating ROS and inducing M2 macrophage polarization. Redox Biol. 2022;56:102446. https://doi.org/10.1016/j.redox.2022.102446.

[39]

Zhou H, Yu W, Yan X, et al. Lactate-driven macrophage polarization in the inflammatory microenvironment alleviates intestinal inflammation. Front Immunol. 2022;13:1013686. https://doi.org/10.3389/fimmu.2022.1013686.

[40]

Gao Y, Zhou H, Liu G, et al. Tumor microenvironment: lactic acid promotes tumor development. J Immunol Res. 2022;2022:3119375. https://doi.org/10.1155/2022/3119375.

[41]

Adam C, Paolini L, Gueguen N, et al. Acetoacetate protects macrophages from lactic acidosis-induced mitochondrial dysfunction by metabolic reprograming. Nat Commun. 2021; 12(1):7115. https://doi.org/10.1038/s41467-021-27426-x.

[42]

Pålsson-mcdermott E, O'neill L. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 2020; 30(4):300-314. https://doi.org/10.1038/s41422-020-0291-z.

[43]

Woolbright B, Rajendran G, Harris R, et al. Metabolic flexibility in cancer: targeting the pyruvate dehydrogenase kinase: pyruvate dehydrogenase axis. Mol Cancer Ther. 2019; 18(10):1673-1681. https://doi.org/10.1158/1535-7163.MCT-19-0079.

PDF (10026KB)

97

Accesses

0

Citation

Detail

Sections
Recommended

/