Evaluation of pharmacokinetics and metabolism of three marine-derived piericidins for guiding drug lead selection

Weimin Liang , Jindi Lu , Ping Yu , Meiqun Cai , Danni Xie , Xini Chen , Xi Zhang , Lingmin Tian , Liyan Yan , Wenxun Lan , Zhongqiu Liu , Xuefeng Zhou , Lan Tang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) : 614 -629.

PDF (6511KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) :614 -629. DOI: 10.1016/S1875-5364(25)60866-1
Original article
research-article

Evaluation of pharmacokinetics and metabolism of three marine-derived piericidins for guiding drug lead selection

Author information +
History +
PDF (6511KB)

Abstract

This study investigates the pharmacokinetics and metabolic characteristics of three marine-derived piericidins as potential drug leads for kidney disease: piericidin A (PA) and its two glycosides (GPAs), glucopiericidin A (GPA) and 13-hydroxyglucopiericidin A (13-OH-GPA). The research aims to facilitate lead selection and optimization for developing a viable preclinical candidate. Rapid absorption of PA and GPAs in mice was observed, characterized by short half-lives and low bioavailability. Glycosides and hydroxyl groups significantly enhanced the absorption rate (13-OH-GPA > GPA > PA). PA and GPAs exhibited metabolic instability in liver microsomes due to Cytochrome P450 enzymes (CYPs) and uridine diphosphoglucuronosyl transferases (UGTs). Glucuronidation emerged as the primary metabolic pathway, with UGT1A7, UGT1A8, UGT1A9, and UGT1A10 demonstrating high elimination rates (30%−70%) for PA and GPAs. This rapid glucuronidation may contribute to the low bioavailability of GPAs. Despite its low bioavailability (2.69%), 13-OH-GPA showed higher kidney distribution (19.8%) compared to PA (10.0%) and GPA (7.3%), suggesting enhanced biological efficacy in kidney diseases. Modifying the C-13 hydroxyl group appears to be a promising approach to improve bioavailability. In conclusion, this study provides valuable metabolic insights for the development and optimization of marine-derived piericidins as potential drug leads for kidney disease.

Keywords

Piericidin glycosides / Pharmacokinetics / Metabolism / Drug evaluation / Drug lead selection

Cite this article

Download citation ▾
Weimin Liang, Jindi Lu, Ping Yu, Meiqun Cai, Danni Xie, Xini Chen, Xi Zhang, Lingmin Tian, Liyan Yan, Wenxun Lan, Zhongqiu Liu, Xuefeng Zhou, Lan Tang. Evaluation of pharmacokinetics and metabolism of three marine-derived piericidins for guiding drug lead selection. Chinese Journal of Natural Medicines, 2025, 23(5): 614-629 DOI:10.1016/S1875-5364(25)60866-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carroll AR, Copp BR, Davis RA, et al.Marine natural products. Nat Prod Rep. 2023; 40(2):275-325. https://doi.org/10.1039/D2NP00083K.

[2]

A MAG, C MATB, E EDD, et al. Insights about clinically approved and preclinically investigated marine natural products. Curr Res Biotechnol. 2020; 2:88-102. https://doi.org/10.1016/j.crbiot.2020.09.001.

[3]

Li K, Liang Z, Chen W, et al.Iakyricidins A-D, antiproliferative piericidin analogues bearing a carbonyl group or cyclic skeleton from Streptomyces iakyrus SCSIO NS104. J Org Chem. 2019; 84(19):12626-12631. https://doi.org/10.1021/acs.joc.9b01270.

[4]

Li K, Su Z, Gao Y, et al.Cytotoxic minor piericidin derivatives from the actinomycete strain Streptomyces psammoticus SCSIO NS126. Mar Drugs. 2021; 19(8).

[5]

Zhou X, Liang Z, Li K, et al.Exploring the natural piericidins as anti-renal cell carcinoma agents targeting peroxiredoxin 1. J Med Chem. 2019; 62(15):7058-7069. https://doi.org/10.1021/acs.jmedchem.9b00598.

[6]

Liu C, Wang X, Wang X, et al. A new LKB 1 activator, piericidin analogue S14, retards renal fibrosis through promoting autophagy and mitochondrial homeostasis in renal tubular epithelial cells. Theranostics. 2022; 12(16):7158-7179. https://doi.org/10.7150/thno.78376.

[7]

Liang Z, Chen Y, Gu T, et al. LXR-mediated regulation of marine-derived piericidins aggravates high-cholesterol diet-induced cholesterol metabolism disorder in mice. J Med Chem. 2021; 64(14):9943-9959. https://doi.org/10.1021/acs.jmedchem.1c00175.

[8]

Xiao Z, Morris-Natschke SL, Lee KH. Strategies for the optimization of natural leads to anticancer drugs or drug candidates. Med Res Rev. 2016; 36(1):32-91. https://doi.org/10.1002/med.21377.

[9]

Hodgson J.ADMET-turning chemicals into drugs. Nat Biotechnol. 2001; 19(8):722-726. https://doi.org/10.1038/90761.

[10]

Tsaioun K, Jacewicz M. De-risking drug discovery with ADDME -- avoiding drug development mistakes early. Altern Lab Anim. 2009;37Suppl 1:47-55.

[11]

Knights KM, Stresser DM, Miners JO, et al. In vitro drug metabolism using liver microsomes. Curr Protoc Pharmacol. 2016;74:7.8. 1-7.8. 24.

[12]

Wu Y, Pan L, Chen Z, et al. Metabolite identification in the preclinical and clinical phase of drug development. Curr Drug Metab. 2021; 22(11):838-857. https://doi.org/10.2174/1389200222666211006104502.

[13]

Han J, Gong S, Bian X, et al. Polarity-regulated derivatization-assisted LC-MS method for amino-containing metabolites profiling in gastric cancer. J Pharm Anal. 2023; 13(11):1353-1364. https://doi.org/10.1016/j.jpha.2023.06.009.

[14]

Zhang J, Chen Q, Zhang L, et al. Simultaneously quantifying hundreds of acylcarnitines in multiple biological matrices within ten minutes using ultrahigh-performance liquid-chromatography and tandem mass spectrometry. J Pharm Anal. 2024; 14(1):140-148. https://doi.org/10.1016/j.jpha.2023.10.004.

[15]

Manikandan P, Nagini S. Cytochrome P 450 structure, function and clinical significance: A Review. Curr Drug Targets. 2018; 19(1):38-54.

[16]

Sun L, Mi K, Hou Y, et al. Pharmacokinetic and pharmacodynamic drug-drug interactions: research methods and applications. Metabolites. 2023; 13(8): 897. https://doi.org/10.3390/metabo13080897.

[17]

Matsumoto M, Mogi K, Nagaoka K, et al. New piericidin glucosides, glucopiericidins A and B. J Antibiot (Tokyo). 1987; 40(2):149-156. https://doi.org/10.7164/antibiotics.40.149.

[18]

Morita K, Kato M, Kudo T, et al. In vitro-in vivo extrapolation of metabolic clearance using human liver microsomes: factors showing variability and their normalization. Xenobiotica. 2020; 50(9):1064-1075. https://doi.org/10.1080/00498254.2020.1738592.

[19]

Pelkonen O, Turpeinen M. In vitro-in vivo extrapolation of hepatic clearance: biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica. 2007; 37(10-11):1066-1089. https://doi.org/10.1080/00498250701620726.

[20]

Pan W, Xue B, Yang C, et al. Biopharmaceutical characters and bioavailability improving strategies of ginsenosides. Fitoterapia. 2018; 129:272-282. https://doi.org/10.1016/j.fitote.2018.06.001.

[21]

Manach C, Scalbert A, Morand C, et al.Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004; 79(5):727-747. https://doi.org/10.1093/ajcn/79.5.727.

[22]

Haque N, Parveen S, Tang T, et al. Marine natural products in clinical use. Mar Drugs. 2022; 20(8).

[23]

Kang HE, Cho YK, Jung HY, et al. Pharmacokinetics and first-pass effects of liquiritigenin in rats: low bioavailability is primarily due to extensive gastrointestinal first-pass effect. Xenobiotica. 2009; 39(6):465-475. https://doi.org/10.1080/00498250902890151.

[24]

Matsuda Y, Konno Y, Hashimoto T, et al. Quantitative assessment of intestinal first-pass metabolism of oral drugs using portal-vein cannulated rats. Pharm Res. 2015; 32(2):604-616. https://doi.org/10.1007/s11095-014-1489-x.

[25]

Xie L, Diao Z, Xia J, et al. Comprehensive evaluation of metabolism and the contribution of the hepatic first-pass effect in the bioavailability of glabridin in rats. J Agric Food Chem. 2023; 71(4):1944-1956. https://doi.org/10.1021/acs.jafc.2c06460.

[26]

Zhao C, Ying Z, Hao D, et al. Investigating the bioavailabilities of olerciamide A via the rat’s hepatic, gastric and intestinal first-pass effect models. Biopharm Drug Dispos. 2019; 40(3-4):112-120. https://doi.org/10.1002/bdd.2175.

[27]

Cramer J, Sager CP, Ernst B. Hydroxyl groups in synthetic and natural-product-derived therapeutics: a perspective on a common functional group. J Med Chem. 2019; 62(20):8915-8930. https://doi.org/10.1021/acs.jmedchem.9b00179.

[28]

Zhou X, Fenical W. The unique chemistry and biology of the piericidins. J Antibiot (Tokyo). 2016; 69(8):582-593. https://doi.org/10.1038/ja.2016.71.

[29]

Miyoshi H. Structure-activity relationships of some complex I inhibitors. Biochim Biophys Acta. 1998; 1364(2):236-244. https://doi.org/10.1016/S0005-2728(98)00030-9.

[30]

Chen J, Jiang S, Wang J, et al. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab Rev. 2019; 51(2):178-195. https://doi.org/10.1080/03602532.2019.1632889.

[31]

Monostory K, Hazai E, Vereczkey L.Inhibition of cytochrome P450 enzymes participating in p-nitrophenol hydroxylation by drugs known as CYP2E1 inhibitors. Chem Biol Interact. 2004; 147(3):331-340. https://doi.org/10.1016/j.cbi.2004.03.003.

[32]

Trafalis DT, Panteli ES, Grivas A, et al. CYP2E1 and risk of chemically mediated cancers. Expert Opin Drug Metab Toxicol. 2010; 6(3):307-319. https://doi.org/10.1517/17425250903540238.

[33]

Rodríguez Arcas MJ, García-Jiménez E, Martínez-Martínez F, et al. Role of CYP 450 in pharmacokinetics and pharmacogenetics of antihypertensive drugs. Farm Hosp. 2011; 35(2):84-92. https://doi.org/10.1016/j.farma.2010.05.006.

[34]

Zobdeh F, Eremenko II, Akan MA, et al. Pharmacogenetics and pain treatment with a focus on non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants: a systematic review. Pharmaceutics. 2022; 14(6): 1190. https://doi.org/10.3390/pharmaceutics14061190.

[35]

Foxx-Lupo WT, Sing S, Alwan L, et al. A drug interaction between cabozantinib and warfarin in a patient with renal cell carcinoma. Clin Genitourin Cancer. 2016; 14(1):e119-121. https://doi.org/10.1016/j.clgc.2015.09.015.

[36]

Ghassabian S, Gillani TB, Rawling T, et al.Sorafenib N-oxide is an inhibitor of human hepatic CYP3A4. Aaps j. 2019; 21(2):15. https://doi.org/10.1208/s12248-018-0262-1.

[37]

Murray M, Gillani TB, Rawling T, et al. Inhibition of hepatic CYP2D6 by the active N-oxide metabolite of sorafenib. Aaps j. 2019; 21(6):107. https://doi.org/10.1208/s12248-019-0374-2.

[38]

Xu Y, Xia Y, Liu Q, et al. Glutaredoxin-1 alleviates acetaminophen-induced liver injury by decreasing its toxic metabolites. J Pharm Anal. 2023; 13(12):1548-1561. https://doi.org/10.1016/j.jpha.2023.08.004.

[39]

Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021; 49(W1):W5-w14. https://doi.org/10.1093/nar/gkab255.

[40]

Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, et al. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform. 2019; 11(1):2. https://doi.org/10.1186/s13321-018-0324-5.

[41]

Lin JH. Species similarities and differences in pharmacokinetics. Drug Metab Dispos. 1995; 23(10):1008-1021. https://doi.org/10.1016/S0090-9556(25)06742-X.

[42]

Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006; 2(6):875-894. https://doi.org/10.1517/17425255.2.6.875.

[43]

Toutain PL, Ferran A, Bousquet-Mélou A. Species differences in pharmacokinetics and pharmacodynamics. Handb Exp Pharmacol. 2010; 199(199):19-48.

[44]

Zamir A, Hussain I, Ur Rehman A, et al. Clinical pharmacokinetics of metoprolol: a systematic review. Clin Pharmacokinet. 2022; 61(8):1095-1114. https://doi.org/10.1007/s40262-022-01145-y.

[45]

Manda VK, Avula B, Ali Z, et al. Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. Planta Med. 2014; 80(7):568-576. https://doi.org/10.1055/s-0034-1368444.

[46]

Manda VK, Avula B, Ali Z, et al. Characterization of in vitro ADME properties of diosgenin and dioscin from Dioscorea villosa. Planta Med. 2013; 79(15):1421-1428. https://doi.org/10.1055/s-0033-1350699.

PDF (6511KB)

95

Accesses

0

Citation

Detail

Sections
Recommended

/