Lingguizhugan Decoction improves chronic heart failure by synergistically modulating β1-AR/Gs/GRKs/β-arrestin signaling bias

Shuting Guo , Lei Xia , Songru Yang , Yueyang Liang , Xiaoli Shan , Pei Zhao , Wei Guo , Chen Zhang , Ming Xu , Ning Sun , Rong Lu , Huihua Chen

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) : 560 -571.

PDF (8769KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) :560 -571. DOI: 10.1016/S1875-5364(25)60863-6
Original article
research-article

Lingguizhugan Decoction improves chronic heart failure by synergistically modulating β1-AR/Gs/GRKs/β-arrestin signaling bias

Author information +
History +
PDF (8769KB)

Abstract

Lingguizhugan Decoction (LGZG) demonstrates significant efficacy in treating various cardiovascular diseases clinically, yet its precise mechanism of action remains elusive. This study aimed to elucidate the potential mechanisms and effects of LGZG on isoproterenol (ISO) continuous stimulation-induced chronic heart failure (CHF) in mice, providing direct experimental evidence for further clinical applications. In vivo, continuous ISO infusion was administered to mice, and ventricular myocytes were utilized to explore LGZG’s potential mechanism of action on the β1-adrenergic receptor (β1-AR)/Gs/G protein-coupled receptor kinases (GRKs)/β-arrestin signaling deflection system in the heart. The findings reveal that LGZG significantly reduced the messenger ribonucleic acid (mRNA) expression of hypertrophy-related biomarkers [atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP)] and improved cardiac remodeling and left ventricular diastolic function in mice with ISO-induced CHF. Furthermore, LGZG inhibited the overactivation of Gs/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling and downregulated the downstream transcriptional activity of cAMP-response element binding protein (CREB) and the expression of the coactivator CBP/P300. Notably, LGZG downregulated the expression of β-arrestin1 and GRK 2/3/5 while upregulating the expression of β1-AR and β-arrestin2. These results suggest that LGZG inhibits Gs/cAMP/PKA signaling and β-arrestin/GRK-mediated desensitization and internalization of β1-AR, potentially exerting cardioprotective effects through the synergistic regulation of the β1-AR/Gs/GRKs/β-arrestin signaling deflection system via multiple pathways.

Keywords

Lingguizhugan Decoction / Chronic heart failure / Isoprotereno

Cite this article

Download citation ▾
Shuting Guo, Lei Xia, Songru Yang, Yueyang Liang, Xiaoli Shan, Pei Zhao, Wei Guo, Chen Zhang, Ming Xu, Ning Sun, Rong Lu, Huihua Chen. Lingguizhugan Decoction improves chronic heart failure by synergistically modulating β1-AR/Gs/GRKs/β-arrestin signaling bias. Chinese Journal of Natural Medicines, 2025, 23(5): 560-571 DOI:10.1016/S1875-5364(25)60863-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kamel R, Leroy J, Vandecasteele G, et al. Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol. 2023; 20(2):90-108. https://doi.org/10.1038/s41569-022-00756-z.

[2]

Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2022; 145(18):e876-e894. https://doi.org/10.1161/CIR.0000000000001062.

[3]

de Lucia C, Eguchi A, Koch WJ. New insights in cardiac β-adrenergic signaling during heart failure and aging. Front Pharmacol. 2018;9(AUG):904. https://doi.org/10.3389/fphar.2018.00904.

[4]

Gurevich VV, Gurevich EV. Biased GPCR signaling: possible mechanisms and inherent limitations. Pharmacol Ther. 2020;211:107540. https://doi.org/10.1016/j.pharmthera.2020.107540.

[5]

Wisler JW, Xiao K, Thomsen ARB, et al.Recent developments in biased agonism. Curr Opin Cell Biol. 2014; 27(1):18-24. https://doi.org/10.1016/j.ceb.2013.10.008.

[6]

Cahill TJ, Thomsen ARB, Tarrasch JT, et al. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc Natl Acad Sci U S A. 2017; 114(10):2562-2567. https://doi.org/10.1073/pnas.1701529114.

[7]

Hao P, Jiang F, Cheng J, et al. Traditional Chinese medicine for cardiovascular disease: evidence and potential mechanisms. J Am Coll Cardiol. 2017; 69(24):2952-2966. https://doi.org/10.1016/j.jacc.2017.04.041.

[8]

Ji B, Zhao Y, Yu P, et al. LC-ESI-MS/MS method for simultaneous determination of eleven bioactive compounds in rat plasma after oral administration of Ling-Gui-Zhu-Gan Decoction and its application to a pharmacokinetics study. Talanta. 2018; 190:450-459. https://doi.org/10.1016/j.talanta.2018.08.020.

[9]

Sun S, Xun G, Zhang J, et al. An integrated approach for investigating pharmacodynamic material basis of Lingguizhugan Decoction in the treatment of heart failure. J Ethnopharmacol. 2022;295:115366. https://doi.org/10.1016/j.jep.2022.115366.

[10]

Wang X, Gao Y, Tian Y, et al. Integrative serum metabolomics and network analysis on mechanisms exploration of Ling-Gui-Zhu-Gan Decoction on doxorubicin-induced heart failure mice. J Ethnopharmacol. 2020;250:112397. https://doi.org/10.1016/j.jep.2019.112397.

[11]

Wu CX, Liu Y, Zhang JC. Chronic intermittent hypoxia and hypertension: a review of systemic inflammation and Chinese medicine. Chin J Integr Med. 2013; 19(5):394-400. https://doi.org/10.1007/s11655-013-1459-x.

[12]

Wang X, Gao Y, Zhang J, et al. Revealment study on the regulation of lipid metabolism by Lingguizhugan Decoction in heart failure treatment based on integrated lipidomics and proteomics. Biomed Pharmacother. 2023;158:114066. https://doi.org/10.1016/j.biopha.2022.114066.

[13]

Chen Y, Li L, Hu C, et al. Lingguizhugan Decoction dynamically regulates MAPKs and AKT signaling pathways to retrogress the pathological progression of cardiac hypertrophy to heart failure. Phytomedicine. 2022;98:153951. https://doi.org/10.1016/j.phymed.2022.153951.

[14]

Shi Y, Liu C, Xiong S, et al. Ling-Gui-Qi-Hua Formula alleviates left ventricular myocardial fibrosis in rats with heart failure with preserved ejection fraction by blocking the transforming growth factor-β1/Smads signaling pathway. J Ethnopharmacol. 2023;317:116849. https://doi.org/10.1016/j.jep.2023.116849.

[15]

Li X, Xu G, Wei S, et al. Lingguizhugan Decoction attenuates doxorubicin-induced heart failure in rats by improving TT-SR microstructural remodeling. BMC Complement Altern Med. 2019; 19(1):360. https://doi.org/10.1186/s12906-019-2771-6.

[16]

Wang J, Gareri C, Rockman HA.G-protein-coupled receptors in heart disease. Circ Res. 2018; 123(6):716-735. https://doi.org/10.1161/CIRCRESAHA.118.311403.

[17]

Hu P, Guo S, Yang S, et al. Stachytine hydrochloride improves cardiac function in mice with ISO-induced heart failure by inhibiting the α-1, 6-fucosylation on N-glycosylation of β1AR. Front Pharmacol. 2022;12:834192. https://doi.org/10.3389/fphar.2021.834192.

[18]

Zheng J, Tian J, Wang S, et al. Stachydrine hydrochloride suppresses phenylephrine-induced pathological cardiac hypertrophy by inhibiting the calcineurin/nuclear factor of activated T-cell signalling pathway. Eur J Pharmacol. 2020;883:173386. https://doi.org/10.1016/j.ejphar.2020.173386.

[19]

Pasqualin C, Gannier F, Yu A, et al. SarcOptiM for imageJ: high-frequency online sarcomere length computing on stimulated cardiomyocytes. Am J Physiol Cell Physiol. 2016; 311(2):C277-C283. https://doi.org/10.1152/ajpcell.00094.2016.

[20]

Xu J, Wang R, You S, et al. Traditional Chinese medicine Lingguizhugan Decoction treating non-alcoholic fatty liver disease with spleen-yang deficiency pattern: study protocol for a multicenter randomized controlled trial. Trials. 2020; 21(1):512. https://doi.org/10.1186/s13063-020-04362-7.

[21]

Xue G, Li D, Wang Z, et al. Interleukin-17 upregulation participates in the pathogenesis of heart failure in mice via NF-κB-dependent suppression of SERCA2a and Cav1.2 expression. Acta Pharmacol Sin. 2021; 42(11):1780-1789. https://doi.org/10.1038/s41401-020-00580-6.

[22]

Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017; 14(1):30-38. https://doi.org/10.1038/nrcardio.2016.163.

[23]

Mahmood A, Ahmed K, Zhang Y. β-Adrenergic receptor desensitization/down-regulation in heart failure: a friend or foe? Front Cardiovasc Med. 2022;9:925692. https://doi.org/10.3389/fcvm.2022.925692.

[24]

Tilley DG, Kim IM, Patel PA, et al. beta-Arrestin mediates beta1-adrenergic receptor-epidermal growth factor receptor interaction and downstream signaling. J Biol Chem. 2009; 284(30):20375-20386. https://doi.org/10.1074/jbc.M109.005793.

[25]

Sun S, Cao H, Yao N, et al. β-Arrestin 2 mediates arginine vasopressin-induced IL-6 induction via the ERK1/2-NF-κB signal pathway in murine hearts. Acta Pharmacol Sin. 2020; 41(2):198-207. https://doi.org/10.1038/s41401-019-0292-y.

[26]

Shao SY, Sun MH, Ma XJ, et al. Novel phenanthrene/bibenzyl trimers from the tubers of Bletilla striata attenuate neuroinflammation via inhibition of NF-κB signaling pathway. Chin J Nat Med. 2024; 22:441-454. https://doi.org/10.1016/S1875-5364(24)60641-2.

[27]

Liu X, Ma L, Li HH, et al.β-Arrestin-biased signaling mediates memory reconsolidation. Proc Natl Acad Sci U S A. 2015; 112(14):4483-4488. https://doi.org/10.1073/pnas.1421758112.

[28]

Zhou H, Li N, Yuan Y, et al. Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target. Basic Res Cardiol. 2018; 113(5):37. https://doi.org/10.1007/s00395-018-0698-6.

[29]

Serio S, Pagiatakis C, Musolino E, et al. Cardiac aging is promoted by pseudohypoxia increasing p300-induced glycolysis. Circ Res. 2023; 133(8):687-703. https://doi.org/10.1161/CIRCRESAHA.123.322676.

[30]

Bektik E, Sun Y, Dennis AT, et al. Inhibition of CREB-CBP signaling improves fibroblast plasticity for direct cardiac reprogramming. Cells. 2021; 10(7):1572. https://doi.org/10.3390/cells10071572.

[31]

Sato PY, Chuprun JK, Schwartz M, et al. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev. 2015; 95(2):377-404. https://doi.org/10.1152/physrev.00015.2014.

[32]

Seyedabadi M, Gharghabi M, Gurevich EV, et al. Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Trends Biochem Sci. 2022; 47(7):570-581. https://doi.org/10.1016/j.tibs.2022.03.009.

[33]

Zhang LS, Wang YJ, Ju YY, et al. Role for engagement of β-arrestin 2 by the transactivated EGFR in agonist-specific regulation of δ receptor activation of ERK1/2. Br J Pharmacol. 2015; 172(20):4847-4863. https://doi.org/10.1111/bph.13254.

[34]

Liu Z, Liu X, Liu L, et al. SUMO1 regulates post-infarct cardiac repair based on cellular heterogeneity. J Pharm Anal. 2023; 13(2):170-186. https://doi.org/10.1016/j.jpha.2022.11.010.

[35]

Nguyen AH, Thomsen ARB, Cahill TJ, et al. Structure of an endosomal signaling GPCR-G protein-β-arrestin megacomplex. Nat Struct Mol Biol. 2019; 26(12):1123-1131. https://doi.org/10.1038/s41594-019-0330-y.

[36]

Thomsen ARB, Plouffe B, Cahill TJ, et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell. 2016; 166(4):907-919. https://doi.org/10.1016/j.cell.2016.07.004.

[37]

Irannejad R, Tomshine JC, Tomshine JR, et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature. 2013; 495(7442):534-538. https://doi.org/10.1038/nature12000.

PDF (8769KB)

91

Accesses

0

Citation

Detail

Sections
Recommended

/