Research advances in the treatment of arthritis from natural products (2014−present)

Ruilin Wang , Cen Ji , Jiayao Chen , Xiaohan Zhang , Qinghua Hu , Chunxiao Liu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) : 529 -540.

PDF (7983KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) :529 -540. DOI: 10.1016/S1875-5364(25)60862-4
Review
research-article

Research advances in the treatment of arthritis from natural products (2014−present)

Author information +
History +
PDF (7983KB)

Abstract

Arthritis, encompassing osteoarthritis (OA), rheumatoid arthritis (RA), and gouty arthritis (GA), is a prevalent inflammatory disease that significantly impacts quality of life. Natural products (NPs), derived from animals, plants, marine organisms, and microorganisms, have demonstrated beneficial effects in arthritis treatment both domestically and internationally. These natural compounds offer advantages in drug discovery due to their skeletal diversity, structural complexity, and multi-effect, multi-target, and low-toxicity properties compared to conventional small-molecule medicines. However, unclear mechanisms have hindered the development and clinical application of NPs. This review summarizes recent experimental studies from the past decade on natural medicine for arthritis treatment, emphasizing key NPs with therapeutic effects on OA, RA, and GA. It examines the effects and molecular mechanisms of NPs acting on different cells to treat arthritis. Furthermore, this review provides insights into the future prospects of NP research in this field, which is crucial for advancing NP-based arthritis treatments.

Keywords

Natural products / Arthritis / Osteoarthritis / Rheumatoid arthritis / Gouty arthritis

Cite this article

Download citation ▾
Ruilin Wang, Cen Ji, Jiayao Chen, Xiaohan Zhang, Qinghua Hu, Chunxiao Liu. Research advances in the treatment of arthritis from natural products (2014−present). Chinese Journal of Natural Medicines, 2025, 23(5): 529-540 DOI:10.1016/S1875-5364(25)60862-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang X, Zhang W. Macrophage membrane-camouflaged biomimetic nanovesicles for targeted treatment of arthritis. Ageing Res Rev. 2024;95:102241. https://doi.org/10.1016/j.arr.2024.102241.

[2]

Wirth T, Lafforgue P, Pham T.NSAID: current limits to prescription. Joint Bone Spine. 2024; 91(4):105685. https://doi.org/10.1016/j.jbspin.2023.105685.

[3]

Liu H, Huang M, Xin D, et al. Natural products with anti-tumorigenesis potential targeting macrophage. Phytomedicine. 2024;131:155794. https://doi.org/10.1016/j.phymed.2024.155794.

[4]

Benjamin MAZ, Mohd Mokhtar RA, Iqbal M, et al. Medicinal plants of Southeast Asia with anti-α-glucosidase activity as potential source for type-2 diabetes mellitus treatment. J Ethnopharmacol. 2024;330:118239 https://doi.org/10.1016/j.jep.2024.118239.

[5]

Mohamed Yusof NIS, Mohd Fauzi F. Nature’s toolbox for Alzheimer’s disease: a review on the potential of natural products as Alzheimer’s disease drugs. Neurochem Int. 2024;176:105738. https://doi.org/10.1016/j.neuint.2024.105738.

[6]

Gandhi GR, Jothi G, Mohana T, et al. Anti-inflammatory natural products as potential therapeutic agents of rheumatoid arthritis: A systematic review. Phytomedicine. 2021;93:153766. https://doi.org/10.1016/j.phymed.2021.153766.

[7]

Xu W, Chen S, Wang X, et al. Effects of sinomenine on the proliferation, cytokine production, and regulatory T‐cell frequency in peripheral blood mononuclear cells of rheumatoid arthritis patients. Drug Dev Res. 2020; 82(2):251-258. https://doi.org/10.1002/ddr.21748.

[8]

Lv X, Wang X, Wang X, et al. Research progress in arthritis treatment with the active components of Herba siegesbeckiae. Biomed Pharmacother. 2023;169:115939 https://doi.org/10.1016/j.biopha.2023.115939.

[9]

Yuandani, Jantan I, Salim E, et al. Mechanistic insights into anti‐inflammatory and immunosuppressive effects of plant secondary metabolites and their therapeutic potential for rheumatoid arthritis. Phytother Res. 2024; 38(6):2931-2961. https://doi.org/10.1002/ptr.8147.

[10]

Wang S, Liu W, Wei B, et al. Traditional herbal medicine: therapeutic potential in acute gouty arthritis. J Ethnopharmacol. 2024;330:118182. https://doi.org/10.1016/j.jep.2024.118182.

[11]

Koike M, Nojiri H, Kanazawa H, et al. Correlation of the total superoxide dismutase activity between joint fluid and synovium in end-stage knee osteoarthritis. Sci Rep. 2024; 14(1):12093. https://doi.org/10.1038/s41598-024-62614-x.

[12]

Vincent TL, Miller RE. Molecular pathogenesis of OA pain: past, present, and future. Osteoarthritis Cartilage. 2024; 32(4):398-405. https://doi.org/10.1016/j.joca.2024.01.005.

[13]

Quicke JG, Conaghan PG, Corp N, et al.Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthritis Cartilage. 2022; 30(2):196-206. https://doi.org/10.1016/j.joca.2021.10.003.

[14]

Weng Q, Chen Q, Jiang T, et al.Global burden of early-onset osteoarthritis, 1990- 2019: results from the Global Burden of Disease Study 2019. Ann Rheum Dis. 2024; 83(7):915-925. https://doi.org/10.1136/ard-2023-225324.

[15]

Xiao L, Lin S, Xu W, et al. Downregulation of Sox 8 mediates monosodium urate crystal-induced autophagic impairment of cartilage in gout arthritis. Cell Death Discov. 2023; 9(1):95. https://doi.org/10.1038/s41420-023-01388-z.

[16]

Takahashi I, Takeda K, Toyama T, et al. Histological and immunohistochemical analyses of articular cartilage during onset and progression of pre- and early-stage osteoarthritis in a rodent model. Sci Rep. 2024; 14(1):10568. https://doi.org/10.1038/s41598-024-61502-8.

[17]

Starodubtseva IA, Vasilieva LV, Nikitin AV. The analysis of efficacy of the use of inhibitor interleukin-1 in the complex therapy of secondary osteoarthritis taking into account the dynamics of clinical and functional indicators. Vestn Ross Akad Med Nauk. 2016; 71(2):141-147. https://doi.org/10.15690/vramn580.

[18]

Cen X, Liu Y, Wang S, et al. Glucosamine oral administration as an adjunct to hyaluronic acid injection in treating temporomandibular joint osteoarthritis. Oral Dis. 2017; 24(3):404-411. https://doi.org/10.1111/odi.12760.

[19]

Drosos AA, Voulgari PV, Alamanos Y, et al. Epidemiology and risk factors for rheumatoid arthritis development. Mediterr J Rheumatol. 2023; 34(4):404-413. https://doi.org/10.31138/mjr.301223.eaf.

[20]

Hong J, Luo F, Du X, et al. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol. 2024;133:112151. https://doi.org/10.1016/j.intimp.2024.112151.

[21]

Zheng Y, Wei K, Jiang P, et al. Macrophage polarization in rheumatoid arthritis: signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts. Front Immunol. 2024;15:1394108. https://doi.org/10.3389/fimmu.2024.1394108.

[22]

Favalli EG, Maioli G, Caporali R. Biologics or janus kinase inhibitors in rheumatoid arthritis patients who are insufficient responders to conventional anti-rheumatic drugs. Drugs. 2024; 84(8):877-894. https://doi.org/10.1007/s40265-024-02059-8.

[23]

Ragab G, Elshahaly M, Bardin T. Gout: an old disease in new perspective - a review. J Adv Res. 2017; 8(5):495-511. https://doi.org/10.1016/j.jare.2017.04.008.

[24]

Wang W, Liu C, Li H, et al. Discovery of novel and potent P2Y14R antagonists via structure-based virtual screening for the treatment of acute gouty arthritis. J Adv Res. 2020; 23:133-142. https://doi.org/10.1016/j.jare.2020.02.007.

[25]

Liu YR, Wang JQ, Li J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front Immunol. 2023;14:1137822. https://doi.org/10.3389/fimmu.2023.1137822.

[26]

Zhao J, Wei K, Jiang P, et al. Inflammatory response to regulated cell death in gout and its functional implications. Front Immunol. 2022;13:888306. https://doi.org/10.3389/fimmu.2022.888306.

[27]

Yang CY, Chen CH, Deng ST, et al. Allopurinol use and risk of fatal hypersensitivity reactions: a nationwide population-based study in Taiwan. JAMA Intern Med. 2015; 175(9):1550-7. https://doi.org/10.1001/jamainternmed.2015.3536.

[28]

Chung WH, Chang WC, Stocker SL, et al. Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin. Ann Rheum Dis. 2015; 74(12):2157-2164. https://doi.org/10.1136/annrheumdis-2014-205577.

[29]

Ji Q, Zheng Y, Zhang G, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis. 2019; 78(1):100-110. https://doi.org/10.1136/annrheumdis-2017-212863.

[30]

Chen Y, Yu Y, Wen Y, et al. A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration. Bone Res. 2022; 10(1):38. https://doi.org/10.1038/s41413-022-00209-w.

[31]

Alam W, Khan H, Shah MA, et al. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules. 2020; 25(18):4073. https://doi.org/10.3390/molecules25184073.

[32]

Zhuang Z, Ye G, Huang B. Kaempferol alleviates the interleukin-1β-induced inflammation in rat osteoarthritis chondrocytes via suppression of NF-κB. Med Sci Monit. 2017; 23:3925-3931. https://doi.org/10.12659/MSM.902491.

[33]

Lee CY, Chang YC, Yang KC, et al. Development and functional evaluation of a hyaluronic acid coated nano-formulation with kaempferol as a novel intra-articular agent for Knee Osteoarthritis treatment. Biomed Pharmacother. 2024;175:116717. https://doi.org/10.1016/j.biopha.2024.116717.

[34]

Xu T, Ge X, Lu C, et al. Baicalein attenuates OVA-induced allergic airway inflammation through the inhibition of the NF-κB signaling pathway. Aging (Albany NY). 2019; 11(21):9310-9327. https://doi.org/10.18632/aging.102371.

[35]

Wang CZ, Zhang CF, Luo Y, et al. Baicalein, an enteric microbial metabolite, suppresses gut inflammation and cancer progression in Apc(Min/+) mice. Clin Transl Oncol. 2020; 22(7):1013-1022. https://doi.org/10.1007/s12094-019-02225-5.

[36]

Wan Y, Shen K, Yu H, et al. Baicalein limits osteoarthritis development by inhibiting chondrocyte ferroptosis. Free Radic Biol Med. 2023; 196:108-120. https://doi.org/10.1016/j.freeradbiomed.2023.01.006.

[37]

Toledo AC, Sakoda CP, Perini A, et al. Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model. Br J Pharmacol. 2013; 168(7):1736-1749. https://doi.org/10.1111/bph.12062.

[38]

Deng X, Qu Y, Li M, et al. Sakuranetin reduces inflammation and chondrocyte dysfunction in osteoarthritis by inhibiting the PI3K/AKT/NF-κB pathway. Biomed Pharmacother. 2024;171:116194. https://doi.org/10.1016/j.biopha.2024.116194.

[39]

Liu Y, Hua W, Li Y, et al. Berberine suppresses colon cancer cell proliferation by inhibiting the SCAP/SREBP-1 signaling pathway-mediated lipogenesis. Biochem Pharmacol. 2020;174:113776. https://doi.org/10.1016/j.bcp.2019.113776.

[40]

Xiao M, Men LN, Xu MG, et al. Berberine protects endothelial progenitor cell from damage of TNF-α via the PI3K/AKT/eNOS signaling pathway. Eur J Pharmacol. 2014; 743:11-16. https://doi.org/10.1016/j.ejphar.2014.09.024.

[41]

Zhou Y, Tao H, Li Y, et al. Berberine promotes proliferation of sodium nitroprusside-stimulated rat chondrocytes and osteoarthritic rat cartilage via Wnt/β-catenin pathway. Eur J Pharmacol. 2016; 789:109-118. https://doi.org/10.1016/j.ejphar.2016.07.027.

[42]

Liu M, Guo J, Zhao J, et al. Activation of NRF 2 by celastrol increases antioxidant functions and prevents the progression of osteoarthritis in mice. Chin J Nat Med. 2024; 22(2):137-145. https://doi.org/10.1016/S1875-5364(24)60586-8.

[43]

Li W, Cai L, Zhang Y, et al. Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2α. J Orthop Res. 2015; 33(7):1061-1070. https://doi.org/10.1002/jor.22859.

[44]

Teng L, Shen Y, Qu Y, et al. Cyasterone inhibits IL-1β-mediated apoptosis and inflammation via the NF-κB and MAPK signaling pathways in rat chondrocytes and ameliorates osteoarthritis in vivo. Chin J Nat Med. 2023; 21(2):99-112. https://doi.org/10.1016/S1875-5364(23)60388-7.

[45]

Li Z, Huang Z, Bai L.Cell interplay in osteoarthritis. Front Cell Dev Biol. 2021;9:720477. https://doi.org/10.3389/fcell.2021.720477.

[46]

Li Y, Li Y, Zhu Y, et al. Structure-based virtual screening for discovery of paederosidic acid from Paederia scandens as novel P2Y(14)R antagonist. Phytomedicine. 2023;115:154851. https://doi.org/10.1016/j.phymed.2023.154851.

[47]

Saneja A, Arora D, Kumar R, et al. Therapeutic applications of betulinic acid nanoformulations. Ann N Y Acad Sci. 2018; 1421(1):5-18. https://doi.org/10.1111/nyas.13570.

[48]

Wei J, Li Y, Liu Q, et al. Betulinic acid protects from bone loss in ovariectomized mice and suppresses RANKL-associated osteoclastogenesis by inhibiting the MAPK and NFATc1 pathways. Front Pharmacol. 2020;11:1025. https://doi.org/10.3389/fphar.2020.01025.

[49]

Freund RRA, Gobrecht P, Fischer D, et al. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep. 2020; 37(4):541-565. https://doi.org/10.1039/C9NP00049F.

[50]

Xu Y, Chen Z, Lu X, et al. Targeted inhibition of STAT3 (Tyr705) by xanthatin alleviates osteoarthritis progression through the NF-κB signaling pathway. Biomed Pharmacother. 2024;174:116451. https://doi.org/10.1016/j.biopha.2024.116451.

[51]

Xing F, Geng L, Guan H, et al. Astragalin mitigates inflammatory osteolysis by negatively modulating osteoclastogenesis via ROS and MAPK signaling pathway. Int Immunopharmacol. 2022;112:109278. https://doi.org/10.1016/j.intimp.2022.109278.

[52]

He Q, Tian D, Wang Z, et al. Modified Si Miao Powder granules alleviates osteoarthritis progression by regulating M1/M2 polarization of macrophage through NF-κB signaling pathway. Front Pharmacol. 2024;15:1361561. https://doi.org/10.3389/fphar.2024.1361561.

[53]

Hsieh CY, Wang CC, Tayo LL, et al. In vitro and in vivo anti-osteoarthritis effects of tradition Chinese prescription Ji-Ming-San. J Ethnopharmacol. 2023;305:116084. https://doi.org/10.1016/j.jep.2022.116084.

[54]

Jia Z, Zhang J, Yang X, et al. Bioactive components and potential mechanisms of Biqi Capsule in the treatment of osteoarthritis: based on chondroprotective and anti-inflammatory activity. Front Pharmacol. 2024;15:1347970. https://doi.org/10.3389/fphar.2024.1347970.

[55]

Hu Y, Gui Z, Zhou Y, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic Biol Med. 2019; 145:146-160. https://doi.org/10.1016/j.freeradbiomed.2019.09.024.

[56]

Zhou F, Mei J, Han X, et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm Sin B. 2019; 9(5):973-985. https://doi.org/10.1016/j.apsb.2019.01.015.

[57]

Liu Q, Shen J, Wang J, et al. PR-957 retards rheumatoid arthritis progression and inflammation by inhibiting LMP7-mediated CD4+ T cell imbalance. Int Immunopharmacol. 2023;124:110860. https://doi.org/10.1016/j.intimp.2023.110860.

[58]

Balaga VKR, Pradhan A, Thapa R, et al. Morin: a comprehensive review on its versatile biological activity and associated therapeutic potential in treating cancers. Pharmacol Res Mod Chin Med. 2023;7:100264. https://doi.org/10.1016/j.prmcm.2023.100264.

[59]

Miao Y, Wu X, Xue X, et al. Morin, the PPARγ agonist, inhibits Th17 differentiation by limiting fatty acid synthesis in collagen-induced arthritis. Cell Biol Toxicol. 2023; 39(4):1433-1452. https://doi.org/10.1007/s10565-022-09769-3.

[60]

Lv Q, Zhu XY, Xia YF, et al. Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways. Chin J Nat Med. 2015; 13(11):831-841. https://doi.org/10.1016/S1875-5364(15)30087-X.

[61]

Yuan X, Tong B, Dou Y, et al. Tetrandrine ameliorates collagen-induced arthritis in mice by restoring the balance between Th17 and Treg cells via the aryl hydrocarbon receptor. Biochem Pharmacol. 2016; 101:87-99. https://doi.org/10.1016/j.bcp.2015.11.025.

[62]

Yue M, Zhang X, Dou Y, et al. Gut-sourced vasoactive intestinal polypeptide induced by the activation of α7 nicotinic acetylcholine receptor substantially contributes to the anti-inflammatory effect of sinomenine in collagen-induced arthritis. Front Pharmacol. 2018;9:675. https://doi.org/10.3389/fphar.2018.00675.

[63]

Jiang ZM, Zeng SL, Huang TQ, et al. Sinomenine ameliorates rheumatoid arthritis by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. Sci Bull (Beijing). 2023; 68(14):1540-1555. https://doi.org/10.1016/j.scib.2023.06.027.

[64]

Wang H, Geng X, Ai F, et al. Nuciferine alleviates collagen-induced arthritic in rats by inhibiting the proliferation and invasion of human arthritis-derived fibroblast-like synoviocytes and rectifying Th17/Treg imbalance. Chin J Nat Med. 2024; 22(4):341-355. https://doi.org/10.1016/S1875-5364(24)60622-9.

[65]

Li R, Guo LX, Li Y, et al. Dose-response characteristics of Clematis triterpenoid saponins and clematichinenoside AR in rheumatoid arthritis rats by liquid chromatography/mass spectrometry-based serum and urine metabolomics. J Pharm Biomed Anal. 2017; 136:81-91. https://doi.org/10.1016/j.jpba.2016.12.037.

[66]

Guo LX, Wang HY, Liu XD, et al. Saponins from Clematis mandshurica Rupr. regulates gut microbiota and its metabolites during alleviation of collagen-induced arthritis in rats. Pharmacol Res. 2019;149:104459. https://doi.org/10.1016/j.phrs.2019.104459.

[67]

Jiang SQ, Guo ZJ, Pan T, et al. The multi-omics and analysis to reveal thermal processing enhanced anti-rheumatoid arthritis efficacy of Radix Clematidis in rats. J Pharm Biomed Anal. 2022;215:114760. https://doi.org/10.1016/j.jpba.2022.114760.

[68]

Xiong Y, Ma Y, Han W, et al. Clematichinenoside AR induces immunosuppression involving Treg cells in Peyer׳s patches of rats with adjuvant induced arthritis. J Ethnopharmacol. 2014; 155(2):1306-1314. https://doi.org/10.1016/j.jep.2014.07.028.

[69]

Li Y, Zheng JY, Liu JQ, et al. Succinate/NLRP3 inflammasome induces synovial fibroblast activation: therapeutical effects of clematichinenoside AR on arthritis. Front Immunol. 2016;7:532. https://doi.org/10.3389/fimmu.2016.00532.

[70]

Zhang H, Liu J, Zhang P, et al. Herbal formula Longteng Decoction promotes the regression of synovial inflammation in collagen-induced arthritis mice by regulating type 2 innate lymphocytes. Front Pharmacol. 2021;12:778845. https://doi.org/10.3389/fphar.2021.778845.

[71]

Tang Y, Liu Q, Feng Y, et al. Tripterygium ingredients for pathogenicity cells in rheumatoid arthritis. Front Pharmacol. 2020;11:583171. https://doi.org/10.3389/fphar.2020.583171.

[72]

Luo Y, Hou X, Xi A, et al. Tripterygium wilfordii Hook F combination therapy with methotrexate for rheumatoid arthritis: an updated meta-analysis. J Ethnopharmacol. 2023;307:116211. https://doi.org/10.1016/j.jep.2023.116211.

[73]

Zhang Y, Mao X, Li W, et al. Tripterygium wilfordii: an inspiring resource for rheumatoid arthritis treatment. Med Res Rev. 2020; 41(3):1337-1374. https://doi.org/10.1002/med.21762.

[74]

Zhang L, Jiang S, Guan Z, et al. Effect of Salvia miltiorrhiza bunge extracts on improving the efficacy and reducing the toxicity of Tripterygium wilfordii polyglycosides in the treatment of rheumatoid arthritis. J Ethnopharmacol. 2023;317:116782. https://doi.org/10.1016/j.jep.2023.116782.

[75]

Wei ZF, Jiao XL, Wang T, et al. Norisoboldine alleviates joint destruction in rats with adjuvant-induced arthritis by reducing RANKL, IL-6, PGE(2), and MMP-13 expression. Acta Pharmacol Sin. 2013; 34(3):403-413. https://doi.org/10.1038/aps.2012.187.

[76]

Luo Y, Wei Z, Chou G, et al. Norisoboldine induces apoptosis of fibroblast-like synoviocytes from adjuvant-induced arthritis rats. Int Immunopharmacol. 2014; 20(1):110-116. https://doi.org/10.1016/j.intimp.2014.02.023.

[77]

Jiang X, Lu Z, Zhang Q, et al. Osthole: a potential AMPK agonist that inhibits NLRP3 inflammasome activation by regulating mitochondrial homeostasis for combating rheumatoid arthritis. Phytomedicine. 2023;110:154640. https://doi.org/10.1016/j.phymed.2022.154640.

[78]

Dou Y, Tong B, Wei Z, et al. Scopoletin suppresses IL-6 production from fibroblast-like synoviocytes of adjuvant arthritis rats induced by IL-1β stimulation. Int Immunopharmacol. 2013; 17(4):1037-1043. https://doi.org/10.1016/j.intimp.2013.10.011.

[79]

Cao L, Zhao T, Xue Y, et al. The anti-inflammatory and uric acid lowering effects of Si-Miao-San on gout. Front Immunol. 2022;12:777522. https://doi.org/10.3389/fimmu.2021.777522.

[80]

Zhou Q, Sun HJ, Zhang XW. Total saponin fraction of dioscorea nipponica makino improves gouty arthritis symptoms in rats via M1/M2 polarization of monocytes and macrophages mediated by arachidonic acid signaling. Chin J Integr Med. 2023; 29(11):1007-1017. https://doi.org/10.1007/s11655-022-3729-y.

[81]

Li G, Du S, Yan S, et al. Mechanism of Biqi Capsules in the treatment of gout based on network pharmacology and experimental verification. J Ethnopharmacol. 2025;337:118817. https://doi.org/10.1016/j.jep.2024.118817.

[82]

Dinesh P, Rasool M. Berberine, an isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats. Int Immunopharmacol. 2017; 44:26-37. https://doi.org/10.1016/j.intimp.2016.12.031.

[83]

Meng Q, Meng W, Bian H, et al. Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis. Biomed Pharmacother. 2021;138:111413. https://doi.org/10.1016/j.biopha.2021.111413.

[84]

Piao MH, Wang H, Jiang YJ, et al. Taxifolin blocks monosodium urate crystal-induced gouty inflammation by regulating phagocytosis and autophagy. Inflammopharmacology. 2022; 30(4):1335-1349. https://doi.org/10.1007/s10787-022-01014-x.

[85]

Li X, Mao X, Jiang H, et al. Shirebi Granules ameliorate acute gouty arthritis by inhibiting NETs-induced imbalance between immunity and inflammation. Chin Med. 2024; 19(1):105. https://doi.org/10.1186/s13020-024-00962-6.

[86]

Xu L, Liu X, Zhang Y, et al. Tanshinone IIA improves acute gouty arthritis in rats through regulating neutrophil activation and the NLRP3 inflammasome. Dis Markers. 2022; 2022:1-12. https://doi.org/10.1155/2022/5851412.

[87]

Zhou GQ, Chen G, Yang J, et al. Guizhi-Shaoyao-Zhimu Decoction attenuates monosodium urate crystal-induced inflammation through inactivation of NF-κB and NLRP3 inflammasome. J Ethnopharmacol. 2022;283:114707. https://doi.org/10.1016/j.jep.2021.114707.

[88]

Yoon IS, Cho SS. Effects of lobetyolin on xanthine oxidase activity in vitro and in vivo: weak and mixed inhibition. Nat Prod Res. 2019; 35(10):1667-1670. https://doi.org/10.1080/14786419.2019.1622108.

[89]

Liu C, Zhou M, Jiang W, et al. GPR105-targeted therapy promotes gout resolution as a switch between NETosis and apoptosis of neutrophils. Front Immunol. 2022;13:870183. https://doi.org/10.3389/fimmu.2022.870183.

[90]

Shi L, Zhao F, Zhu F, et al. Traditional Chinese medicine formula “Xiaofeng Granules” suppressed gouty arthritis animal models and inhibited the proteoglycan degradation on chondrocytes induced by monosodium urate. J Ethnopharmacol. 2016; 191:254-263. https://doi.org/10.1016/j.jep.2016.06.008.

[91]

Zhu F, Yin L, Ji L, et al. Suppressive effect of Sanmiao Formula on experimental gouty arthritis by inhibiting cartilage matrix degradation: an in vivo and in vitro study. Int Immunopharmacol. 2016; 30:36-42. https://doi.org/10.1016/j.intimp.2015.11.010.

[92]

Peng Y, Lee C, Wang C, et al. Pycnogenol attenuates the inflammatory and nitrosative stress on joint inflammation induced by urate crystals. Free Radic Biol Med. 2012; 52(4):765-774. https://doi.org/10.1016/j.freeradbiomed.2011.12.003.

[93]

Deng P, Wang S, Sun X, et al. Global trends in research of gouty arthritis over past decade: a bibliometric analysis. Front Immunol. 2022;13:910400. https://doi.org/10.3389/fimmu.2022.910400.

[94]

Tan H, Zhang S, Zhang Z, et al.Neutrophil extracellular traps promote M1 macrophage polarization in gouty inflammation via targeting hexokinase-2. Free Radic Biol Med. 2024; 224:540-553. https://doi.org/10.1016/j.freeradbiomed.2024.09.009.

[95]

Atta A, Salem MM, El-Said KS, et al. Mechanistic role of quercetin as inhibitor for adenosine deaminase enzyme in rheumatoid arthritis: systematic review. Cell Mol Biol Lett. 2024; 29(1):14. https://doi.org/10.1186/s11658-024-00531-7.

[96]

Feng W, Zhong XQ, Zheng XX, et al. Study on the effect and mechanism of quercetin in treating gout arthritis. Int Immunopharmacol. 2022;111:109112. https://doi.org/10.1016/j.intimp.2022.109112.

[97]

Lotfi MS, Rassouli FB. Natural flavonoid apigenin, an effective agent against nervous system cancers. Mol Neurobiol. 2024; 61(8):5572-5583. https://doi.org/10.1007/s12035-024-03917-y.

[98]

Zhu Y, Ouyang Z, Du H, et al. New opportunities and challenges of natural products research: when target identification meets single-cell multiomics. Acta Pharm Sin B. 2022; 12(11):4011-4039. https://doi.org/10.1016/j.apsb.2022.08.022.

[99]

Liu Y, Zhao B, He P, et al. Cinnamic acid: a low-toxicity natural bidentate ligand for uranium decorporation. Inorg Chem. 2024; 63(16):7464-7472. https://doi.org/10.1021/acs.inorgchem.4c00610.

[100]

Luo Z, Yin F, Wang X, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[101]

Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021; 20(3):200-216. https://doi.org/10.1038/s41573-020-00114-z.

PDF (7983KB)

86

Accesses

0

Citation

Detail

Sections
Recommended

/