Advances in nanocarriers for targeted drug delivery and controlled drug release

Yuqian Wang , Renqi Huang , Shufan Feng , Ran Mo

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) : 513 -528.

PDF (6786KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) :513 -528. DOI: 10.1016/S1875-5364(25)60861-2
Review
research-article

Advances in nanocarriers for targeted drug delivery and controlled drug release

Author information +
History +
PDF (6786KB)

Abstract

Nanocarrier-based drug delivery systems (nDDSs) present significant opportunities for improving disease treatment, offering advantages in drug encapsulation, solubilization, stability enhancement, and optimized pharmacokinetics and biodistribution. nDDSs, comprising lipid, polymeric, protein, and inorganic nanovehicles, can be guided by or respond to biological cues for precise disease treatment and management. Equipping nanocarriers with tissue/cell-targeted ligands enables effective navigation in complex environments, while functionalization with stimuli-responsive moieties facilitates site-specific controlled release. These strategies enhance drug delivery efficiency, augment therapeutic efficacy, and reduce side effects. This article reviews recent strategies and ongoing advancements in nDDSs for targeted drug delivery and controlled release, examining lesion-targeted nanomedicines through surface modification with small molecules, peptides, antibodies, carbohydrates, or cell membranes, and controlled-release nanocarriers responding to endogenous signals such as pH, redox conditions, enzymes, or external triggers like light, temperature, and magnetism. The article also discusses perspectives on future developments.

Keywords

Drug delivery / Nanocarrier / Tissue targeting / Controlled release / Stimuli responsiveness

Cite this article

Download citation ▾
Yuqian Wang, Renqi Huang, Shufan Feng, Ran Mo. Advances in nanocarriers for targeted drug delivery and controlled drug release. Chinese Journal of Natural Medicines, 2025, 23(5): 513-528 DOI:10.1016/S1875-5364(25)60861-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stater EP, Sonay AY, Hart C, et al. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat Nanotechnol. 2021; 16(11):1180-1194. https://doi.org/10.1038/s41565-021-01017-9.

[2]

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015; 33(9):941-951. https://doi.org/10.1038/nbt.3330.

[3]

Barenholz Y. Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release. 2012; 160(2):117-134. https://doi.org/10.1016/j.jconrel.2012.03.020.

[4]

Huang C, Chen X, Xue Z, et al. Effect of structure: a new insight into nanoparticle assemblies from inanimate to animate. Sci Adv. 2020; 6(20):eaba1321. https://doi.org/10.1126/sciadv.aba1321.

[5]

Singh AP, Biswas A, Shukla A, et al. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther. 2019;4:33. https://doi.org/10.1038/s41392-019-0068-3.

[6]

Manzari MT, Shamay Y, Kiguchi H, et al. Targeted drug delivery strategies for precision medicines. Nat Rev Mater. 2021; 6(4):351-370. https://doi.org/10.1038/s41578-020-00269-6.

[7]

Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm. 2009; 6(3):659-668. https://doi.org/10.1021/mp900015y.

[8]

Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021; 20(2):101-124. https://doi.org/10.1038/s41573-020-0090-8.

[9]

Chen L, Hong W, Ren W, et al. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther. 2021; 6(1):225. https://doi.org/10.1038/s41392-021-00631-2.

[10]

Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release. 2014; 194:1-19. https://doi.org/10.1016/j.jconrel.2014.08.015.

[11]

Lyon PC, Gray MD, Mannaris C, et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial. Lancet Oncol. 2018; 19(8):1027-1039. https://doi.org/10.1016/S1470-2045(18)30332-2.

[12]

Dou Y, Hynynen K, Allen C. To heat or not to heat: challenges with clinical translation of thermosensitive liposomes. J Control Release. 2017; 249:63-73. https://doi.org/10.1016/j.jconrel.2017.01.025.

[13]

Van Der Meel R, Sulheim E, Shi Y, et al.Smart cancer nanomedicine. Nat Nanotechnol. 2019; 14(11):1007-1017. https://doi.org/10.1038/s41565-019-0567-y.

[14]

Zhou X, Zhang P, Liu N, et al. Enhancing chemotherapy for pancreatic cancer through efficient and sustained tumor microenvironment remodeling with a fibroblast-targeted nanosystem. J Control Release. 2023; 361:161-177. https://doi.org/10.1016/j.jconrel.2023.07.061.

[15]

Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007; 2(12):751-760. https://doi.org/10.1038/nnano.2007.387.

[16]

Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015; 91:3-6. https://doi.org/10.1016/j.addr.2015.01.002.

[17]

Choi HS, Liu W, Liu F, et al.Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol. 2010; 5(1):42-47. https://doi.org/10.1038/nnano.2009.314.

[18]

Zhu X, Tsend-Ayush A, Yuan Z, et al. Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy. Int J Pharm. 2017; 529(1-2):451-464. https://doi.org/10.1016/j.ijpharm.2017.07.011.

[19]

Qiao JB, Fan QQ, Xing L, et al. Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis. J Control Release. 2018; 283:113-125. https://doi.org/10.1016/j.jconrel.2018.05.032.

[20]

El-Safoury DM, Ibrahim AB, El-Setouhy DA, et al. Amelioration of tumor targeting and in vivo biodistribution of 99mtc-methotrexate-gold nanoparticles (99mtc-mex-aunps). J Pharm Sci. 2021; 110(8):2955-2965. https://doi.org/10.1016/j.xphs.2021.03.021.

[21]

Rege MD, Ghadi R, Katiyar SS, et al. Exploring an interesting dual functionality of anacardic acid for efficient paclitaxel delivery in breast cancer therapy. Nanomedicine. 2019; 14(1):57-75. https://doi.org/10.2217/nnm-2018-0138.

[22]

Eshrati Yeganeh F, Eshrati Yeganeh A, Fatemizadeh M, et al. In vitro cytotoxicity and anti-cancer drug release behavior of methionine-coated magnetite nanoparticles as carriers. Med Oncol. 2022; 39(12):252. https://doi.org/10.1007/s12032-022-01838-1.

[23]

Garg NK, Singh B, Jain A, et al. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloid Surf B. 2016; 146:114-126. https://doi.org/10.1016/j.colsurfb.2016.05.051.

[24]

Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008; 41(1):120-129. https://doi.org/10.1021/ar7000815.

[25]

Sun Y, Zhao Y, Teng S, et al. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy. Int J Nanomedicine. 2018; 14:135-148. https://doi.org/10.2147/IJN.S181296.

[26]

Unnikrishnan BS, Sen A, Preethi GU, et al. Folic acid-appended galactoxyloglucan-capped iron oxide nanoparticles as a biocompatible nanotheranostic agent for tumor-targeted delivery of doxorubicin. Int J Biol Macromol. 2021; 168:130-142. https://doi.org/10.1016/j.ijbiomac.2020.11.205.

[27]

Xu W, Lou Y, Chen W, et al. Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. Biomed Tech. 2020; 65(2):229-236. https://doi.org/10.1515/bmt-2019-0056.

[28]

Thapa RK, Kim JH, Jeong JH, et al. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloid Surf B. 2017; 153:95-103. https://doi.org/10.1016/j.colsurfb.2017.02.012.

[29]

Shan L, Liu M, Wu C, et al. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy. Int J Nanomed. 2015; 10:5571-5591. https://doi.org/10.2147/IJN.S85402.

[30]

Luo CQ, Jang Y, Xing L, et al. Aerosol delivery of folate-decorated hyperbranched polyspermine complexes to suppress lung tumorigenesis via Akt signaling pathway. Int J Pharm. 2016; 513(1-2):591-601. https://doi.org/10.1016/j.ijpharm.2016.09.068.

[31]

Shi Y, Su Z, Li S, et al. Multistep targeted nano drug delivery system aiming at leukemic stem cells and minimal residual disease. Mol Pharm. 2013; 10(6):2479-2489. https://doi.org/10.1021/mp4001266.

[32]

Tang B, Peng Y, Yue Q, et al. Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer. Eur J Med Chem. 2020;193:112204. https://doi.org/10.1016/j.ejmech.2020.112204.

[33]

Purushothaman B, Choi J, Park S, et al. Biotin-conjugated pegylated porphyrin self-assembled nanoparticles co-targeting mitochondria and lysosomes for advanced chemo-photodynamic combination therapy. J Mater Chem B. 2019; 7(1):65-79. https://doi.org/10.1039/C8TB01923A.

[34]

Dai Y, Xing H, Song F, et al. Biotin-conjugated multilayer poly(D, L-lactide-co-glycolide)-lecithin-polyethylene glycol nanoparticles for targeted delivery of doxorubicin. J Pharm Sci. 2016; 105(9):2949-2958. https://doi.org/10.1016/j.xphs.2016.03.038.

[35]

Patil Y, Sadhukha T, Ma L, et al. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release. 2009; 136(1):21-29. https://doi.org/10.1016/j.jconrel.2009.01.021.

[36]

Hu M, Wang Y, Xu L, et al. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat Commun. 2019; 10(1):2993. https://doi.org/10.1038/s41467-019-10893-8.

[37]

Li Y, Wu Y, Huang L, et al. Sigma receptor-mediated targeted delivery of anti-angiogenic multifunctional nanodrugs for combination tumor therapy. J Control Release. 2016; 228:107-119. https://doi.org/10.1016/j.jconrel.2016.02.044.

[38]

Huo M, Zhao Y, Satterlee AB, et al. Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J Control Release. 2017; 245:81-94. https://doi.org/10.1016/j.jconrel.2016.11.013.

[39]

Gao H, Chu C, Cheng Y, et al. In situ formation of nanotheranostics to overcome the blood-brain barrier and enhance treatment of orthotopic glioma. Acs Appl Mater Interfaces. 2020; 12(24):26880-26892. https://doi.org/10.1021/acsami.0c03873.

[40]

Huang X, Kang B, Qian W, et al. Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers. J Biomed Opt. 2010; 15(5):058002. https://doi.org/10.1117/1.3486538.

[41]

Chernenko T, Buyukozturk F, Miljkovic M, et al. Label-free raman microspectral analysis for comparison of cellular uptake and distribution between nontargeted and EGFR-targeted biodegradable polymeric nanoparticles. Drug Deliv Transl Re. 2013; 3(6):575-586. https://doi.org/10.1007/s13346-013-0178-3.

[42]

Gao LY, Liu XY, Chen CJ, et al. Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials. 2014; 35(6):2066-2078. https://doi.org/10.1016/j.biomaterials.2013.11.046.

[43]

Chen H, Wu F, Li J, et al. DUP1 peptide modified micelle efficiently targeted delivery paclitaxel and enhance mitochondrial apoptosis on PSMA-negative prostate cancer cells. Springerplus. 2016;5:362. https://doi.org/10.1186/s40064-016-1992-0.

[44]

Mu W, Jiang D, Mu S, et al. Promoting early diagnosis and precise therapy of hepatocellular carcinoma by glypican-3-targeted synergistic chemo-photothermal theranostics. Acs Appl Mater Interfaces. 2019; 11(26):23591-23604. https://doi.org/10.1021/acsami.9b05526.

[45]

Huang N, Cheng S, Zhang X, et al. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedine. 2017; 13(1):83-93. https://doi.org/10.1016/j.nano.2016.08.029.

[46]

Jang HJ, Jeong EJ, Lee KY. Carbon dioxide-generating PLG nanoparticles for controlled anti-cancer drug delivery. Pharm Res. 2018; 35(3):59. https://doi.org/10.1007/s11095-018-2359-8.

[47]

Zhang W, Han B, Gao C, et al. Integrated platform of oxygen self-enriched nanovesicles: SP94 peptide-directed chemo/sonodynamic therapy for liver cancer. Eur J Pharm Biopharm. 2022; 179:206-220. https://doi.org/10.1016/j.ejpb.2022.09.012.

[48]

Dong Y, Chen Y, Zhu D, et al. Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. J Control Release. 2020; 322:416-425. https://doi.org/10.1016/j.jconrel.2020.04.003.

[49]

Teng C, Li B, Lin C, et al. Targeted delivery of baicalein-p53 complex to smooth muscle cells reverses pulmonary hypertension. J Control Release. 2022; 341:591-604. https://doi.org/10.1016/j.jconrel.2021.12.006.

[50]

Zeng Z, Dai S, Jiao Y, et al. Mannosylated protamine as a novel DNA vaccine carrier for effective induction of anti-tumor immune responses. Int J Pharm. 2016; 506(1-2):394-406. https://doi.org/10.1016/j.ijpharm.2016.04.036.

[51]

Yao W, Peng Y, Du M, et al. Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity. Mol Pharm. 2013; 10(8):2904-2914. https://doi.org/10.1021/mp4000053.

[52]

Negishi Y, Hamano N, Sato H, et al. Development of a screening system for targeting carriers using peptide-modified liposomes and tissue sections. Biol Pharm Bull. 2018; 41(7):1107-1111. https://doi.org/10.1248/bpb.b18-00151.

[53]

Liu Y, Zou Y, Feng C, et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 2020; 20(3):1637-1646. https://doi.org/10.1021/acs.nanolett.9b04683.

[54]

Chen Q, Long M, Qiu L, et al. Decoration of pH-sensitive copolymer micelles with tumor-specific peptide for enhanced cellular uptake of doxorubicin. Int J Nanomed. 2016; 11:5415-5427. https://doi.org/10.2147/IJN.S111950.

[55]

Wang Y, Shi W, Song W, et al. Tumor cell targeted delivery by specific peptide-modified mesoporous silica nanoparticles. J Mater Chem. 2012; 22(29):14608-14616. https://doi.org/10.1039/c2jm32398b.

[56]

Wang R, Zhao Z, Han Y, et al. Natural particulates inspired specific-targeted codelivery of siRNA and paclitaxel for collaborative antitumor therapy. Mol Pharm. 2017; 14(9):2999-3012. https://doi.org/10.1021/acs.molpharmaceut.7b00192.

[57]

Li F, Zhao Y, Mao C, et al. RGD-modified albumin nanoconjugates for targeted delivery of a porphyrin photosensitizer. Mol Pharm. 2017; 14(8):2793-2804. https://doi.org/10.1021/acs.molpharmaceut.7b00321.

[58]

Sun J, Jiang L, Lin Y, et al. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides. Int J Nanomed. 2017; 12:1517-1537. https://doi.org/10.2147/IJN.S122859.

[59]

Du R, Zhong T, Zhang WQ, et al. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int J Nanomed. 2014; 9:3091-3105. https://doi.org/10.2147/IJN.S65664.

[60]

Du YZ, Cai LL, Liu P, et al. Tumor cells-specific targeting delivery achieved by A54 peptide functionalized polymeric micelles. Biomaterials. 2012; 33(34):8858-8867. https://doi.org/10.1016/j.biomaterials.2012.08.043.

[61]

Sha H, Zou Z, Xin K, et al. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J Control Release. 2015; 200:188-200. https://doi.org/10.1016/j.jconrel.2014.12.039.

[62]

Li X, Yang C, Wan H, et al. Discovery and development of pyrotinib: a novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur J Pharm Sci. 2017; 110:51-61. https://doi.org/10.1016/j.ejps.2017.01.021.

[63]

Baig MMFA, Lai WF, Mikrani R, et al. Synthetic NRG-1 functionalized DNA nanospindels towards HER2/neu targets for in vitro anti-cancer activity assessment against breast cancer MCF-7 cells. J Pharmaceut Biomed. 2020;182:113133. https://doi.org/10.1016/j.jpba.2020.113133.

[64]

Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci. 2017; 8(1):63-77. https://doi.org/10.1039/C6SC02403C.

[65]

Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009; 30(29):5737-5750. https://doi.org/10.1016/j.biomaterials.2009.07.008.

[66]

Wu G, Yang W, Barth RF, et al. Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin Cancer Res. 2007; 13(4):1260-1268. https://doi.org/10.1158/1078-0432.CCR-06-2399.

[67]

Ye Z, Zhang Y, Liu Y, et al. EGFR targeted cetuximab-valine-citrulline (VC)-doxorubicin immunoconjugates-loaded bovine serum albumin (BSA) nanoparticles for colorectal tumor therapy. Int J Nanomed. 2021; 16:2443-2459. https://doi.org/10.2147/IJN.S289228.

[68]

Cirstoiu-Hapca A, Buchegger F, Lange N, et al. Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: therapeutic efficacy and biodistribution in mice. J Control Release. 2010; 144(3):324-331. https://doi.org/10.1016/j.jconrel.2010.02.026.

[69]

Cirstoiuhapca A, Bossynobs L, Buchegger F, et al. Differential tumor cell targeting of anti-HER2 (Herceptin®) and anti-CD20 (Mabthera®) coupled nanoparticles. Int J Pharm. 2007; 331(2):190-196. https://doi.org/10.1016/j.ijpharm.2006.12.002.

[70]

Sun B, Ranganathan B, Feng SS. Multifunctional poly(D, L-lactide-co-glycolide) /montmorillonite (PLGA/MMT) nanoparticles decorated by trastuzumab for targeted chemotherapy of breast cancer. Biomaterials. 2008; 29(4):475-486. https://doi.org/10.1016/j.biomaterials.2007.09.038.

[71]

Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov Today. 2021; 26(5):1319-1329. https://doi.org/10.1016/j.drudis.2020.12.014.

[72]

Ngamcherdtrakul W, Morry J, Gu S, et al. Cationic polymer modified mesoporous silica nanoparticles for targeted siRNA delivery to HER2+breast cancer. Adv Funct Mater. 2015; 25(18):2646-2659. https://doi.org/10.1002/adfm.201404629.

[73]

Thomas TP, Patri AK, Myc A, et al. In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules. 2004; 5(6):2269-2274. https://doi.org/10.1021/bm049704h.

[74]

Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004; 22(8):969-976. https://doi.org/10.1038/nbt994.

[75]

Czerwińska M, Fracasso G, Pruszyński M, et al. Design and evaluation of 223Ra-labeled and anti-PSMA targeted NaA nanozeolites for prostate cancer therapy-part I. Materials. 2020; 13(17):3875. https://doi.org/10.3390/ma13173875.

[76]

Li N, Zhao Q, Shu C, et al. Targeted killing of cancer cells in vivo and in vitro with IGF-IR antibody-directed carbon nanohorns based drug delivery. Int J Pharm. 2015; 478(2):644-654. https://doi.org/10.1016/j.ijpharm.2014.12.015.

[77]

Kawakami S, Sato A, Nishikawa M, et al. Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther. 2000; 7(4):292-299. https://doi.org/10.1038/sj.gt.3301089.

[78]

Vieira AC, Chaves LL, Pinheiro M, et al. Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cells. Int J Nanomedicine. 2016; 11:2601-2617. https://doi.org/10.2147/IJN.S104908.

[79]

Pinheiro M, Ribeiro R, Vieira A, et al. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des Dev Ther. 2016; 10:2467-2475. https://doi.org/10.2147/DDDT.S104395.

[80]

Managit C, Kawakami S, Nishikawa M, et al. Targeted and sustained drug delivery using pegylated galactosylated liposomes. Int J Pharm. 2003; 266(1-2):77-84. https://doi.org/10.1016/S0378-5173(03)00383-1.

[81]

Jain A, Kesharwani P, Garg NK, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloid Surface B. 2015; 134:47-58. https://doi.org/10.1016/j.colsurfb.2015.06.027.

[82]

Varshosaz J, Hassanzadeh F, Sadeghi H, et al. Galactosylated nanostructured lipid carriers for delivery of 5-FU to hepatocellular carcinoma. J Liposome Res. 2012; 22(3):224-236. https://doi.org/10.3109/08982104.2012.662653.

[83]

Paliwal SR, Paliwal R, Agrawal GP, et al. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. J Liposome Res. 2016; 26(4):276-287. https://doi.org/10.3109/08982104.2015.1117489.

[84]

Tran TH, Choi JY, Ramasamy T, et al. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym. 2014; 114:407-415. https://doi.org/10.1016/j.carbpol.2014.08.026.

[85]

Liu Q, Li J, Pu G, et al. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Deliv. 2016; 23(4):1364-1368. https://doi.org/10.3109/10717544.2015.1031295.

[86]

Xu C, He W, Lv Y, et al. Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity. Int J Pharm. 2015; 493(1-2):172-181. https://doi.org/10.1016/j.ijpharm.2015.07.069.

[87]

Abbad S, Wang C, Waddad AY, et al. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate. Int J Nanomedicine. 2015; 10:305-320. https://doi.org/10.2147/IJN.S73971.

[88]

Wang W, Wang X, Tao F, et al. Fluorinated hyaluronic acid encapsulated perfluorocarbon nanoparticles as tumor-targeted oxygen carriers to enhance radiotherapy. Mol Pharm. 2022; 19(11):3948-3958. https://doi.org/10.1021/acs.molpharmaceut.2c00432.

[89]

Han L, Hu L, Liu F, et al. Redox-sensitive micelles for targeted intracellular delivery and combination chemotherapy of paclitaxel and all-trans-retinoid acid. Asian J Pharm Sci. 2019; 14(5):531-542. https://doi.org/10.1016/j.ajps.2018.08.009.

[90]

Yao J, Zhang L, Zhou J, et al. Efficient simultaneous tumor targeting delivery of all-trans retinoid acid and paclitaxel based on hyaluronic acid-based multifunctional nanocarrier. Mol Pharm. 2013; 10(3):1080-1091. https://doi.org/10.1021/mp3005808.

[91]

Tang L, Zhang A, Mei Y, et al. NIR light-triggered chemo-phototherapy by ICG functionalized MWNTs for synergistic tumor-targeted delivery. Pharmaceutics. 2021; 13(12):2145. https://doi.org/10.3390/pharmaceutics13122145.

[92]

Liu M, Shen S, Wen D, et al. Hierarchical nanoassemblies-assisted combinational delivery of cytotoxic protein and antibiotic for cancer treatment. Nano Lett. 2018; 18(4):2294-2303. https://doi.org/10.1021/acs.nanolett.7b04976.

[93]

Shen S, Xu X, Lin S, et al. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat Nanotechnol. 2021; 16(1):104-113. https://doi.org/10.1038/s41565-020-00793-0.

[94]

Zheng W, Wang C, Ding R, et al. Triptolide-loaded nanoparticles targeting breast cancer in vivo with reduced toxicity. Int J Pharm. 2019;572:118721. https://doi.org/10.1016/j.ijpharm.2019.118721.

[95]

Xi Y, Jiang T, Yu Y, et al. Dual targeting curcumin loaded alendronate-hyaluronan-octadecanoic acid micelles for improving osteosarcoma therapy. Int J Nanomed. 2019; 14:6425-6437. https://doi.org/10.2147/IJN.S211981.

[96]

Zhong Y, Meng F, Zhang W, et al. CD44-targeted vesicles encapsulating granzyme B as artificial killer cells for potent inhibition of human multiple myeloma in mice. J Control Release. 2020; 320:421-430. https://doi.org/10.1016/j.jconrel.2020.02.004.

[97]

Gu Y, Li S, Feng S, et al. Nanomedicine engulfed by macrophages for targeted tumor therapy. Int J Nanomedicine. 2016; 11:4107-4124. https://doi.org/10.2147/IJN.S110146.

[98]

Du J, Wang C, Chen Y, et al. Targeted downregulation of HIF-1α for restraining circulating tumor microemboli mediated metastasis. J Control Release. 2022; 343:457-468. https://doi.org/10.1016/j.jconrel.2022.01.051.

[99]

Tang L, He S, Yin Y, et al. Combination of nanomaterials in cell-based drug delivery systems for cancer treatment. Pharmaceutics. 2021; 13(11):1888. https://doi.org/10.3390/pharmaceutics13111888.

[100]

Li W, Su Z, Hao M, et al. Cytopharmaceuticals: an emerging paradigm for drug delivery. J Control Release. 2020; 328:313-324. https://doi.org/10.1016/j.jconrel.2020.08.063.

[101]

Xie M, Tao L, Zhang Z, et al. Mesenchymal stem cells mediated drug delivery in tumor-targeted therapy. Curr Drug Deliv. 2021; 18(7):876-891. https://doi.org/10.2174/1567201817999200819140912.

[102]

Ying M, Zhuang J, Wei X, et al. Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv Funct Mater. 2018; 28(22):1801032. https://doi.org/10.1002/adfm.201801032.

[103]

Zhang M, Ye JJ, Xia Y, et al. Platelet-mimicking biotaxis targeting vasculature-disrupted tumors for cascade amplification of hypoxia-sensitive therapy. ACS Nano. 2019; 13(12):14230-14240. https://doi.org/10.1021/acsnano.9b07330.

[104]

Hu Q, Qian C, Sun W, et al. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv Mater. 2016; 28(43):9573-9580. https://doi.org/10.1002/adma.201603463.

[105]

Mei D, Gong L, Zou Y, et al. Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemotherapeutical efficacy. J Control Release. 2020; 324:341-353. https://doi.org/10.1016/j.jconrel.2020.05.016.

[106]

Stock W, Hoffman R. White blood cells 1: non-malignant disorders. Lancet. 2000; 355(9212):1351-1357. https://doi.org/10.1016/S0140-6736(00)02125-5.

[107]

Cao H, Dan Z, He X, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano. 2016; 10(8):7738-7748. https://doi.org/10.1021/acsnano.6b03148.

[108]

Zhang Y, Cai K, Li C, et al.Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018; 18(3):1908-1915. https://doi.org/10.1021/acs.nanolett.7b05263.

[109]

Parodi A, Quattrocchi N, Van De Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013; 8(1):61-68. https://doi.org/10.1038/nnano.2012.212.

[110]

Kang T, Zhu Q, Wei D, et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano. 2017; 11(2):1397-1411. https://doi.org/10.1021/acsnano.6b06477.

[111]

Sun H, Su J, Meng Q, et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater. 2016; 28(43):9581-9588. https://doi.org/10.1002/adma.201602173.

[112]

Zhu JY, Zheng DW, Zhang MK, et al. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 2016; 16(9):5895-5901. https://doi.org/10.1021/acs.nanolett.6b02786.

[113]

Shao D, Zhang F, Chen F, et al. Biomimetic diselenide-bridged mesoporous organosilica nanoparticles as an X-ray-responsive biodegradable carrier for chemo-immunotherapy. Adv Mater. 2020; 32(50):2004385. https://doi.org/10.1002/adma.202004385.

[114]

Shair Mohammad I, Chaurasiya B, Yang X, et al. Homotype-targeted biogenic nanoparticles to kill multidrug-resistant cancer cells. Pharmaceutics. 2020; 12(10):950. https://doi.org/10.3390/pharmaceutics12100950.

[115]

Zhang Y, Liao Y, Tang Q, et al. Biomimetic nanoemulsion for synergistic photodynamic immunotherapy against hypoxic breast tumor. Angew Chem Int Edit. 2021; 60(19):10647-10653. https://doi.org/10.1002/anie.202015590.

[116]

Gao C, Lin Z, Jurado-Sánchez B, et al. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small. 2016; 12(30):4056-4062. https://doi.org/10.1002/smll.201600624.

[117]

Wang D, Dong H, Li M, et al. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano. 2018; 12(6):5241-5252. https://doi.org/10.1021/acsnano.7b08355.

[118]

Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020; 20(3):174-186. https://doi.org/10.1038/s41568-019-0238-1.

[119]

Li J, Zhen X, Lyu Y, et al. Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano. 2018; 12(8):8520-8530. https://doi.org/10.1021/acsnano.8b04066.

[120]

Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: an update. J Control Release. 2020; 323:253-268. https://doi.org/10.1016/j.jconrel.2020.04.031.

[121]

Liu W, Zou M, Liu T, et al. Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv Mater. 2019; 31(18):e1900499. https://doi.org/10.1002/adma.201900499.

[122]

Ungvari Z, Tarantini S, Donato AJ, et al.Mechanisms of vascular aging. Circ Res. 2018; 123(7):849-867. https://doi.org/10.1161/CIRCRESAHA.118.311378.

[123]

Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2024; 21(11):780-807. https://doi.org/10.1038/s41569-024-01045-7.

[124]

Tang J, Su T, Huang K, et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat Biomed Eng. 2018; 2:17-26. https://doi.org/10.1038/s41551-017-0182-x.

[125]

Xue Y, Wu Y, Wang Q, et al. Cellular vehicles based on neutrophils enable targeting of atherosclerosis. Mol Pharm. 2019; 16(7):3109-3120. https://doi.org/10.1021/acs.molpharmaceut.9b00342.

[126]

He J, Zhou X, Xu F, et al. Anchoring β-CD on simvastatin-loaded rHDL for selective cholesterol crystals dissolution and enhanced anti-inflammatory effects in macrophage/foam cells. Eur J Pharm Biopharm. 2022; 174:144-154. https://doi.org/10.1016/j.ejpb.2022.04.005.

[127]

Jiang C, Qi Z, He W, et al. Dynamically enhancing plaque targeting via a positive feedback loop using multifunctional biomimetic nanoparticles for plaque regression. J Control Release. 2019; 308:71-85. https://doi.org/10.1016/j.jconrel.2019.07.007.

[128]

Jiang C, Qi Z, Tang Y, et al. Rational design of lovastatin-loaded spherical reconstituted high density lipoprotein for efficient and safe anti-atherosclerotic therapy. Mol Pharm. 2019; 16(7):3284-3291. https://doi.org/10.1021/acs.molpharmaceut.9b00445.

[129]

Wu Y, Zhang Y, Dai L, et al. An apoptotic body-biomimic liposome in situ upregulates anti-inflammatory macrophages for stabilization of atherosclerotic plaques. J Control Release. 2019; 316:236-249. https://doi.org/10.1016/j.jconrel.2019.10.043.

[130]

Zhao Y, Gao H, He J, et al. Co-delivery of LOX-1 siRNA and statin to endothelial cells and macrophages in the atherosclerotic lesions by a dual-targeting core-shell nanoplatform: a dual cell therapy to regress plaques. J Control Release. 2018; 283:241-260. https://doi.org/10.1016/j.jconrel.2018.05.041.

[131]

Storkebaum E, Quaegebeur A, Vikkula M, et al. Cerebrovascular disorders: molecular insights and therapeutic opportunities. Nat Neurosci. 2011; 14(11):1390-1397. https://doi.org/10.1038/nn.2947.

[132]

Bernardo-Castro S, Sousa JA, Brás A, et al. Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol. 2020;11:594672. https://doi.org/10.3389/fneur.2020.594672.

[133]

Dong X, Gao J, Su Y, et al.Nanomedicine for ischemic stroke. Int J Mol Sci. 2020; 21(20):7600. https://doi.org/10.3390/ijms21207600.

[134]

Xu X, Huang X, Zhang Y, et al. Self-regulated hirudin delivery for anticoagulant therapy. Sci Adv. 2020; 6(41):eabc0382. https://doi.org/10.1126/sciadv.abc0382.

[135]

Xu J, Zhang Y, Xu J, et al. Engineered nanoplatelets for targeted delivery of plasminogen activators to reverse thrombus in multiple mouse thrombosis models. Adv Mater. 2020; 32(4):1905145. https://doi.org/10.1002/adma.201905145.

[136]

Meng F, Asghar S, Xu Y, et al. Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting. Int J Pharm. 2016; 506(1-2):46-56. https://doi.org/10.1016/j.ijpharm.2016.04.033.

[137]

Wang K, Zhao B, Ao Y, et al. Super-small zwitterionic micelles enable the improvement of blood-brain barrier crossing for efficient orthotopic glioblastoma combinational therapy. J Control Release. 2023; 364:261-271. https://doi.org/10.1016/j.jconrel.2023.10.019.

[138]

Han D, Wang M, Dong N, et al. Selective homing of brain-derived reconstituted lipid nanoparticles to cerebral ischemic area enables improved ischemic stroke treatment. J Control Release. 2024; 365:957-968. https://doi.org/10.1016/j.jconrel.2023.12.020.

[139]

Wang X, Zhang Q, Lv L, et al. Glioma and microenvironment dual targeted nanocarrier for improved antiglioblastoma efficacy. Drug Deliv. 2017; 24(1):1401-1409. https://doi.org/10.1080/10717544.2017.1378940.

[140]

Wu J, Zhao J, Zhang B, et al. Polyethylene glycol-polylactic acid nanoparticles modified with cysteine-arginine-glutamic acid-lysine-alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect. Int J Nanomed. 2014; 9:5261-5271. https://doi.org/10.2147/IJN.S72649.

[141]

Su Z, Xing L, Chen Y, et al. Lactoferrin-modified poly(ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas. Mol Pharm. 2014; 11(6):1823-1834. https://doi.org/10.1021/mp500238m.

[142]

Zhou M, Wu Y, Sun M, et al. Spatiotemporally sequential delivery of biomimetic liposomes potentiates glioma chemotherapy. J Control Release. 2024; 365:876-888. https://doi.org/10.1016/j.jconrel.2023.11.046.

[143]

Yang H, Mu W, Wei D, et al. A novel targeted and high-efficiency nanosystem for combinational therapy for Alzheimer’s disease. Adv Sci. 2020; 7(19):1902906. https://doi.org/10.1002/advs.201902906.

[144]

Guo Q, Xu S, Yang P, et al. A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer’s disease mice. J Control Release. 2020; 320:347-362. https://doi.org/10.1016/j.jconrel.2020.01.039.

[145]

Schmidt MF, Gan ZY, Komander D, et al. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ. 2021; 28(2):570-590. https://doi.org/10.1038/s41418-020-00706-7.

[146]

Mogharbel BF, Cardoso MA, Irioda AC, et al. Biodegradable nanoparticles loaded with levodopa and curcumin for treatment of Parkinson’s disease. Molecules. 2022; 27(9):2811. https://doi.org/10.3390/molecules27092811.

[147]

Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour-targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015; 14(11):781-803. https://doi.org/10.1038/nrd4608.

[148]

Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. Nat Rev Mater. 2019; 4(6):415-428. https://doi.org/10.1038/s41578-019-0110-7.

[149]

Peng X, Wang J, Zhou F, et al. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci. 2021; 78(12):5139-5161. https://doi.org/10.1007/s00018-021-03842-6.

[150]

Liu M, Feng Y, Lu Y, et al. Lymph-targeted high-density lipoprotein-mimetic nanovaccine for multi-antigenic personalized cancer immunotherapy. Sci Adv. 2024; 10(11):eadk2444. https://doi.org/10.1126/sciadv.adk2444.

[151]

Chen M, Amerigos J C KD, Su Z, et al. Folate receptor-targeting and reactive oxygen species-responsive liposomal formulation of methotrexate for treatment of rheumatoid arthritis. Pharmaceutics. 2019; 11(11):582. https://doi.org/10.3390/pharmaceutics11110582.

[152]

Asifullah K, Zhou Z, He W, et al. CXCR4-receptor-targeted liposomes for the treatment of peritoneal fibrosis. Mol Pharm. 2019; 16(6):2728-2741. https://doi.org/10.1021/acs.molpharmaceut.9b00266.

[153]

Adiseshaiah PP, Crist RM, Hook SS, et al. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol. 2016; 13(12):750-765. https://doi.org/10.1038/nrclinonc.2016.119.

[154]

Zhang X, Kang Y, Wang J, et al. Engineered PD-L1-expressing platelets reverse new-onset type 1 diabetes. Adv Mater. 2020; 32(26):1907692. https://doi.org/10.1002/adma.201907692.

[155]

Tan P, Chen X, Zhang H, et al. Artificial intelligence aids in development of nanomedicines for cancer management. Semin Cancer Biol. 2023; 89:61-75. https://doi.org/10.1016/j.semcancer.2023.01.005.

[156]

Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014; 13(11):813-827. https://doi.org/10.1038/nrd4333.

[157]

Mura S, Nicolas J, Couvreur P.Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013; 12(11):991-1003. https://doi.org/10.1038/nmat3776.

[158]

Zeng J, Sun P, Fang X, et al. “Shell-core” bilayer nanoparticle as chemotherapeutic drug co-delivery platforms render synchronized microenvironment respond and enhanced antitumor effects. Int J Nanomedicine. 2023; 18:1521-1536. https://doi.org/10.2147/IJN.S401038.

[159]

Sang MM, Liu FL, Wang Y, et al. A novel redox/pH dual-responsive and hyaluronic acid-decorated multifunctional magnetic complex micelle for targeted gambogic acid delivery for the treatment of triple negative breast cancer. Drug Deliv. 2018; 25(1):1846-1857. https://doi.org/10.1080/10717544.2018.1486472.

[160]

Xiong H, Wang C, Wang Z, et al. Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop. J Control Release. 2021; 332:539-552. https://doi.org/10.1016/j.jconrel.2021.03.007.

[161]

Zhang Z, Zhang J, Jiang M, et al. Human serum albumin-based dual-agent delivery systems for combination therapy: acting against cancer cells and inhibiting neovascularization in the tumor microenvironment. Mol Pharm. 2020; 17(4):1405-1414. https://doi.org/10.1021/acs.molpharmaceut.0c00133.

[162]

He Y, Su Z, Xue L, et al. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J Control Release. 2016; 229:80-92. https://doi.org/10.1016/j.jconrel.2016.03.001.

[163]

Song M, Xia W, Tao Z, et al. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. Drug Deliv. 2021; 28(1):594-606. https://doi.org/10.1080/10717544.2021.1898703.

[164]

Guissi NEI, Li H, Xu Y, et al. Mitoxantrone-and folate-TPGS2k conjugate hybrid micellar aggregates to circumvent toxicity and enhance efficiency for breast cancer therapy. Mol Pharm. 2017; 14(4):1082-1094. https://doi.org/10.1021/acs.molpharmaceut.6b01009.

[165]

Deng Y, Jiang Z, Jin Y, et al. Reinforcing vascular normalization therapy with a bi-directional nano-system to achieve therapeutic-friendly tumor microenvironment. J Control Release. 2021; 340:87-101. https://doi.org/10.1016/j.jconrel.2021.10.016.

[166]

Du X, Zhang T, Ma G, et al. Glucose-responsive mesoporous silica nanoparticles to generation of hydrogen peroxide for synergistic cancer starvation and chemistry therapy. Int J Nanomed. 2019; 14:2233-2251. https://doi.org/10.2147/IJN.S195900.

[167]

Jin X, Zhou J, Zhang Z, et al. Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment. Int J Pharm. 2019;571:118751. https://doi.org/10.1016/j.ijpharm.2019.118751.

[168]

Tang B, Zaro JL, Shen Y, et al. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J Control Release. 2018; 279:147-156. https://doi.org/10.1016/j.jconrel.2018.04.016.

[169]

Li M, Chen H, Peng D, et al. FU-coating pH-sensitive liposomes for improving the release of gemcitabine by endosome escape in pancreatic cancer cells. J Drug Deliv Sci Tec. 2023;80:104135. https://doi.org/10.1016/j.jddst.2022.104135.

[170]

Huo M, Zhou J, Wang H, et al. A pHe sensitive nanodrug for collaborative penetration and inhibition of metastatic tumors. J Control Release. 2022; 352:893-908. https://doi.org/10.1016/j.jconrel.2022.11.012.

[171]

Li J, Yin T, Wang L, et al. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel. Int J Pharm. 2015; 483(1-2):38-48. https://doi.org/10.1016/j.ijpharm.2015.02.002.

[172]

Mezghrani O, Tang Y, Ke X, et al. Hepatocellular carcinoma dually-targeted nanoparticles for reduction triggered intracellular delivery of doxorubicin. Int J Pharm. 2015; 478(2):553-568. https://doi.org/10.1016/j.ijpharm.2014.10.041.

[173]

Du Y, Wang S, Zhang T, et al. Enhanced cytotoxicity of a redox-sensitive hyaluronic acid-based nanomedicine toward different oncocytes via various internalization mechanisms. Drug Deliv. 2020; 27(1):128-136. https://doi.org/10.1080/10717544.2019.1709919.

[174]

Xu W, Wang H, Dong L, et al. Hyaluronic acid-decorated redox-sensitive chitosan micelles for tumor-specific intracellular delivery of gambogic acid. Int J Nanomed. 2019; 14:4649-4666. https://doi.org/10.2147/IJN.S201110.

[175]

Hu D, Mezghrani O, Zhang L, et al. GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy. Int J Nanomed. 2016; 11:5125-5147. https://doi.org/10.2147/IJN.S113469.

[176]

Song Y, Cai H, Yin T, et al. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Int J Nanomed. 2018; 13:1585-1600. https://doi.org/10.2147/IJN.S155383.

[177]

Huo M, Wang H, Li L, et al. Redox-sensitive hyaluronic acid-cholesterol nanovehicles potentiate efficient transmembrane internalization and controlled release for penetrated “full-line” inhibition of pre-metastatic initiation. J Control Release. 2021; 336:89-104. https://doi.org/10.1016/j.jconrel.2021.06.013.

[178]

Yin T, Liu J, Zhao Z, et al. Smart nanoparticles with a detachable outer shell for maximized synergistic antitumor efficacy of therapeutics with varying physicochemical properties. J Control Release. 2016; 243:54-68. https://doi.org/10.1016/j.jconrel.2016.09.036.

[179]

Su Z, Chen M, Xiao Y, et al. ROS-triggered and regenerating anticancer nanosystem: an effective strategy to subdue tumor’s multidrug resistance. J Control Release. 2014; 196:370-383. https://doi.org/10.1016/j.jconrel.2014.09.020.

[180]

Zheng Z, Peng D, Li M, et al. Gemcitabine and Pin 1 siRNA co-delivery with fucoidan-coated nano-liposomes for therapy of pancreatic cancer. J Drug Deliv Sci Tec. 2023;87:104872. https://doi.org/10.1016/j.jddst.2023.104872.

[181]

Wang Q, Dong Z, Lou F, et al. Phenylboronic ester-modified polymeric nanoparticles for promoting TRP2 peptide antigen delivery in cancer immunotherapy. Drug Deliv. 2022; 29(1):2029-2043. https://doi.org/10.1080/10717544.2022.2086941.

[182]

Wang QY, Xu YS, Zhang NX, et al. Phenylboronic ester-modified anionic micelles for ROS-stimuli response in HeLa cell. Drug Deliv. 2020; 27(1):681-690. https://doi.org/10.1080/10717544.2020.1748761.

[183]

Shi Q, Tong Y, Zheng Y, et al. PDT-sensitized ROS-responsive dextran nanosystem for maximizing antitumor potency of multi-target drugs. Int J Pharm. 2023;633:122567. https://doi.org/10.1016/j.ijpharm.2022.122567.

[184]

Luo CQ, Zhou YX, Zhou TJ, et al. Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy. J Control Release. 2018; 274:56-68. https://doi.org/10.1016/j.jconrel.2018.01.034.

[185]

Ni R, Huang L, Li Z, et al. Multifunctional ROS-responsive and TME-modulated lipid-polymer hybrid nanoparticles for enhanced tumor penetration. Int J Nanomed. 2022; 17:5883-5897. https://doi.org/10.2147/IJN.S383517.

[186]

Dong Q, Zhang H, Han Y, et al. Tumor environment differentiated “nanodepot” programmed for site-specific drug shuttling and combinative therapy on metastatic cancer. J Control Release. 2018; 283:59-75. https://doi.org/10.1016/j.jconrel.2018.05.027.

[187]

Luo K, Yin S, Zhang R, et al. Multifunctional composite nanoparticles based on hyaluronic acid-paclitaxel conjugates for enhanced cancer therapy. Int J Pharm. 2020;589:119870. https://doi.org/10.1016/j.ijpharm.2020.119870.

[188]

Ma G, Du X, Zhu J, et al. Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. J Drug Deliv Sci Tec. 2021;63:102493. https://doi.org/10.1016/j.jddst.2021.102493.

[189]

Wu C, Wang Z, Wang X, et al. Morphology/interstitial fluid pressure-tunable nanopomegranate designed by alteration of membrane fluidity under tumor enzyme and pegylation. Mol Pharm. 2021; 18(5):2039-2052. https://doi.org/10.1021/acs.molpharmaceut.1c00036.

[190]

Zhang K, Li J, Xin X, et al. Dual targeting of cancer cells and MMPs with self-assembly hybrid nanoparticles for combination therapy in combating cancer. Pharmaceutics. 2021; 13(12):1990. https://doi.org/10.3390/pharmaceutics13121990.

[191]

Zhang F, Fei J, Sun M, et al. Heparin modification enhances the delivery and tumor targeting of paclitaxel-loaded N-octyl-N-trimethyl chitosan micelles. Int J Pharm. 2016; 511(1):390-402. https://doi.org/10.1016/j.ijpharm.2016.07.020.

[192]

Zhou A, Du J, Jiao M, et al. Co-delivery of TRAIL and siHSP70 using hierarchically modular assembly formulations achieves enhanced TRAIL-resistant cancer therapy. J Control Release. 2019; 304:111-124. https://doi.org/10.1016/j.jconrel.2019.05.013.

[193]

Jin Y, Wu Z, Wu C, et al. Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity. J Control Release. 2020; 320:142-158. https://doi.org/10.1016/j.jconrel.2020.01.040.

[194]

Tang M, Chen B, Xia H, et al. pH-gated nanoparticles selectively regulate lysosomal function of tumour-associated macrophages for cancer immunotherapy. Nat Commun. 2023; 14(1):5888. https://doi.org/10.1038/s41467-023-41592-0.

[195]

Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev. 2012; 64(11):1005-1020. https://doi.org/10.1016/j.addr.2012.02.006.

[196]

Zhang Y, Zhang Y, Song G, et al. A DNA-azobenzene nanopump fueled by upconversion luminescence for controllable intracellular drug release. Angew Chem Int Edit. 2019; 58(50):18207-18211. https://doi.org/10.1002/anie.201909870.

[197]

Luo L, Guo Y, Yang J, et al. An efficient visible light controlled protein delivery system. Chem Commun. 2011; 47(40):11243. https://doi.org/10.1039/c1cc14100g.

[198]

Zhou TJ, Xing L, Fan YT, et al. Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy. J Control Release. 2019; 307:44-54. https://doi.org/10.1016/j.jconrel.2019.06.016.

[199]

Liu Y, Qi Y, Chen C, et al. Platelet-mimetic nano-sensor for combating postoperative recurrence and wound infection of triple-negative breast cancer. J Control Release. 2023; 362:396-408. https://doi.org/10.1016/j.jconrel.2023.08.057.

[200]

Gao J, Jiang X, Lei S, et al. A region-confined PROTAC nanoplatform for spatiotemporally tunable protein degradation and enhanced cancer therapy. Nat Commun. 2024; 15(1):6608. https://doi.org/10.1038/s41467-024-50735-w.

[201]

Xing L, Liu XY, Zhou TJ, et al. Photothermal nanozyme-ignited Fenton reaction-independent ferroptosis for breast cancer therapy. J Control Release. 2021; 339:14-26. https://doi.org/10.1016/j.jconrel.2021.09.019.

[202]

Li H, Yang X, Zhou Z, et al. Near-infrared light-triggered drug release from a multiple lipid carrier complex using an all-in-one strategy. J Control Release. 2017; 261:126-137. https://doi.org/10.1016/j.jconrel.2017.06.029.

[203]

Xiong H, Wang C, Wang Z, et al. Intracellular cascade activated nanosystem for improving ER+breast cancer therapy through attacking GSH-mediated metabolic vulnerability. J Control Release. 2019; 309:145-157. https://doi.org/10.1016/j.jconrel.2019.07.029.

[204]

Li B, Jiang Z, Xie D, et al. Cetuximab-modified CuS nanoparticles integrating near-infrared-II-responsive photothermal therapy and anti-vessel treatment. Int J Nanomed. 2018; 13:7289-7302. https://doi.org/10.2147/IJN.S175334.

[205]

Zhang C, Li J, Qian C, et al. A multifunctional ternary Cu(II)-carboxylate coordination polymeric nanocomplex for cancer thermochemotherapy. Int J Pharm. 2018; 549(1-2):1-12. https://doi.org/10.1016/j.ijpharm.2018.06.048.

[206]

Kim YJ, Matsunaga YT. Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B. 2017; 5(23):4307-4321. https://doi.org/10.1039/C7TB00157F.

[207]

Zhu Y, Batchelor R, Lowe AB, et al. Design of thermoresponsive polymers with aqueous LCST, UCST, or both: modification of a reactive poly(2-vinyl-4, 4-dimethylazlactone) scaffold. Macromolecules. 2016; 49(2):672-680. https://doi.org/10.1021/acs.macromol.5b02056.

[208]

Schattling P, Jochum FD, Theato P.Multi-stimuli responsive polymers-the all-in-one talents. Polym Chem. 2014; 5(1):25-36. https://doi.org/10.1039/C3PY00880K.

[209]

Hoffman AS. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013; 65(1):10-16. https://doi.org/10.1016/j.addr.2012.11.004.

[210]

Glatzel S, Laschewsky A, Lutz JF. Well-defined uncharged polymers with a sharp UCST in water and in physiological milieu. Macromolecules. 2011; 44(2):413-415. https://doi.org/10.1021/ma102677k.

[211]

Fagnani DE, Tami JL, Copley G, et al. 100th anniversary of macromolecular science viewpoint: redefining sustainable polymers. ACS Macro Lett. 2021; 10(1):41-53. https://doi.org/10.1021/acsmacrolett.0c00789.

[212]

Akimoto J, Nakayama M, Sakai K, et al. Thermally controlled intracellular uptake system of polymeric micelles possessing poly(N-isopropylacrylamide)-based outer coronas. Mol Pharm. 2010; 7(4):926-935. https://doi.org/10.1021/mp100021c.

[213]

Panja S, Dey G, Bharti R, et al. Tailor-made temperature-sensitive micelle for targeted and on-demand release of anticancer drugs. Acs Appl Mater Interfaces. 2016; 8(19):12063-12074. https://doi.org/10.1021/acsami.6b03820.

[214]

Mazzotta E, Tavano L, Muzzalupo R. Thermo-sensitive vesicles in controlled drug delivery for chemotherapy. Pharmaceutics. 2018; 10(3):150. https://doi.org/10.3390/pharmaceutics10030150.

[215]

Ta T, Convertine AJ, Reyes CR, et al. Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules. 2010; 11(8):1915-1920. https://doi.org/10.1021/bm1004993.

[216]

Zhang H, Wang Z, Gong W, et al. Development and characteristics of temperature-sensitive liposomes for vinorelbine bitartrate. Int J Pharm. 2011; 414(1-2):56-62. https://doi.org/10.1016/j.ijpharm.2011.05.013.

[217]

Tian J, Yan C, Liu K, et al. Paclitaxel-loaded magnetic nanoparticles: synthesis, characterization, and application in targeting. J Pharm Sci. 2017; 106(8):2115-2122. https://doi.org/10.1016/j.xphs.2017.04.023.

[218]

Zheng C, Ding Y, Liu X, et al. Highly magneto-responsive multilayer microcapsules for controlled release of insulin. Int J Pharm. 2014; 475(1-2):17-24. https://doi.org/10.1016/j.ijpharm.2014.08.042.

[219]

Dorjsuren B, Chaurasiya B, Ye Z, et al. Cetuximab-coated thermo-sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-expressing breast cancer combined therapy. Int J Nanomed. 2020; 15:8201-8215. https://doi.org/10.2147/IJN.S261671.

[220]

Cheng R, Meng F, Deng C, et al. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013; 34(14):3647-3657. https://doi.org/10.1016/j.biomaterials.2013.01.084.

[221]

Li HJ, Du JZ, Liu J, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano. 2016; 10(7):6753-6761. https://doi.org/10.1021/acsnano.6b02326.

[222]

Ruan S, Cao X, Cun X, et al. Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials. 2015; 60:100-110. https://doi.org/10.1016/j.biomaterials.2015.05.006.

[223]

Li HJ, Du JZ, Du XJ, et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc Natl Acad Sci USA. 2016; 113(15):4164-4169. https://doi.org/10.1073/pnas.1522080113.

[224]

Kalafatovic D, Nobis M, Son J, et al. MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth. Biomaterials. 2016; 98:192-202. https://doi.org/10.1016/j.biomaterials.2016.04.039.

[225]

Espelin CW, Leonard SC, Geretti E, et al. Dual HER2 targeting with trastuzumab and liposomal-encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer. Cancer Res. 2016; 76(6):1517-1527. https://doi.org/10.1158/0008-5472.CAN-15-1518.

[226]

Hrkach J, Von Hoff D, Mukkaram Ali M, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012; 4(128):128ra39. https://doi.org/10.1126/scitranslmed.3003651.

[227]

Miller K, Cortes J, Hurvitz SA, et al. HERMIONE: a randomized phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer. 2016; 16(1):352. https://doi.org/10.1186/s12885-016-2385-z.

[228]

He H, Liu L, Morin EE, et al. Survey of clinical translation of cancer nanomedicines-lessons learned from successes and failures. Acc Chem Res. 2019; 52(9):2445-2461. https://doi.org/10.1021/acs.accounts.9b00228.

[229]

Valencia PM, Farokhzad OC, Karnik R, et al. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012; 7(10):623-629. https://doi.org/10.1038/nnano.2012.168.

[230]

Jain K, Shukla R, Yadav A, et al. 3D printing in development of nanomedicines. Nanomaterials. 2021; 11(2):420. https://doi.org/10.3390/nano11020420.

PDF (6786KB)

86

Accesses

0

Citation

Detail

Sections
Recommended

/