New diterpenoids from Euphorbia wallichii with antioxidant activity

Yali Wang , Juan Chen , Wenshuo Zheng , Ziyan Gao , Yuxin Gan , Hua Li , Lixia Chen

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) : 1248 -1258.

PDF (5461KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) :1248 -1258. DOI: 10.1016/S1875-5364(25)60859-4
Original article
research-article

New diterpenoids from Euphorbia wallichii with antioxidant activity

Author information +
History +
PDF (5461KB)

Abstract

Thirteen novel diterpenoids, comprising seven tiglianes (walliglianes G−M, 17), four rhamnofolanes (wallinofolanes A−D, 811), and two daphnanes (wallaphnanes A and B, 12 and 13), together with two known rhamnofolane diterpenoids (euphorwallside H and euphorwallside I, 14 and 15), were isolated and characterized from Euphorbia wallichii (E. wallichii).The chemical structures of these compounds were elucidated through nuclear magnetic resonance (NMR), mass spectrometry (MS), and quantum chemical calculations. Compounds 9 and 11 demonstrated protective effects against H2O2-induced BV-2 microglial cell damage.Molecular docking analyses indicated that compound 9 exhibited binding affinity to the antioxidant-related targets HMGCR, GSTP1, and SHBG.

Keywords

Euphorbia wallichii / Tiglianes / Rhamnofolanes / Daphnanes / Antioxidant activity

Cite this article

Download citation ▾
Yali Wang, Juan Chen, Wenshuo Zheng, Ziyan Gao, Yuxin Gan, Hua Li, Lixia Chen. New diterpenoids from Euphorbia wallichii with antioxidant activity. Chinese Journal of Natural Medicines, 2025, 23(10): 1248-1258 DOI:10.1016/S1875-5364(25)60859-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vasas A, Hohmann J.Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008-2012). Chem Rev.2014, 114: 8579-8612. https://doi.org/10.1021/cr400541j.

[2]

Zhan ZJ, Li S, Chu W, et al.Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013-2021). Nat Prod Rep.2022, 39: 2132-2174. https://doi.org/10.1039/D2NP00047D.

[3]

Du KC, Yang XY, Li JH, et al. Antiproliferative diterpenoids and acetophenone glycoside from the roots of Euphorbia fischeriana. Phytochemistry, 2020, 177: 112437. https://doi.org/10.1016/j.phytochem.2020.112437.

[4]

Pan LL, Fang PL, Zhang XJ, et al. Tigliane-type diterpenoid glycosides from Euphorbia fischeriana. J Nat Prod, 2011, 74: 1508-1512. https://doi.org/10.1021/np200058c.

[5]

Wei YL, Yu ZL, Huo XK, et al. Diterpenoids from the roots of Euphorbia fischeriana and their inhibitory effects on α-glucosidase. J Asian Nat Prod Res. 2018, 20:977-984. https://doi.org/10.1080/10286020.2017.1367923.

[6]

Yuan FY, Tang ZY, Huang D, et al. Tigliane and rhamnofolane glycosides from Euphorbia wallichii prevent oxidative stress-induced neuronal death in PC-12 cells. Bioorg Chem. 2022, 128: 106103. https://doi.org/10.1016/j.bioorg.2022.106103.

[7]

Li H, Wei WY, Xu HX. Drug discovery is an eternal challenge for the biomedical sciences. Acta Mater Med. 2022, 1: 1-3. https://doi.org/10.15212/AMM-2022-1001.

[8]

Pan L, Zhou P, Zhang X, et al. Skeleton-rearranged pentacyclic diterpenoids possessing a cyclobutane ring from Euphorbia wallichii. Org Lett, 2006, 8: 2775-2778. https://doi.org/10.1021/ol0608552.

[9]

Li H, Yang P, Zhang EH, et al. Antimicrobial ent-abietane-type diterpenoids from the roots of Euphorbia wallichii. J Asian Nat Prod Res, 2021, 23: 652-659. https://doi.org/10.1080/10286020.2020.1758931.

[10]

Wan LS, Nian Y, Peng XR, et al. Pepluanols C-D, two diterpenoids with two skeletons from Euphorbia peplus. Org Lett. 2018, 20: 3074-3078. https://doi.org/10.1021/acs.orglett.8b01114.

[11]

Yang DS, Peng WB, Yang YP, et al. Chemical constituents from Euphorbia wallichii and their biological activities. J Asian Nat Prod Res. 2015, 17: 946-951. https://doi.org/10.1080/10286020.2015.1038525.

[12]

Wang YL, Zhu M, Liang J, et al. Diterpenoids from the whole plant of Euphorbia wallichii and their protective effects on H2O2-induced BV-2 microglial cells injury. Bioorg Chem. 2022, 128: 106067. https://doi.org/10.1016/j.bioorg.2022.106067.

[13]

Wang YL, Wang H, Leng YX, et al.Structurally intriguing diterpenoids from Euphorbia wallichii Hook. f. with potential antioxidant activity. Phytochemistry. 2024, 221: 114043. https://doi.org/10.1016/j.phytochem.2024.

[14]

Dou WT, Hao YP, Liu JL, et al. Two novel phorbol esters from Croton tiglium L. J Chin Pharm Sci. 2016, 25: 771-778. https://doi.org/10.5246/jcps.2016.10.086.

[15]

Wang X, Shen YH, Wang SW, et al.PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res.2017, 45: 356-360. https://doi.org/10.1093/nar/gkx374.

[16]

Wang YL, Jiang QH, Sun DJ, et al. Ent-kauranes and ent-atisanes from Euphorbia wallichii and their anti-inflammatory activity. Phytochemistry. 2023, 210: 113643. https://doi.org/10.1016/j.phytochem.2023.113643.

[17]

Lu T, Chen FW.Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012, 33: 580-592. https://doi.org/10.1002/jcc.22885.

[18]

Smith SG, Goodman JM. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J Am Chem Soc. 2010, 132: 12946-12959. https://doi.org/10.1021/ja105035r.

PDF (5461KB)

73

Accesses

0

Citation

Detail

Sections
Recommended

/