Cytotoxic anthrone-cyclopentenone heterodimers from the fungus Penicillium sp. guided by molecular networking

Ruiyun Huo , Jiayu Dong , Gaoran Liu , Ying Shi , Ling Liu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) : 1259 -1267.

PDF (5309KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (10) :1259 -1267. DOI: 10.1016/S1875-5364(25)60858-2
Original article
research-article

Cytotoxic anthrone-cyclopentenone heterodimers from the fungus Penicillium sp. guided by molecular networking

Author information +
History +
PDF (5309KB)

Abstract

(±)-Penicithrones A-D (1a/1b-4a/4b), four novel pairs of anthrone-cyclopentenone heterodimers characterized by a distinctive bridged 6/6/6−5 tetracyclic core skeleton, together with three previously identified compounds (5-7), were isolated from the crude extract of the mangrove-derived fungus Penicillium sp., guided by heteronuclear single quantum correlation (HSQC)-based small molecule accurate recognition technology (SMART 2.0) and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based molecular networking. The structural elucidation of new compounds was accomplished through comprehensive spectroscopic analysis, and their absolute configurations were determined using DP4+ 13C nuclear magnetic resonance (NMR) calculations and electronic circular dichroism (ECD) calculations. Compounds 1a/1b-4a/4b demonstrated moderate cytotoxicity against three human cancer cell lines HeLa, HCT116 and MCF-7 with half maximal inhibitory concentration (IC50) values ranging from 15.95 ± 1.64 to 28.56 ± 2.59 μmol·L-1.

Keywords

Mangrove-derived fungi / Molecular networking / HSQC-based SMART / Structure elucidation / DP4+ 13C NMR calculation / Cytotoxic activity

Cite this article

Download citation ▾
Ruiyun Huo, Jiayu Dong, Gaoran Liu, Ying Shi, Ling Liu. Cytotoxic anthrone-cyclopentenone heterodimers from the fungus Penicillium sp. guided by molecular networking. Chinese Journal of Natural Medicines, 2025, 23(10): 1259-1267 DOI:10.1016/S1875-5364(25)60858-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo ZW, Yin FC, Wang XB, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[2]

Shi Y, Ji MH, Dong JY, et al. New bioactive secondary metabolites from fungi: 2023. Mycology. 2024; 15(3):283-321. https://doi.org/10.1080/21501203.2024.2354302.

[3]

David JN, Gordon MC.Natural products as sources of new drugs over the nearly four decades from 01/ 1981 to 09/2019. J Nat Prod.2020; 83(3):770-803. https://doi.org/10.1021/acs.jnatprod.9b01285.

[4]

Du L, Zhu T, Fang Y, et al. Aspergiolide A, a novel anthraquinone derivative with naphtho [1,2,3-de] chromene-2, 7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron. 2007; 63(5):1085-1088. https://doi.org/10.1016/j.tet.2006.11.074.

[5]

Chen GD, Bao YR, Huang YF, et al. Three pairs of variecolortide enantiomers from Eurotium sp. with caspase-3 inhibitory activity. Fitoterapia. 2014; 92:252-259. https://doi.org/10.1016/j.fitote.2013.11.012.

[6]

Zhong WM, Wang JF, Wei XY, et al. Variecolortins A-C, three pairs of spirocyclic diketopiperazine enantiomers from the marine-derived fungus Eurotium sp. SCSIO F452. Org Lett. 2018; 20(15):4593-4596. https://doi.org/10.1021/acs.orglett.8b01880.

[7]

Anisha C, Sachidanandan P, Radhakrishnan EK. Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. displays broad-spectrum antimicrobial activity by production of danthron. Curr Microbiol. 2018; 75(3):343-352. https://doi.org/10.1007/s00284-017-1387-7.

[8]

Elbanna AH, Khalil ZG, Bernhardt PV, et al. Neobulgarones revisited: anti and syn bianthrones from an Australian mud dauber wasp nest-associated fungus, Penicillium sp. CMB-MD22. J Nat Prod. 2021; 84(3):762-770. https://doi.org/10.1021/acs.jnatprod.0c01035.

[9]

Han YB, Bai W, Ding CX, et al. Intertwined biosynthesis of skyrin and rugulosin A underlies the formation of cage-structured bsanthraquinones. J Am Chem Soc. 2021; 143(35):14218-14226. https://doi.org/10.1021/jacs.1c05421.

[10]

Morehouse NJ, Flewelling AJ, Johnson JA, et al. Halogenated bianthrones from Penicillium roseopurpureum: a fungal endophyte of the marine alga Petalonia fascia. Nat Prod Commun. 2020; 15(1):1-4. https://doi.org/10.1177/1934578x20901405.

[11]

Petersen C, Sørensen T, Nielsen MR, et al. Comparative genomic study of the Penicillium genus elucidates a diverse pangenome and 15 lateral gene transfer events. IMA Fungus. 2023; 14(1):3. https://doi.org/10.1186/s43008-023-00108-7.

[12]

Houbraken J, Kocsubé S, Visagie CM, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol. 2020; 95:5-169. https://doi.org/10.1016/j.simyco.2020.05.002.

[13]

Li HL, Xu R, Li XM, et al. Simpterpenoid A, a meroterpenoid with a highly functionalized cyclohexadiene moiety featuring gem-propane-1,2-dione and methylformate groups, from the mangrove-derived Penicillium simplicissimum MA-332. Org Lett. 2018; 20(5):1465-1468. https://doi.org/10.1021/acs.orglett.8b00327.

[14]

Li HT, Yang RN, Xie F, et al. Multioxidized polyketides from an endophytic Penicillium sp. YUD17006 associated with Gastrodia elata. Chin J Nat Med. 2024; 22(11):1057-1064. https://doi.org/10.1016/S1875-5364(24)60724-7.

[15]

Meng LH, Wang CY, Mándi A, et al. Three diketopiperazine alkaloids with spirocyclic skeletons and one bisthiodiketopiperazine derivative from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Org Lett. 2016; 18(20):5304-5307. https://doi.org/10.1021/acs.orglett.6b02620.

[16]

Zhang X, Yin Q, Li X, et al. Structures and bioactivities of secondary metabolites from Penicillium genus since 2010. Fitoterapia. 2022;163:105349. https://doi.org/10.1016/j.fitote.2022.105349.

[17]

Qiu P, Cai RL, Lin L, et al. Three new isocoumarin derivatives from the mangrove endophytic fungus Penicillium sp. YYSJ-3. Chin J Nat Med. 2020; 18(4):256-260. https://doi.org/10.1016/S1875-5364(20)30031-5.

[18]

Liu S, Su M, Song SJ, et al. An anti-inflammatory PPAR-γ agonist from the jellyfish-derived fungus Penicillium chrysogenum J08NF-4. J Nat Prod. 2018; 81(2):356-363. https://doi.org/10.1021/acs.jnatprod.7b00846.

[19]

Cheng X, Liang X, Zheng ZH, et al. Penicimeroterpenoids A-C, meroterpenoids with rearrangement skeletons from the marine-derived fungus Penicillium sp. SCSIO 41512. Org. Lett. 2022; 22(16):6330-6333. https://doi.org/10.1021/acs.orglett.0c02160.

[20]

Carroll AR, Copp BR, Grkovic T, et al. Marine natural products. Nat Prod Rep. 2024; 41(2):162-207. https://doi.org/10.1039/d3np00061c.

[21]

Chen SH, Cai RL, Liu ZM, et al. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep. 2022; 39(3):560-595. https://doi.org/10.1039/d1np00041a.

[22]

Zhu JJ, Huang QS, Liu SQ, et al. Four new diphenyl ether derivatives from a mangrove endophytic fungus Epicoccum sorghinum. Chin J Nat Med. 2022; 20(7):537-540. https://doi.org/10.1016/S1875-5364(22)60171-7.

[23]

Lu PY, Shi Y, Zhang JX, et al. New prenylated indole-benzodiazepine-2, 5-diones with α-glucosidase inhibitory activities from the mangrove-derived Aspergillus spinosus. Int J Biol Macromol. 2024;257:128808. https://doi.org/10.1016/j.ijbiomac.2023.128808.

[24]

Huo RY, Zhang JX, Niu SB, et al. New prenylated indole diketopiperazine alkaloids and polyketides from the mangrove-derived fungus Penicillium sp. Front Mar Sci. 2022;9:1097594 https://doi.org/10.3389/fmars.2022.1097594.

[25]

Shi Y, Sun XQ, Zhang JX, et al. New cytotoxic γ-Lactam alkaloids from the mangrove-derived fungus Talaromyces hainanensis sp. nov. guided by molecular networking strategy. J Agric Food Chem. 2024; 72(31):17431-17443. https://doi.org/10.1021/acs.jafc.4c03959.

[26]

Reher R, Kim HW, Zhang C, et al. A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products. J Am Chem Soc. 2020; 142(9):4114-4120. https://doi.org/10.1021/jacs.9b13786.

[27]

Watrous J, Roach P, Alexandrov T, et al. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA. 2012; 109(26):E1743-E1752. https://doi.org/10.1073/pnas.1203689109.

[28]

Liang JL, Cha HC, Lee SH, et al. A facile synthesis of emodin derivatives, emodin carbaldehyde, citreorosein, and their 10-deoxygenated derivatives and their inhibitory activities on µ-calpain. Arch Pharm Res. 2012; 35(3):447-454. https://doi.org/10.1007/s12272-012-0307-4.

[29]

Yamamoto Y, Kiriyama N, Arahata S. Studies on the metabolic products of Aspergillus fumigatus (J-4) chemical structure of metabolic products. Chem Pharm Bull. 1968; 16(2):304-310. https://doi.org/10.1248/cpb.16.304.

[30]

Yang YC, Lim MY, Lee HS. Emodin isolated from Cassiaobtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species. J Agric Food Chem. 2003; 51(26):7629-7631. https://doi.org/10.1021/jf034727t.

[31]

Mai LP, Guéritte F, Dumontet V, et al. Cytotoxicity of rhamnosylanthraquinones and rhamnosylanthrones from Rhamnus nepalensis. J Nat Prod. 2001; 64(9):1162-1168. https://doi.org/10.1021/np010030v.

[32]

Carroll AR, Nash BD, Duffy S, et al. Albopunctatone, an antiplasmodial anthrone-anthraquinone from the Australian ascidian Didemnum albopunctatum. J Nat Prod. 2012; 75(6):1206-1209. https://doi.org/10.1021/np300074z.

[33]

Koyama Y, Yamaguchi R, Suzuki K. Total synthesis and structure assignment of the anthrone C-glycoside cassialoin. Angew Chem Int Ed Engl. 2008; 47(6):1084-1087. https://doi.org/10.1002/anie.200704625.

PDF (5309KB)

103

Accesses

0

Citation

Detail

Sections
Recommended

/