Structurally diverse sesquiterpenoids with anti-MDR cancer activity from Penicillium roqueforti

Shuyuan Mo , Nanjin Ding , Zhihong Huang , Jun Yao , Weiguang Sun , Jianping Wang , Yonghui Zhang , Zhengxi Hu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) : 504 -512.

PDF (4466KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) :504 -512. DOI: 10.1016/S1875-5364(25)60857-0
Original article
research-article

Structurally diverse sesquiterpenoids with anti-MDR cancer activity from Penicillium roqueforti

Author information +
History +
PDF (4466KB)

Abstract

Five novel nor-eremophilane-type sesquiterpenoids, peniroqueforins E-H and J (1-4 and 7), two new eremophilane-type sesquiterpenoids, peniroqueforins I and K (5 and 8), and a new eudesmane-type sesquiterpenoid, peniroqueforin L (9), along with four known compounds (6 and 10-12), were isolated and characterized from fungus Penicillium roqueforti (P. roqueforti). The structures and absolute configurations of these compounds were determined through comprehensive spectroscopic analyses, electronic circular dichroism (ECD) data analyses, and single-crystal X-ray diffraction methods. The anti-multi-drug resistance (MDR) cancer activity of these compounds was evaluated using SW620/Ad300 cells. Notably, the half maximal inhibitory concentration (IC50) value of paclitaxel (PTX) combined with 1 in SW620/Ad300 cells was 50.36 nmol·L−1, which was 65-fold more potent than PTX alone (IC50 3.26 μmol·L−1). Subsequent molecular docking studies revealed an affinity between compound 1 and P-glycoprotein (P-gp), suggesting that this nor-eremophilane-type sesquiterpenoid (1) could serve as a potential lead for MDR reversal in cancer cells through P-gp inhibition.

Keywords

Penicillium roqueforti / Sesquiterpenoids / Nor-sesquiterpenoids / Anti-MDR cancer activity

Cite this article

Download citation ▾
Shuyuan Mo, Nanjin Ding, Zhihong Huang, Jun Yao, Weiguang Sun, Jianping Wang, Yonghui Zhang, Zhengxi Hu. Structurally diverse sesquiterpenoids with anti-MDR cancer activity from Penicillium roqueforti. Chinese Journal of Natural Medicines, 2025, 23(4): 504-512 DOI:10.1016/S1875-5364(25)60857-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang JQ, Li JY, Teng QX, et al. Venetoclax, a BCL-2 inhibitor, enhances the efficacy of chemotherapeutic agents in wild-type ABCG2-overexpression mediated MDR cancer cells. Cancers. 2020; 12(2):466. https://doi.org/10.3390/cancers12020466.

[2]

Shi RC, Tang YQ, Miao HM. Metabolism in tumor microenvironment: implications for cancer immunotherapy. MedComm. 2020; 1(1):47-68. https://doi.org/10.1002/mco2.6.

[3]

Mo SY, Zhao ZM, Ye Z, et al. New secondary metabolites with cytotoxicity from fungus Penicillium roqueforti. Nat Prod Bioprospect, 2023; 13(1):17. https://doi.org/10.1007/s13659-023-00381-4.

[4]

Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci. 2000; 11(4):265-283. https://doi.org/10.1016/s0928-0987(00)00114-7.

[5]

Omran Z, Scaife P, Stewart S, et al. Physical and biological characteristics of multi drug resistance (MDR): an integral approach considering pH and drug resistance in cancer. Semin Cancer Biol. 2017; 43:42-48. https://doi.org/10.1016/j.semcancer.2017.01.002.

[6]

Wang MC, Liang LL, Wang, R, et al. Narciclasine, a novel topoisomerase I inhibitor, exhibited potent anti-cancer activity against cancer cells. Nat Prod Bioprospect. 2023;13:27. https://doi.org/10.1007/s13659-023-00392-1.

[7]

Bailly C, Vergoten G. Anticancer properties and mechanism of action of oblongifolin C, guttiferone K and related polyprenylated acylphloroglucinols. Nat Prod Bioprospect. 2021; 11(6):629-641. https://doi.org/10.1007/s13659-021-00320-1.

[8]

Joshi P, Vishwakarma RA, Bharate SB. Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer. Eur J Med Chem. 2017; 138:273-292. https://doi.org/10.1016/j.ejmech.2017.06.047.

[9]

Fang LY, Zhang GS, Li CL, et al. Discovery of a daunorubicin analogue that exhibits potent antitumor activity and overcomes P-gp-mediated drug resistance. J Med Chem. 2006; 49(3):932-941. https://doi.org/10.1021/jm050800q.

[10]

Du WY, Yang Q, Xu HM, et al.Drimane-type sesquiterpenoids from fungi. Chin J Nat Med. 2022; 20(10): 737-748. https://doi.org/10.1016/S1875-5364(22)60190-0.

[11]

Li W, Wei J, Chen DY, et al. Study on the secondary metabolites of grasshopper-derived fungi Arthrinium sp. NF2410. Chin J Nat Med. 2020; 18(1): 77-80. https://doi.org/10.1016/S1875-5364(20)60040-1.

[12]

Mo SY, Yin J, Ye Z, et al.Asperanstinoids A-E: undescribed 3,5-dimethylorsellinic acid-based meroterpenoids from Aspergillus calidoustus. Phytochemistry. 2021;190:112892. https://doi.org/10.1016/j.phytochem.2021.112892.

[13]

Li Y, Jian YJ, Xu F, et al. Five new terpenoids from Viburnum odoratissimum var. sessiliflorum. Chin J Nat Med. 2023; 21(4):298-307. https://doi.org/10.1016/S1875-5364(23)60438-8.

[14]

Yan LH, Li PH, Li XM, et al. Bialorastins A-F,highly oxygenated and polycyclic andrastin-type meroterpenoids with proangiogenic activity from the deep-sea cold-seep-derived fungus Penicillium bialowiezense CS-283. Bioorg Chem. 2024;143:107073. https://doi.org/10.1016/j.bioorg.2023.107073.

[15]

Xu JQ, Hu LH. Five new eremophilane sesquiterpenes from Ligularia przewalskii. Helv Chim Acta. 2008; 91:951-957. https://doi.org/10.1002/hlca.200890101.

[16]

Lin LB, Xiao J, Gao YQ, et al. Trinor- and tetranor-eremophilane sesquiterpenoids with anti-neuroinflammatory activity from cultures of the fungus Septoria rudbeckiae. Phytochemistry. 2021;183:112642. https://doi.org/10.1016/j.phytochem.2020.112642.

[17]

Zhao Y, Peng H, Jia ZJ. Six new eremophilane derivatives from two ligularia species. J Nat Prod. 1994; 57(12):1626-1630. https://doi.org/10.1021/np50114a003.

[18]

Wang A, Yin RY, Zhou ZY, et al. Eremophilane-type sesquiterpenoids from the endophytic fungus Rhizopycnis vagum and their antibacterial, cytotoxic, and phytotoxic activities. Front Chem. 2020;8:596889. https://doi.org/10.3389/fchem.2020.596889.

[19]

O'Donnell TJ, Luo YH, Yoshida WY, et al. Spirovetivane- and eudesmane-type sesquiterpenoids isolated from the culture media of two cyanobacterial strains. J Nat Prod. 2022; 85(2):415-425. https://doi.org/10.1021/acs.jnatprod.1c01014.

[20]

Sun YL, Gerke J, Becker K, et al. Rapid discovery of terpene tailoring enzymes for total biosynthesis. Chem Sci. 2023; 14(45):13463-13467. https://doi.org/10.1039/d3sc04172g.

[21]

Le DH, Takenaka Y, Hamada N, et al. Eremophilane-type sesquiterpenes from cultured lichen mycobionts of Sarcographa tricosa. Phytochemistry. 2013; 91:242-248. https://doi.org/10.1016/j.phytochem.2012.01.009.

[22]

Castro SJ, Garcia ME, Padrón JM, et al. Phytochemical study of Senecio volckmannii assisted by CASE-3D with residual dipolar couplings and isotropic 1H/13C NMR chemical shifts. J Nat Prod. 2018; 81(11):2329-2337. https://doi.org/10.1021/acs.jnatprod.8b00162.

[23]

Saito Y, Ichihara M, Okamoto Y, et al. Four new eremophilane-type alcohols from Cremanthodium Helianthus collected in China. Nat Prod Commun. 2012; 7(4):423-426. https://doi.org/10.1177/1934578X1200700402.

[24]

Wang S, Wang SQ, Teng QX, et al. Structure-based design, synthesis, and biological evaluation of new triazolo[1,5-a] pyrimidine derivatives as highly potent and orally active ABCB1 modulators. J Med Chem. 2020; 63(24):15979-15996. https://doi.org/10.1021/acs.jmedchem.0c01741.

[25]

Yang ZK, Cai Y, Yang X, et al. Novel benzo five-membered heterocycle derivatives as P-glycoprotein inhibitors: design, synthesis, molecular docking, and anti-multidrug resistance activity. J Med Chem. 2023; 66(8):5550-5556. https://doi.org/10.1021/acs.jmedchem.2c01999.

[26]

Wang SQ, Teng QX, Wang S, et al. Preclinical studies of the triazolo[1,5-a] pyrimidine derivative WS-716 as a highly potent, specific and orally active P-glycoprotein (P-gp) inhibitor. Acta Pharm Sin B. 2022; 12(8):3263-3280. https://doi.org/10.1016/j.apsb.2022.03.023.

[27]

Hubschle CB, Sheldrick GM, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr. 2011; 44(Pt 6):1281-1284. https://doi.org/10.1107/S0021889811043202.

[28]

Sheldrick G. Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst A. 1990; 46:467-473. https://doi.org/10.1107/S0108767390000277.

[29]

Neese F.The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci. 2012; 2(1):73-78. https://doi.org/10.1002/wcms.81.

[30]

Stephens PJ, Harada N. ECD cotton effect approximated by the Gaussian curve and other methods. Chirality. 2010; 22(2):229-233. https://doi.org/10.1002/chir.20733.

PDF (4466KB)

84

Accesses

0

Citation

Detail

Sections
Recommended

/