Esculetin triggers ferroptosis via inhibition of the Nrf2-xCT/GPx4 axis in hepatocellular carcinoma

Zhixin Qu , Jing Zeng , Laifeng Zeng , Xianmei Li , Fenghua Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) : 443 -456.

PDF (7672KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) :443 -456. DOI: 10.1016/S1875-5364(25)60853-3
Original article
research-article

Esculetin triggers ferroptosis via inhibition of the Nrf2-xCT/GPx4 axis in hepatocellular carcinoma

Author information +
History +
PDF (7672KB)

Abstract

Esculetin, a natural dihydroxy coumarin derived from the Chinese herbal medicine Cortex Fraxini, has demonstrated significant pharmacological activities, including anticancer properties. Ferroptosis, an iron-dependent form of regulated cell death, has garnered considerable attention due to its lethal effect on tumor cells. However, the exact role of ferroptosis in esculetin-mediated anti-hepatocellular carcinoma (HCC) effects remains poorly understood. This study investigated the impact of esculetin on HCC cells both in vitro and in vivo. The findings indicate that esculetin effectively inhibited the growth of HCC cells. Importantly, esculetin promoted the accumulation of intracellular Fe2+, leading to an increase in ROS production through the Fenton reaction. This event subsequently induced lipid peroxidation (LPO) and triggered ferroptosis within the HCC cells. The occurrence of ferroptosis was confirmed by the elevation of malondialdehyde (MDA) levels, the depletion of glutathione peroxidase (GSH-Px) activity, and the disruption of mitochondrial morphology. Notably, the inhibitor of ferroptosis, ferrostatin-1 (Fer-1), attenuated the anti-tumor effect of esculetin in HCC cells. Furthermore, the findings revealed that esculetin inhibited the Nrf2-xCT/GPx4 axis signaling in HCC cells. Overexpression of Nrf2 upregulated the expression of downstream SLC7A11 and GPX4, consequently alleviating esculetin-induced ferroptosis. In conclusion, this study suggests that esculetin exerts an anti-HCC effect by inhibiting the activity of the Nrf2-xCT/GPx4 axis, thereby triggering ferroptosis in HCC cells. These findings may contribute to the potential clinical use of esculetin as a candidate for HCC treatment.

Keywords

Esculetin / Ferroptosis / Hepatocellular carcinoma / Nrf2-xCT/GPx4 axis / Zebrafish

Cite this article

Download citation ▾
Zhixin Qu, Jing Zeng, Laifeng Zeng, Xianmei Li, Fenghua Zhang. Esculetin triggers ferroptosis via inhibition of the Nrf2-xCT/GPx4 axis in hepatocellular carcinoma. Chinese Journal of Natural Medicines, 2025, 23(4): 443-456 DOI:10.1016/S1875-5364(25)60853-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3):209-249. https://doi.org/10.3322/caac.21660.

[2]

Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019; 380(15):1450-1462. https://doi.org/10.1056/NEJMra1713263.

[3]

Vogel A, Qin S, Kudo M, et al. Lenvatinib versus sorafenib for first-line treatment of unresectable hepatocellular carcinoma: patient-reported outcomes from a randomised, open-label, non-inferiority, phase 3 trial. Lancet Gastroenterol Hepatol. 2021; 6(8):649-658. https://doi.org/10.1016/S2468-1253(21)00110-2.

[4]

Jayakumar T, Huang CJ, Yen TL, et al. Activation of Nrf 2 by esculetin mitigates inflammatory responses through suppression of NF-κB signaling cascade in RAW 264.7 Cells. Molecules. 2022; 27(16):5143. https://doi.org/10.3390/molecules27165143.

[5]

Huang SX, Mou JF, Luo Q, et al. Anti-hepatitis B virus activity of esculetin from Microsorium fortunei in vitro and in vivo. Molecules. 2019; 24(19):3475. https://doi.org/10.3390/molecules24193475.

[6]

Han MH, Park C, Lee DS, et al. Cytoprotective effects of esculetin against oxidative stress are associated with the upregulation of Nrf2-mediated NQO1 expression via the activation of the ERK pathway. Int J Mol Med. 2017; 39(2):380-386. https://doi.org/10.3892/ijmm.2016.2834.

[7]

Wang J, Lu ML, Dai HL, et al. Esculetin, a coumarin derivative, exerts in vitro and in vivo antiproliferative activity against hepatocellular carcinoma by initiating a mitochondrial-dependent apoptosis pathway. Braz J Med Biol Res. 2015; 48(3):245-253. https://doi.org/10.1590/1414-431x20144074.

[8]

Arora R, Sawney S, Saini V, et al.Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016; 15(1):64. https://doi.org/10.1186/s12943-016-0550-2.

[9]

Jiang R, Su G, Chen X, et al. Esculetin inhibits endometrial cancer proliferation and promotes apoptosis via hnRNPA1 to downregulate BCLXL and XIAP. Cancer Lett. 2021; 521:308-321. https://doi.org/10.1016/j.canlet.2021.08.039.

[10]

Wang X, Yang C, Zhang Q, et al. In vitro anticancer effects of esculetin against human leukemia cell lines involves apoptotic cell death, autophagy, G0/G1 cell cycle arrest and modulation of Raf/MEK/ERK signalling pathway. J BUON. 2019; 24(4):1686-1691.

[11]

Yin W, Fu X, Chang W, et al. Antiovarian cancer mechanism of esculetin: inducing G0/G1 arrest and apoptosis via JAK2/STAT3 signalling pathway. J Pharm Pharmacol. 2023; 75(1):87-97. https://doi.org/10.1093/jpp/rgac083.

[12]

Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5):1060-1072. https://doi.org/10.1016/j.cell.2012.03.042.

[13]

Wu Y, Yu C, Luo M, et al. Ferroptosis in cancer treatment: another way to rome. Front Oncol. 2020;10:571127. https://doi.org/10.3389/fonc.2020.571127.

[14]

Carneiro BA, El-Deiry WS.Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020; 17(7):395-417. https://doi.org/10.1038/s41571-020-0341-y.

[15]

Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107. https://doi.org/10.1016/j.redox.2019.101107.

[16]

Leto TL, Morand S, Hurt D, et al. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal. 2009; 11(10):2607-2619. https://doi.org/10.1089/ars.2009.2637.

[17]

Kuwata H, Hara S. Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism. Prostaglandins Other Lipid Mediat. 2019;144:106363. https://doi.org/10.1016/j.prostaglandins.2019.106363.

[18]

Muhoberac BB, Vidal R. Iron ferritin,hereditary ferritinopathy, and neurodegeneration. Front Neurosci. 2019;13:1195. https://doi.org/10.3389/fnins.2019.01195.

[19]

Chen MY, Juengpanich S, Hu JH, et al. Prognostic factors and predictors of postoperative adjuvant transcatheter arterial chemoembolization benefit in patients with resected hepatocellular carcinoma. World J Gastroenterol. 2020; 26(10):1042-1055. https://doi.org/10.3748/wjg.v26.i10.1042.

[20]

Wen RJ, Dong X, Zhuang HW, et al. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomedicine. 2023;116:154881. https://doi.org/10.1016/j.phymed.2023.154881.

[21]

Du X, Zhang J, Liu L, et al. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells. J Zhejiang Univ Sci B. 2022; 23(4):286-299. https://doi.org/10.1631/jzus.B2100748.

[22]

Li Q, Peng F, Yan X, et al. Inhibition of SLC7A11-GPX4 signal pathway is involved in aconitine-induced ferroptosis in vivo and in vitro. J Ethnopharmacol. 2023;303:116029. https://doi.org/10.1016/j.jep.2022.116029.

[23]

Liu JS, Huo CY, Cao HH, et al. Aloperine induces apoptosis and G2/M cell cycle arrest in hepatocellular carcinoma cells through the PI3K/Akt signaling pathway. Phytomedicine. 2019;61:152843. https://doi.org/10.1016/j.phymed.2019.152843.

[24]

Xu J, Yan B, Zhang L, et al. Theabrownin induces apoptosis and tumor inhibition of hepatocellular carcinoma Huh7 cells through ASK1-JNK-c-Jun pathway. Onco Targets Ther. 2020; 13:8977-8987. https://doi.org/10.2147/OTT.S254693.

[25]

Kimmel CB, Ballard WW, Kimmel SR, et al. Stages of embryonic development of the zebrafish. Dev Dyn. 1995; 203(3):253-310. https://doi.org/10.1002/aja.1002030302.

[26]

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9(7):671-675. https://doi.org/10.1038/nmeth.2089.

[27]

Li F, Wang S, Zhou Y, et al. Signal transducer and activator of transcription 6 mediates skeletal muscle cell injury in septic mice by regulating ferroptosis. Chin Crit Care Med. 2023; 35(8):813-817. https://doi.org/10.3760/cma.j.cn121430-20230312-00170.

[28]

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021; 22(4):266-282. https://doi.org/10.1038/s41580-020-00324-8.

[29]

Xing G, Meng L, Cao S, et al. PPARα alleviates iron overload-induced ferroptosis in mouse liver. EMBO Rep. 2022; 23(8):e52280. https://doi.org/10.15252/embr.202052280.

[30]

Kobayashi H, Yoshimoto C, Matsubara S, et al. A comprehensive overview of recent developments on the mechanisms and pathways of ferroptosis in cancer: the potential implications for therapeutic strategies in ovarian cancer. Cancer Drug Resist. 2023; 6(3):547-566. https://doi.org/10.20517/cdr.2023.49.

[31]

Conrad M, Pratt DA.The chemical basis of ferroptosis. Nat Chem Biol. 2019; 15(12):1137-1147. https://doi.org/10.1038/s41589-019-0408-1.

[32]

Kuang F, Liu J, Tang D, et al. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020;8:586578. https://doi.org/10.3389/fcell.2020.586578.

[33]

Battaglia AM, Chirillo R, Aversa I, et al. Ferroptosis and cancer: mitochondria meet the "iron maiden" cell death. Cells. 2020; 9(6):1505. https://doi.org/10.3390/cells9061505.

[34]

Jelinek A, Heyder L, Daude M, et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med. 2018; 117:45-57. https://doi.org/10.1016/j.freeradbiomed.2018.01.019.

[35]

Rumgay H, Arnold M, Ferlay J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022; 77(6):1598-1606. https://doi.org/10.1016/j.jhep.2022.08.021.

[36]

Fan J, Tian L, Huang S, et al. Derlin-1 promotes the progression of human hepatocellular carcinoma via the activation of AKT pathway. Onco Targets Ther. 2020; 13:5407-5417. https://doi.org/10.2147/OTT.S222895.

[37]

Tan X, Ma X, Dai Y, et al. A large-scale transcriptional analysis reveals herb-derived ginsenoside F 2 suppressing hepatocellular carcinoma via inhibiting STAT3. Phytomedicine. 2023;120:155031. https://doi.org/10.1016/j.phymed.2023.155031.

[38]

Zhang X, Ma J, Song N, et al. Lappaconitine sulfate inhibits proliferation and induces apoptosis in human hepatocellular carcinoma HepG2 cells through the reactive oxygen species-dependent mitochondrial pathway. Pharmacology. 2020; 105(11-12):705-714. https://doi.org/10.1159/000506081.

[39]

Li J, Li S, Wang X, et al. Esculetin induces apoptosis of SMMC-7721 cells through IGF-1/PI3K/Akt-mediated mitochondrial pathways. Can J Physiol Pharmacol. 2017; 95(7):787-794. https://doi.org/10.1139/cjpp-2016-0548.

[40]

Park SB, Jung WK, Kim HR, et al. Esculetin has therapeutic potential via the proapoptotic signaling pathway in A253 human submandibular salivary gland tumor cells. Exp Ther Med. 2022; 24(2):533. https://doi.org/10.3892/etm.2022.11460.

[41]

Kim WK, Byun WS, Chung HJ, et al. Esculetin suppresses tumor growth and metastasis by targeting Axin2/E-cadherin axis in colorectal cancer. Biochem Pharmacol. 2018; 152:71-83. https://doi.org/10.1016/j.bcp.2018.03.009.

[42]

Kim AD, Madduma Hewage SR, Piao MJ, et al. Esculetin induces apoptosis in human colon cancer cells by inducing endoplasmic reticulum stress. Cell Biochem Funct. 2015; 33(7):487-494. https://doi.org/10.1002/cbf.3146.

[43]

Xiu Z, Li Y, Fang J, et al. Inhibitory effects of esculetin on liver cancer through triggering NCOA4 pathway-mediation ferritinophagy in vivo and in vitro. J Hepatocell Carcino. 2023; 10:611-629. https://doi.org/10.2147/JHC.S395617.

[44]

Xie Y, Hou W, Song X, et al.Ferroptosis: process and function. Cell Death Differ. 2016; 23(3):369-379. https://doi.org/10.1038/cdd.2015.158.

[45]

Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017; 171(2):273-285. https://doi.org/10.1016/j.cell.2017.09.021.

[46]

Pan JA, Sun Y, Jiang YP, et al. TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol Cell. 2016; 61(5):720-733. https://doi.org/10.1016/j.molcel.2016.02.007.

[47]

Lovatt M, Kocaba V, Hui Neo DJ, et al. Nrf2: a unifying transcription factor in the pathogenesis of Fuchs’ endothelial corneal dystrophy. Redox Biol. 2020;37:101763. https://doi.org/10.1016/j.redox.2020.101763.

[48]

Yang WS, Stockwell BR.Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016; 26(3):165-176. https://doi.org/10.1016/j.tcb.2015.10.014.

PDF (7672KB)

103

Accesses

0

Citation

Detail

Sections
Recommended

/