Mass spectral database-based methodologies for the annotation and discovery of natural products

Fengyao Yang , Zeyuan Liang , Haoran Zhao , Jiayi Zheng , Lifang Liu , Huipeng Song , Guizhong Xin

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) : 410 -420.

PDF (4145KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) :410 -420. DOI: 10.1016/S1875-5364(25)60852-1
Review
research-article

Mass spectral database-based methodologies for the annotation and discovery of natural products

Author information +
History +
PDF (4145KB)

Abstract

Natural products (NPs) have long held a significant position in various fields such as medicine, food, agriculture, and materials. The chemical space covered by NPs is extensive but often underexplored. Therefore, high-throughput and efficient methodologies for the annotation and discovery of NPs are desired to address the complexity and diversity of NP-based systems. Mass spectrometry (MS) has emerged as a powerful platform for the annotation and discovery of NPs. MS databases provide vital support for the structural characterization of NPs by integrating extensive mass spectral data and sample information. Additionally, the released annotation methodologies, based on a variety of informatics tools, continuously improve the ability to annotate the structure and properties of compounds. This review examines the current mainstream databases and annotation methodologies, focusing on their advantages and limitations. Prospects for future technological advancements are then discussed in terms of novel applications and research objectives. Through a systematic overview, this review aims to provide valuable insights and a reference for MS-based NPs annotation, thereby promoting the discovery of novel natural entities.

Keywords

Mass spectrometry / Natural products / Annotation / Databases

Cite this article

Download citation ▾
Fengyao Yang, Zeyuan Liang, Haoran Zhao, Jiayi Zheng, Lifang Liu, Huipeng Song, Guizhong Xin. Mass spectral database-based methodologies for the annotation and discovery of natural products. Chinese Journal of Natural Medicines, 2025, 23(4): 410-420 DOI:10.1016/S1875-5364(25)60852-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dong SH, Duan ZK, Bai M, et al. Advanced technologies targeting isolation and characterization of natural products. Trac-Trends Anal Chem. 2024;175:117711. https://doi.org/10.1016/j.trac.2024.117711.

[2]

Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016; 43(2-3):155-176. https://doi.org/10.1007/s10295-015-1723-5.

[3]

Butler MS, Robertson AA, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep. 2014; 31(11):1612-1661. https://doi.org/10.1039/C4NP00064A.

[4]

Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021; 20(3):200-216. https://doi.org/10.1038/s41573-020-00114-z.

[5]

Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018; 19(6):1578. https://doi.org/10.3390/ijms19061578.

[6]

Deng WY, Chen F, Zhao Y, et al. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med. 2023; 21(11):803-811. https://doi.org/10.1016/S1875-5364(23)60505-9.

[7]

Luo ZW, Yin FC, Wang XB, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[8]

Newman DJ, Cragg GM.Natural products as sources of new drugs over the nearly four decades from 01/ 1981 to 09/2019. J Nat Prod. 2020; 83(3):770-803. https://doi.org/10.1021/acs.jnatprod.9b01285.

[9]

Zhang BY, Zheng YF, Zhao J, et al. Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation. Chin J Nat Med. 2022; 20(5):332-351. https://doi.org/10.1016/S1875-5364(22)60180-8.

[10]

Li S, Fan GF, Li XJY, et al. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med. 2023; 21(1):3-18. https://doi.org/10.1016/S1875-5364(23)60381-4.

[11]

Chen JX, Ding ZQ. Natural products as potential drug treatments for acute promyelocytic leukemia. Chin Med. 2024; 19(1):57. https://doi.org/10.1186/s13020-024-00928-8.

[12]

Chen JX, Ding ZQ.Advances in natural product anti-coronavirus research (2002-2022). Chin Med. 2023; 18(1):13. https://doi.org/10.1186/s13020-023-00715-x.

[13]

Pye CR, Bertin MJ, Lokey RS, et al. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA. 2017; 114(22):5601-5606. https://doi.org/10.1073/pnas.1614680114.

[14]

Chen G, Zhou D, Wang CM, et al. Advances in the role of natural products in human gene expression. Chin J Nat Med. 2022; 20(1):1-8. https://doi.org/10.1016/S1875-5364(22)60147-X.

[15]

Zhang NN, Jiang ZM, Li SZ, et al. Evolving interplay between natural products and gut microbiota. Eur J Pharmacol. 2023;949:175557. https://doi.org/10.1016/j.ejphar.2023.175557.

[16]

Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, et al. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol. 2022; 20(3):143-160. https://doi.org/10.1038/s41579-021-00621-9.

[17]

Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018;13:20. https://doi.org/10.1186/s13020-018-0177-x.

[18]

Salem MA, Perez de Souza L, Serag A, et al. Metabolomics in the context of plant natural products research: from sample preparation to metabolite analysis. Metabolites. 2020; 10(1):37. https://doi.org/10.3390/metabo10010037.

[19]

Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015; 33(8):1582-1614. https://doi.org/10.1016/j.biotechadv.2015.08.001.

[20]

Allard PM, Genta-Jouve G, Wolfender JL. Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Curr Opin Chem Biol. 2017; 36:40-49. https://doi.org/10.1016/j.cbpa.2016.12.022.

[21]

Schymanski EL, Jeon J, Gulde R, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014; 48(4):2097-2098. https://doi.org/10.1021/es5002105.

[22]

Liu KX, Li N, Yin YH, et al. An in-house database-driven untargeted identification strategy for deep profiling of chemicalome in Chinese medicinal formula. J Chromatogr A. 2022;1666:462862. https://doi.org/10.1016/j.chroma.2022.462862.

[23]

Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007; 3(3):211-221. https://doi.org/10.1007/s11306-007-0082-2.

[24]

Tian ZT, Liu FZ, Li DQ, et al. Strategies for structure elucidation of small molecules based on LC-MS/MS data from complex biological samples. Comput Struct Biotechnol J. 2022; 20:5085-5097. https://doi.org/10.1016/j.csbj.2022.09.004.

[25]

Tsugawa H. Advances in computational metabolomics and databases deepen the understanding of metabolisms. Curr Opin Biotechnol. 2018; 54:10-17. https://doi.org/10.1016/j.copbio.2018.01.008.

[26]

Kind T, Tsugawa H, Cajka T, et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev. 2018; 37(4):513-532. https://doi.org/10.1002/mas.21535.

[27]

Chaleckis R, Meister I, Zhang P, et al. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr Opin Biotechnol. 2019; 55:44-50. https://doi.org/10.1016/j.copbio.2018.07.010.

[28]

Sawada Y, Nakabayashi R, Yamada Y, et al. RIKEN tandem mass spectral database (ReSpect) for phytochemicals: a plant-specific MS/MS-based data resource and database. Phytochemistry. 2012; 82:38-45. https://doi.org/10.1016/j.phytochem.2012.07.007.

[29]

Kopka J, Schauer N, Krueger S, et al. GMD@CSB. DB: the Golm Metabolome Database. Bioinformatics. 2005; 21(8):1635-1638. https://doi.org/10.1093/bioinformatics/bti236.

[30]

Wang M, Carver JJ, Phelan VV, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016; 34(8):828-837. https://doi.org/10.1038/nbt.3597.

[31]

Horai H, Arita M, Kanaya S, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010; 45(7):703-714. https://doi.org/10.1002/jms.1777.

[32]

Wishart DS, Guo A, Oler E, et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 2022; 50(D1):D622-D631. https://doi.org/10.1093/nar/gkab1062.

[33]

Sud M, Fahy E, Cotter D, et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007; 35(SI1):D527-D532. https://doi.org/10.1093/nar/gkl838.

[34]

O’Donnell VB, Dennis EA, Wakelam MJO, et al. LIPID MAPS: serving the next generation of lipid researchers with tools, resources, data, and training. Sci Signal. 2019; 12(563):eaaw2964. https://doi.org/10.1126/scisignal.aaw2964.

[35]

Ni Z, Wolk M, Jukes G, et al. Guiding the choice of informatics software and tools for lipidomics research applications. Nat Methods. 2023; 20(2):193-204. https://doi.org/10.1038/s41592-022-01710-0.

[36]

Sheldon MT, Mistrik R, Croley TR. Determination of ion structures in structurally related compounds using precursor ion fingerprinting. J Am Soc Mass Spectrom. 2009; 20(3):370-376. https://doi.org/10.1016/j.jasms.2008.10.017.

[37]

Xue J, Guijas C, Benton HP, et al. METLIN MS2 molecular standards database: a broad chemical and biological resource. Nat Methods. 2020; 17(10):953-954. https://doi.org/10.1038/s41592-020-0942-5.

[38]

Guijas C, Montenegro-Burke JR, Domingo-Almenara X, et al. METLIN: a technology platform for identifying knowns and unknowns. Anal Chem. 2018; 90(5):3156-3164. https://doi.org/10.1021/acs.analchem.7b04424.

[39]

Cho K, Mahieu N, Ivanisevic J, et al. isoMETLIN: a database for isotope-based metabolomics. Anal Chem. 2014; 86(19):9358-9361. https://doi.org/10.1021/ac5029177.

[40]

Huang FQ, Dong X, Yin X, et al. A mass spectrometry database for identification of saponins in plants. J Chromatogr A. 2020; 1625:461296. https://doi.org/10.1016/j.chroma.2020.461296.

[41]

Popov RS, Ivanchina NV, Silchenko AS, et al. A mass spectrometry database for sea cucumber triterpene glycosides. Metabolites. 2023; 13(7):783. https://doi.org/10.3390/metabo13070783.

[42]

Chen YH, Li SY, Wang D, et al. Combinatorics-based chemical characterization and bioactivity comparison of different parts of traditional Chinese medicinal plants through LC-Q-TOF-MS/MS, multivariate statistical analysis and bioassay: Marsdenia tenacissima as an example. J Chromatogr B Analyt Technol Biomed Life Sci. 2023;1228:123850. https://doi.org/10.1016/j.jchromb.2023.123850.

[43]

Wang X, Guo AQ, Wang R, et al. AnnoSM: an automated annotation tool for determining the substituent modes on the parent skeleton based on a characteristic MS/MS fragment ion library. Anal Chem. 2024; 96(9):3817-3828. https://doi.org/10.1021/acs.analchem.3c04946.

[44]

Krettler CA, Thallinger GG. A map of mass spectrometry-based in silico fragmentation prediction and compound identification in metabolomics. Brief Bioinform. 2021; 22(6):bbab073. https://doi.org/10.1093/bib/bbab073.

[45]

Hufsky F, Bocker S. Mining molecular structure databases: identification of small molecules based on fragmentation mass spectrometry data. Mass Spectrom Rev. 2017; 36(5):624-633. https://doi.org/10.1002/mas.21489.

[46]

Bocker S. Searching molecular structure databases using tandem MS data: are we there yet. Curr Opin Chem Biol. 2017; 36:1-6. https://doi.org/10.1016/j.cbpa.2016.12.010.

[47]

Grimme S. Towards first principles calculation of electron impact mass spectra of molecules. Angew Chem Int Ed Engl. 2013; 52(24):6306-6312. https://doi.org/10.1002/anie.201300158.

[48]

Bauer CA, Grimme S. How to compute electron ionization mass spectra from first principles. J Phys Chem A. 2016; 120(21):3755-3766. https://doi.org/10.1021/acs.jpca.6b02907.

[49]

Wang S, Kind T, Bremer PL, et al. Quantum chemical prediction of electron ionization mass spectra of trimethylsilylated metabolites. Anal Chem. 2022; 94(3):1559-1566. https://doi.org/10.1021/acs.analchem.1c02838.

[50]

Wang S, Kind T, Tantillo DJ, et al. Predicting in silico electron ionization mass spectra using quantum chemistry. J Cheminform. 2020; 12(1):63. https://doi.org/10.1186/s13321-020-00470-3.

[51]

Allen F, Greiner R, Wishart D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics. 2014; 11(1):98-110. https://doi.org/10.1007/s11306-014-0676-4.

[52]

Hu GL, Qiu MH. Machine learning-assisted structure annotation of natural products based on MS and NMR data. Nat Prod Rep. 2023; 40(11):1735-1753. https://doi.org/10.1039/D3NP00025G.

[53]

Wang F, Liigand J, Tian SY, et al. CFM-ID 4.0: more accurate ESI-MS/MS spectral prediction and compound identification. Anal Chem. 2021; 93(34):11692-11700. https://doi.org/10.1021/acs.analchem.1c01465.

[54]

Wang F, Pasin D, Skinnider MA, et al. Deep learning-enabled MS/MS spectrum prediction facilitates automated identification of novel psychoactive substances. Anal Chem. 2023; 95(50):18326-18334. https://doi.org/10.1021/acs.analchem.3c02413.

[55]

Kind T, Liu KH, Lee DY, et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013; 10(8):755-758. https://doi.org/10.1038/nmeth.2551.

[56]

Kind T, Okazaki Y, Saito K, et al. LipidBlast templates as flexible tools for creating new in-silico tandem mass spectral libraries. Anal Chem. 2014; 86(22):11024-11027. https://doi.org/10.1021/ac502511a.

[57]

Wolf S, Schmidt S, Müller-Hannemann M, et al. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics. 2010;11:148. https://doi.org/10.1186/1471-2105-11-148.

[58]

Ruttkies C, Schymanski EL, Wolf S, et al. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8:3. https://doi.org/10.1186/s13321-016-0115-9.

[59]

Ruttkies C, Neumann S, Posch S. Improving MetFrag with statistical learning of fragment annotations. BMC Bioinformatics. 2019; 20(1):376. https://doi.org/10.1186/s12859-019-2954-7.

[60]

Tsugawa H, Kind T, Nakabayashi R, et al. Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem. 2016; 88(16):7946-7958. https://doi.org/10.1021/acs.analchem.6b00770.

[61]

Heinonen M, Shen H, Zamboni N, et al. Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics. 2012; 28(18):2333-2341. https://doi.org/10.1093/bioinformatics/bts437.

[62]

Vaniya A, Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt Chem. 2015; 69:52-61. https://doi.org/10.1016/j.trac.2015.04.002.

[63]

Hufsky F, Scheubert K, Böcker S. Computational mass spectrometry for small-molecule fragmentation. Trac-Trends Anal Chem. 2014; 53:41-48. https://doi.org/10.1016/j.trac.2013.09.008.

[64]

Rasche F, Svatos A, Maddula RK, et al. Computing fragmentation trees from tandem mass spectrometry data. Anal Chem. 2011; 83(4):1243-1251. https://doi.org/10.1021/ac101825k.

[65]

Duhrkop K, Shen H, Meusel M, et al. Searching molecular structure databases with tandem mass spectra using CSI: FingerID. Proc Natl Acad Sci USA. 2015; 112(41):12580-12585. https://doi.org/10.1073/pnas.1509788112.

[66]

Duhrkop K, Nothias LF, Fleischauer M, et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol. 2021; 39(4):462-471. https://doi.org/10.1038/s41587-020-0740-8.

[67]

Bocker S, Letzel MC, Liptak Z, et al. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics. 2009; 25(2):218-224. https://doi.org/10.1093/bioinformatics/btn603.

[68]

Bocker S, Duhrkop K.Fragmentation trees reloaded. J Cheminform. 2016;8:5. https://doi.org/10.1186/s13321-016-0116-8.

[69]

Duhrkop K, Fleischauer M, Ludwig M, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019; 16(4):299-302. https://doi.org/10.1038/s41592-019-0344-8.

[70]

Hoffmann MA, Nothias LF, Ludwig M, et al. High-confidence structural annotation of metabolites absent from spectral libraries. Nat Biotechnol. 2022; 40(3):411-421. https://doi.org/10.1038/s41587-021-01045-9.

[71]

Stravs MA, Duhrkop K, Bocker S, et al. MSNovelist: de novo structure generation from mass spectra. Nat Methods. 2022; 19(7):865-870. https://doi.org/10.1038/s41592-022-01486-3.

[72]

Zhang M, Otsuki K, Li W. Molecular networking as a natural products discovery strategy. Acta Mater Med. 2023; 2(2):126-141.

[73]

Fox Ramos AE, Evanno L, Poupon E, et al. Natural products targeting strategies involving molecular networking: different manners, one goal. Nat Prod Rep. 2019; 36(7):960-980. https://doi.org/10.1039/C9NP00006B.

[74]

da Silva RR, Wang M, Nothias LF, et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput Biol. 2018; 14(4):e1006089. https://doi.org/10.1371/journal.pcbi.1006089.

[75]

Watrous J, Roach P, Alexandrov T, et al. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA. 2012; 109(26):E1743-E1752. https://doi.org/10.1073/pnas.1203689109.

[76]

Aron AT, Gentry EC, McPhail KL, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 2020; 15(6):1954-1991. https://doi.org/10.1038/s41596-020-0317-5.

[77]

Nothias LF, Petras D, Schmid R, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020; 17(9):905-908. https://doi.org/10.1038/s41592-020-0933-6.

[78]

Schmid R, Petras D, Nothias LF, et al. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat Commun. 2021; 12(1):3832. https://doi.org/10.1038/s41467-021-23953-9.

[79]

Hao HP, Cui N, Wang GJ, et al. Global detection and identification of nontarget components from herbal preparations by liquid chromatography hybrid ion trap time-of-flight mass spectrometry and a strategy. Anal Chem. 2008; 80(21):8187-8194. https://doi.org/10.1021/ac801356s.

[80]

Wang XX, Li C, Li ZF, et al. A structure-guided molecular network strategy for global untargeted metabolomics data annotation. Anal Chem. 2023; 95(31):11603-11612. https://doi.org/10.1021/acs.analchem.3c00849.

[81]

Morehouse NJ, Clark TN, McMann EJ, et al. Annotation of natural product compound families using molecular networking topology and structural similarity fingerprinting. Nat Commun. 2023; 14(1):308. https://doi.org/10.1038/s41467-022-35734-z.

[82]

Wang XY, Mei J, Zhang F, et al. A ternary correlation multi-symptom network strategy based on in vivo chemical profile identification and metabolomics to explore the molecular basis of Ephedra Herb against viral pneumonia. J Sep Sci. 2024; 47(11):e2400090. https://doi.org/10.1002/jssc.202400090.

[83]

Li XL, Guo ZF, Wen XD, et al. A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices. J Chromatogr A. 2023; 1710:464417. https://doi.org/10.1016/j.chroma.2023.464417.

[84]

Cui ZR, Wang YY, Li JX, et al. Natural and pseudonatural lindenane heterodimers from Sarcandra glabra by molecular networking. Org Lett. 2022; 24(49):9107-9111. https://doi.org/10.1021/acs.orglett.2c03769.

[85]

Li J, Cui Z, Li Y, et al. Chlospicenes A and B, cyclopropane cracked lindenane sesquiterpenoid dimers with anti-nonalcoholic steatohepatitis activity from Chloranthus henryi. Chin Chem Lett. 2022; 33(9):4257-4260. https://doi.org/10.1016/j.cclet.2022.01.084.

[86]

Li YY, Cui ZR, Li Y, et al. Integrated molecular networking strategy enhance the accuracy and visualization of components identification: a case study of Ginkgo biloba leaf extract. J Pharm Biomed Anal. 2022; 209:114523. https://doi.org/10.1016/j.jpba.2021.114523.

[87]

Chen L, Li HL, Zhou HJ, et al. Feature-based molecular network-assisted cannabinoid and flavonoid profiling of Cannabis sativa leaves and their antioxidant properties. Antioxidants. 2024; 13(6):749. https://doi.org/10.3390/antiox13060749.

[88]

Zhang YH, Gao ZQ, Cai YL, et al. A novel strategy integrating gas phase fractionation with staggered mass range and LC-MS/MS molecular network for comprehensive metabolites profiling of Gui Ling Ji in rats. J Pharm Biomed Anal. 2023;222:115092. https://doi.org/10.1016/j.jpba.2022.115092.

[89]

Quinn RA, Melnik AV, Vrbanac A, et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020; 579(7797):123-129. https://doi.org/10.1038/s41586-020-2047-9.

[90]

Li YY, Zhao S, Sun YP, et al. Automatic MS/MS data mining strategy for discovering target natural products: a case of lindenane sesquiterpenoids. Anal Chem. 2022; 94(23):8514-8522. https://doi.org/10.1021/acs.analchem.2c01559.

[91]

Liu FJ, Jiang Y, Li P, et al. Diagnostic fragmentation-assisted mass spectral networking coupled with in silico dereplication for deep annotation of steroidal alkaloids in medicinal Fritillariae Bulbus. J Mass Spectrom. 2020; 55(9):e4528. https://doi.org/10.1002/jms.4528.

[92]

Chen L, Lu WY, Wang L, et al. Metabolite discovery through global annotation of untargeted metabolomics data. Nat Methods. 2021; 18(11):1377-1385. https://doi.org/10.1038/s41592-021-01303-3.

[93]

Shen XT, Wang RH, Xiong X, et al. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun. 2019; 10(1):1516. https://doi.org/10.1038/s41467-019-09550-x.

[94]

Zhou ZW, Luo MD, Zhang HS, et al. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat Commun. 2022; 13(1):6656. https://doi.org/10.1038/s41467-022-34537-6.

[95]

Bazzano CF, de Felicio R, Alves LFG, et al. NP3 MS workflow: an open-source software system to empower natural product-based drug discovery using untargeted metabolomics. Anal Chem. 2024; 96(19):7460-7469. https://doi.org/10.1021/acs.analchem.3c05829.

[96]

Nothias LF, Nothias-Esposito M, da Silva R, et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J Nat Prod. 2018; 81(4):758-767. https://doi.org/10.1021/acs.jnatprod.7b00737.

[97]

Gong P, Cui N, Wu L, et al. Chemicalome and metabolome matching approach to elucidating biological metabolic networks of complex mixtures. Anal Chem. 2012; 84(6):2995-3002. https://doi.org/10.1021/ac3002353.

[98]

Wang L, Ye H, Sun D, et al. Metabolic pathway extension approach for metabolomic biomarker identification. Anal Chem. 2017; 89(2):1229-1237. https://doi.org/10.1021/acs.analchem.6b03757.

[99]

Oberacher H, Sasse M, Antignac JP, et al. A European proposal for quality control and quality assurance of tandem mass spectral libraries. Environ Sci Eur. 2020; 32(1):43. https://doi.org/10.1186/s12302-020-00314-9.

[100]

Vinaixa M, Schymanski EL, Neumann S, et al. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trac-Trends Anal Chem. 2016; 78:23-35. https://doi.org/10.1016/j.trac.2015.09.005.

[101]

Blazenovic I, Kind T, Ji J, et al. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018; 8(2):31. https://doi.org/10.3390/metabo8020031.

[102]

Cai YP, Zhou ZW, Zhu ZJ. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. Trac-Trends Anal Chem. 2023;158:116903. https://doi.org/10.1016/j.trac.2022.116903.

[103]

Jarmusch AK, Wang M, Aceves CM, et al. ReDU: a framework to find and reanalyze public mass spectrometry data. Nat Methods. 2020; 17(9):901-904. https://doi.org/10.1038/s41592-020-0916-7.

[104]

Gauglitz JM, West KA, Bittremieux W, et al. Enhancing untargeted metabolomics using metadata-based source annotation. Nat Biotechnol. 2022; 40(12):1774-1779. https://doi.org/10.1038/s41587-022-01368-1.

[105]

Zuffa S, Schmid R, Bauermeister A, et al. microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data. Nat Microbiol. 2024; 9(2):336-345. https://doi.org/10.1038/s41564-023-01575-9.

[106]

Mohanty I, Mannochio-Russo H, Schweer JV, et al. The underappreciated diversity of bile acid modifications. Cell. 2024; 187(7):1801-1818. https://doi.org/10.1016/j.cell.2024.02.019.

[107]

Gentry EC, Collins SL, Panitchpakdi M, et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature. 2024; 626(7998):419-426. https://doi.org/10.1038/s41586-023-06906-8.

[108]

Yan TT, Nie LL, Hao HP. Reverse metabolomics as a novel strategy to annotate the human metabolome. Chin J Nat Med. 2024; 22(4):289-290. https://doi.org/10.1016/S1875-5364(24)60589-3.

[109]

Nie QX, Luo X, Wang K, et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell. 2024; 187(11):2717-2734. https://doi.org/10.1016/j.cell.2024.03.034.

[110]

Li Q, Yin YH, Liu ZW, et al. FNICM: a new methodology to identify core metabolites based on significantly perturbed metabolic subnetworks. Anal Chem. 2024; 96(8):3335-3344. https://doi.org/10.1021/acs.analchem.3c04131.

[111]

Hou YL, He DD, Ye L, et al. An improved detection and identification strategy for untargeted metabolomics based on UPLC-MS. J Pharm Biomed Anal. 2020;191:113531. https://doi.org/10.1016/j.jpba.2020.113531.

[112]

Lin JC, Yang X, Wang AH, et al. LC-MS/MS profiling of colon oxysterols and cholesterol precursors in mouse model of ulcerative colitis. J Chromatogr A. 2024;1722:464865. https://doi.org/10.1016/j.chroma.2024.464865.

[113]

Yuan BF, Zhu QF, Guo N, et al. Comprehensive profiling of fecal metabolome of mice by integrated chemical isotope labeling-mass spectrometry analysis. Anal Chem. 2018; 90(5):3512-3520. https://doi.org/10.1021/acs.analchem.7b05355.

[114]

Zhao S, Li H, Han W, et al. Metabolomic coverage of chemical-group-submetabolome analysis: group classification and four-channel chemical isotope labeling LC-MS. Anal Chem. 2019; 91(18):12108-12115. https://doi.org/10.1021/acs.analchem.9b03431.

[115]

Qin SY, Gao MY, Zhang QQ, et al. High-coverage strategy for multi-subcellular metabolome analysis using dansyl-labeling-based LC-MS/MS. Anal Chem. 2023; 95(26):10034-10043. https://doi.org/10.1021/acs.analchem.3c01343.

[116]

Zhao AQ, Zheng JY, Chen C, et al. Enzyme-driven LC-HRMS approach for specific recognition of 12α-hydroxy bile acids. Anal Chem. 2024; 96(21):8613-8621. https://doi.org/10.1021/acs.analchem.4c00676.

[117]

Wandy J, Davies V, van der Hooft JJJ, et al. In silico optimization of mass spectrometry fragmentation strategies in metabolomics. Metabolites. 2019; 9(10):219. https://doi.org/10.1101/744227.

[118]

Guo T, Shi YY, Zheng L, et al. Rapid and simultaneous determination of sulfonate ester genotoxic impurities in drug substance by liquid chromatography coupled to tandem mass spectrometry: comparison of different ionization modes. J Chromatogr A. 2014; 1355:73-79. https://doi.org/10.1016/j.chroma.2014.05.079.

[119]

Xu JD, Xu MZ, Zhou SS, et al. Effects of chromatographic conditions and mass spectrometric parameters on the ionization and fragmentation of triterpene for saponins of in liquid chromatography-mass spectrometry analysis. J Chromatogr A. 2019;1608:460418. https://doi.org/10.1016/j.chroma.2019.460418.

[120]

Wang XX, Sun XS, Wang FB, et al. Enhancing metabolome annotation by electron impact excitation of ions from organics-molecular networking. Anal Chem. 2024; 96(4):1444-1453. https://doi.org/10.1021/acs.analchem.3c03443.

[121]

Zhang YH, Liao JY, Le WQ, et al. Improving the data quality of untargeted metabolomics through a targeted data-dependent acquisition based on an inclusion list of differential and preidentified ions. Anal Chem. 2023; 95(34):12964-12973. https://doi.org/10.1021/acs.analchem.3c02888.

[122]

Chen YH, Bi JH, Xie M, et al. Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011-2020): theory, technical route and difficulty. J Chromatogr A. 2021;1651:462307. https://doi.org/10.1016/j.chroma.2021.462307.

[123]

Fan YL, Liu RZ, Tan Q, et al. A database-guided integrated strategy for comprehensive chemical profiling of traditional Chinese medicine. J Chromatogr A. 2022;1674:463145. https://doi.org/10.1016/j.chroma.2022.463145.

[124]

Dai C, Wang C, Zhang CH, et al. A reference substance free diagnostic fragment ion-based approach for rapid identification of non-target components in Pudilan Xiaoyan Oral Liquid by high resolution mass spectrometry. J Pharm Biomed Anal. 2016; 124:79-92. https://doi.org/10.1016/j.jpba.2016.02.020.

[125]

Cheng XL, Wan JY, Li P, et al. Ultrasonic/microwave assisted extraction and diagnostic ion filtering strategy by liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid characterization of flavonoids in. J Chromatogr A. 2011; 1218(34):5774-5786. https://doi.org/10.1016/j.chroma.2011.06.091.

[126]

Qi LW, Wang HY, Zhang H, et al. Diagnostic ion filtering to characterize ginseng saponins by rapid liquid chromatography with time-of-flight mass spectrometry. J Chromatogr A. 2012; 1230:93-99. https://doi.org/10.1016/j.chroma.2012.01.079.

[127]

Ding M, Jiang Y, Gao W, et al. Characterization and quantification of chemical constituents in Angong Niuhuang Pill using ultra-high performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2023;228:115309. https://doi.org/10.1016/j.jpba.2023.115309.

[128]

Tian JX, Tian Y, Xu L, et al. Characterisation and identification of dihydroindole-type alkaloids from processed Semen Strychni by high-performance liquid chromatography coupled with electrospray ionisation ion trap time-of-flight mass spectrometry. Phytochem Anal. 2014; 25(1):36-44. https://doi.org/10.1002/pca.2457.

[129]

Huang AX, Li JM, Yang L, et al. A mass defect filtering combined background subtraction strategy for rapid screening and identification of metabolites in rat plasma after oral administration of Yindan Xinnaotong Soft Capsule. J Pharm Biomed Anal. 2023;231:115400. https://doi.org/10.1016/j.jpba.2023.115400.

[130]

Zeng SL, Duan L, Chen BZ, et al. Chemicalome and metabolome profiling of polymethoxylated flavonoids in Citri Reticulatae Pericarpium based on an integrated strategy combining background subtraction and modified mass defect filter in a Microsoft Excel Platform. J Chromatogr A. 2017; 1508:106-120. https://doi.org/10.1016/j.chroma.2017.06.015.

[131]

Xie T, Liang Y, Hao HP, et al. Rapid identification of ophiopogonins and ophiopogonones in extract with a practical technique of mass defect filtering based on high resolution mass spectrometry. J Chromatogr A. 2012; 1227:234-244. https://doi.org/10.1016/j.chroma.2012.01.017.

[132]

Zhou W, Shan JJ, Meng MX. A two-step ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry with mass defect filtering method for rapid identification of analogues from known components of different chemical structure types in herb pair extract and in rat’s blood. J Chromatogr A. 2018; 1563:99-123. https://doi.org/10.1016/j.chroma.2018.05.067.

[133]

Yu T, Chen JM, Liu W, et al. In-depth characterization of cycloartane triterpenoids and discovery of species-specific markers from three Cimicifuga species guided by a strategy that integrates in-source fragment elimination, diagnostic ion recognition, and feature-based molecular networking. J Chromatogr A. 2024;1728:465015. https://doi.org/10.1016/j.chroma.2024.465015.

PDF (4145KB)

82

Accesses

0

Citation

Detail

Sections
Recommended

/