The role of 8-OxoG and its repair systems in liver diseases progression: responsible mechanisms and promising natural products

Ying Zheng , Junxin Chen , Ze Liu , Kaibo Wang , Hao Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) : 815 -823.

PDF (14142KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (7) :815 -823. DOI: 10.1016/S1875-5364(25)60848-X
Review
research-article

The role of 8-OxoG and its repair systems in liver diseases progression: responsible mechanisms and promising natural products

Author information +
History +
PDF (14142KB)

Abstract

The accumulation of deoxyribonucleic acid (DNA) oxidative damage mediated by reactive oxygen species (ROS) is closely associated with liver diseases. 8-Oxoguanine (8-OxoG), a prevalent DNA oxidation product, plays a significant role in liver disease progression. The base excision repair (BER) pathway, comprising over 30 proteins including 8-OxoG DNA glycosylase1 (OGG1), MutY homolog (MUTYH), and MutT homolog protein 1 (MTH1), is responsible for the clearance and mismatch repair of 8-OxoG. Abnormally high levels of 8-OxoG and dysregulated expression and function of 8-OxoG repair enzymes contribute to the onset and development of liver diseases. Consequently, targeting the 8-OxoG production and repair system with agonists or inhibitors may offer a promising approach to liver disease treatment. This review summarizes the impact of 8-OxoG accumulation and dysregulated repair enzymes on various liver diseases, including viral liver disease, alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), cholestatic liver disease (CLD), liver fibrosis, cirrhosis, and liver cancer. Additionally, we review natural constituents as potential therapeutic agents that regulate 8-OxoG production, repair enzymes, and repair system-related signal pathways in oxidative damage-induced liver diseases.

Keywords

Oxidative stress / 8-OxoG / Repair mechanism / Liver disease / Natural medicine

Cite this article

Download citation ▾
Ying Zheng, Junxin Chen, Ze Liu, Kaibo Wang, Hao Zhang. The role of 8-OxoG and its repair systems in liver diseases progression: responsible mechanisms and promising natural products. Chinese Journal of Natural Medicines, 2025, 23(7): 815-823 DOI:10.1016/S1875-5364(25)60848-X

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hahm JY, Park J, Jang ES, et al. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med. 2022; 54(10):1626-1642. https://doi.org/10.1038/s12276-022-00822-z.

[2]

Chiorcea-Paquim AM. 8-Oxoguanine and 8-oxodeoxyguanosine biomarkers of oxidative DNA damage: a review on HPLC-ECD determination. Molecules. 2022; 27(5):1620. https://doi.org/10.3390/molecules27051620.

[3]

Andres CMC, de la Lastra JMP, Juan CA, et al. Chemical insights into oxidative and nitrative modifications of DNA. Int J Mol Sci. 2023; 24(20):15240. https://doi.org/10.3390/ijms242015240.

[4]

Koag MC, Jung H, Lee S. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Nucleic Acids Res.. 2020; 48(9):5119-5134. https://doi.org/10.1093/nar/gkaa193.

[5]

Wang R, Hao W, Pan L, et al. The roles of base excision repair enzyme OGG1 in gene expression. Cell Mol Life Sci. 2018; 75(20):3741-3750. https://doi.org/10.1007/s00018-018-2887-8.

[6]

Fleming AM, Zhu J, Manage SAH, et al. Human NEIL3 gene expression regulated by epigenetic-like oxidative DNA modification. J Am Chem Soc. 2019; 141(28):11036-11049. https://doi.org/10.1021/jacs.9b01847.

[7]

Fleming AM, Burrows CJ. Interplay of guanine oxidation and G-quadruplex folding in gene promoters. J Am Chem Soc. 2020; 142(3):1115-1136. https://doi.org/10.1021/jacs.9b11050.

[8]

Roychoudhury S, Pramanik S, Harris HL, et al. Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc Natl Acad Sci U S A. 2020; 117(21):11409-11420. https://doi.org/10.1073/pnas.1912355117.

[9]

Xia L, Huang W, Bellani M, et al. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell. 2017; 31(5):653-668. https://doi.org/10.1016/j.ccell.2017.04.005.

[10]

Hao W, Qi T, Pan L, et al. Effects of the stimuli-dependent enrichment of 8-oxoguanine DNA glycosylase1 on chromatinized DNA. Redox Biol. 2018; 18:43-53. https://doi.org/10.1016/j.redox.2018.06.002.

[11]

Demin AA, Hirota K, Tsuda M, et al. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Mol Cell. 2021; 81(14):3018-3030. https://doi.org/10.1016/j.molcel.2021.05.009.

[12]

Li C, Xue Y, Ba X, et al. The role of 8-OxoG repair systems in tumorigenesis and cancer therapy. Cells. 2022; 11(23):3798. https://doi.org/10.3390/cells11233798.

[13]

de Sousa MML, Ye J, Luna L, et al. Impact of oxidative DNA damage and the role of DNA glycosylases in neurological dysfunction. Int J Mol Sci. 2021; 22(23):12924. https://doi.org/10.3390/ijms222312924.

[14]

Chimienti G, Pesce V, Fracasso F, et al. Deletion of OGG 1 results in a differential signature of oxidized purine base damage in mtDNA regions. Int J Mol Sci. 2019; 20(13):3302. https://doi.org/10.3390/ijms20133302.

[15]

Lin YT, Liu W, He Y, et al. Hepatitis B virus X protein increases 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodg) level via repressing MTH1/MTH2 expression in hepatocytes. Cell Physiol Biochem. 2018; 51(1):80-96. https://doi.org/10.1159/000495166.

[16]

Jung SY, Kim YJ. C-terminal region of HBx is crucial for mitochondrial DNA damage. Cancer Lett. 2013; 331(1):76-83. https://doi.org/10.1016/j.canlet.2012.12.004.

[17]

Gillman R, Floro KL, Wankell M, et al. The role of DNA damage and repair in liver cancer. Biochim Biophys Acta Rev Cancer. 2021; 1875(1): 188493. https://doi.org/10.1016/j.bbcan.2020.188493.

[18]

Cui S, Zhang M, Bai S, et al. Development of prognostic features of hepatocellular carcinoma based on metabolic gene classification and immune and oxidative stress characteristic analysis. Oxid Med Cell Longev. 2023;2023:1847700. https://doi.org/10.1155/2023/1847700.

[19]

Zhao J, Dang X, Zhang P, et al. Insufficiency of DNA repair enzyme ATM promotes naive CD4 T-cell loss in chronic hepatitis C virus infection. Cell Discov. 2018;4:16. https://doi.org/10.1038/s41421-018-0015-4.

[20]

Elyamany A, Ghazala R, Fayed O, et al. Mitochondrial DNA copy number in hepatitis C virus-related chronic liver disease: impact of direct-acting antiviral therapy. Sci Rep. 2023; 13(1):18330. https://doi.org/10.1038/s41598-023-44665-8.

[21]

Pal S, Polyak SJ, Bano N, et al. Hepatitis C virus induces oxidative stress, DNA damage and modulates the DNA repair enzyme NEIL1. J Gastroenterol Hepatol. 2010; 25(3):627-634. https://doi.org/10.1111/j.1440-1746.2009.06128.x.

[22]

Meex RCR, Blaak EE. Mitochondrial dysfunction is a key pathway that links saturated fat intake to the development and progression of NAFLD. Mol Nutr Food Res. 2021; 65(1):e1900942. https://doi.org/10.1002/mnfr.201900942.

[23]

Wang X, Zeldin S, Shi H, et al. TAZ-induced Cybb contributes to liver tumor formation in non-alcoholic steatohepatitis. J Hepatol. 2022; 76(4):910-920. https://doi.org/10.1016/j.jhep.2021.11.031.

[24]

Ziolkowska S, Binienda A, Jablkowski M, et al. The interplay between insulin resistance, inflammation, oxidative stress, base excision repair and metabolic syndrome in nonalcoholic fatty liver disease. Int J Mol Sci. 2021; 22(20):11128. https://doi.org/10.3390/ijms222011128.

[25]

Sakamoto H, Miyanishi K, Tanaka S, et al. MUTYH is associated with hepatocarcinogenesis in a non-alcoholic steatohepatitis mouse model. Sci Rep. 2021; 11(1):3599. https://doi.org/10.1038/s41598-021-83138-8.

[26]

Marcon F, Meschini R, Iorio E, et al. Young transgenic hMTH1 mice are protected against dietary fat-induced metabolic stress-implications for enhanced longevity. Aging Cell. 2022; 21(7):e13605. https://doi.org/10.1111/acel.13605.

[27]

Vartanian V, Lowell B, Minko IG, et al. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci U S A. 2006; 103(6):1864-1869. https://doi.org/10.1073/pnas.0507444103.

[28]

Komichi D, Tazuma S, Nishioka T, et al. Glycochenodeoxycholate plays a carcinogenic role in immortalized mouse cholanglocytes via oxidative DNA damage. Free Radical Biol Med. 2005; 39(11):1418-1427. https://doi.org/10.1016/j.freeradbiomed.2005.07.005.

[29]

Li L, Yang F, Jia R, et al. Velvet antler polypeptide prevents the disruption of hepatic tight junctions via inhibiting oxidative stress in cholestatic mice and liver cell lines. Food Funct. 2020; 11(11):9752-9763. https://doi.org/10.1039/d0fo01899f.

[30]

Jia R, Yang F, Yan P, et al. Paricalcitol inhibits oxidative stress-induced cell senescence of the bile duct epithelium dependent on modulating Sirt1 pathway in cholestatic mice. Free Radical Biol Med. 2021; 169:158-168. https://doi.org/10.1016/j.freeradbiomed.2021.04.019.

[31]

Huang B, Lyu Z, Qian Q, et al. NUDT1 promotes the accumulation and longevity of CD103+ TRM cells in primary biliary cholangitis. J Hepatol. 2022; 77(5):1311-1324. https://doi.org/10.1016/j.jhep.2022.06.014.

[32]

Forsbring M, Vik ES, Dalhus B, et al. Catalytically impaired hMYH and NEIL1 mutant proteins identified in patients with primary sclerosing cholangitis and cholangiocarcinoma. Carcinogenesis. 2009; 30(7):1147-1154. https://doi.org/10.1093/carcin/bgp118.

[33]

Okina Y, Sato MM, Matsubara T, et al. TGF-β1-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells during non-alcoholic steatohepatitis. J Hepatol. 2020; 73(4):882-895. https://doi.org/10.1016/j.jhep.2020.03.051.

[34]

Ichikawa K, Okabayashi T, Shima Y, et al. Branched-chain amino acid-enriched nutrients stimulate antioxidant DNA repair in a rat model of liver injury induced by carbon tetrachloride. Mol Biol Rep. 2012; 39(12):10803-10810. https://doi.org/10.1007/s11033-012-1974-4.

[35]

Tian M, Liu W, You H, et al. Protective effect of Yiguanjian Decoction against DNA damage on concanavalin A-induced liver injury mice model. J Tradit Chin Med. 2016; 36(4):471-478. https://doi.org/10.1016/s0254-6272(16)30064-4.

[36]

Marotta F, Yoshida C, Barreto R, et al. Oxidative-inflammatory damage in cirrhosis: effect of vitamin E and a fermented papaya preparation. J Gastroenterol Hepatol. 2007; 22(5):697-703. https://doi.org/10.1111/j.1440-1746.2007.04937.x.

[37]

Maon C, Sanpavat A, Whongsiri P, et al. Oxidative stress indicated by elevated expression of Nrf2 and 8-OHdG promotes hepatocellular carcinoma progression. Med Oncol. 2017; 34(4):57. https://doi.org/10.1007/s12032-017-0914-5.

[38]

Chuma M, Hige S, Nakanishi M, et al. 8-Hydroxy-2′-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol. 2008; 23(9):1431-1436. https://doi.org/10.1111/j.1440-1746.2008.05502.x.

[39]

Tanaka H, Fujita N, Sugimoto R, et al. Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C. Br J Cancer. 2008; 98(3):580-586. https://doi.org/10.1038/sj.bjc.6604204.

[40]

Minowa O, Arai T, Hirano M, et al. Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proc Natl Acad Sci U S A. 2000; 97(8):4156-4161. https://doi.org/10.1073/pnas.050404497.

[41]

Zhang H, Jiang PJ, Lv MY, et al. OGG1 contributes to hepatocellular carcinoma by promoting cell cycle-related protein expression and enhancing DNA oxidative damage repair in tumor cells. J Clin Lab Anal. 2022; 36(7):e24561. https://doi.org/10.1002/jcla.24561.

[42]

Tsuzuki T, Egashira A, Igarashi H, et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci U S A. 2001; 98(20):11456-11461. https://doi.org/10.1073/pnas.191086798.

[43]

Guan F, Na Z, Ge Y. Therapeutic effect of down-regulation of MTH1 gene expression on HepG2 hepatocellular carcinoma in nude mice. Int J Sci. 2018; 4(7):1-5. https://doi.org/10.18483/ijSci.1728.

[44]

Yang F, Lian Q, Ni B, et al. MUTYH is a potential prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. Liver Res. 2022; 6(4):258-268. https://doi.org/10.1016/j.livres.2022.12.002.

[45]

Zhong Y, Zhang X, Feng R, et al. OGG1: an emerging multifunctional therapeutic target for the treatment of diseases caused by oxidative DNA damage. Med Res Rev. 2024; 44(6):2825-2848. https://doi.org/10.1002/med.22068.

[46]

Poletto M, Legrand AJ, Dianov GL. DNA base excision repair: The achilles’ heel of tumour cells and their microenvironment. Curr Pharm Des. 2017; 23(32):4758-4772. https://doi.org/10.2174/1381612823666170710123602.

[47]

Pérez-Pérez CM. The Bioenergetic Response to Alkylation DNA Damage: Implications to Liver Carcinogenesis. University of Puerto Rico, 2022. https://www.proquest.com/openview/c5c8ec2ed3197e06c8ac05db04731738/1?cbl=18750&diss=y&pq-origsite=gscholar.

[48]

Jiang W, Wang W, Sun L, et al. (-)-Gossypol enhances the anticancer activity of epirubicin via downregulating survivin in hepatocellular carcinoma. Chem Biol Interact. 2022;364:110060. https://doi.org/10.1016/j.cbi.2022.110060.

[49]

Zhang G, Wang Z, Chen W, et al. Dual effects of gossypol on human hepatocellular carcinoma via endoplasmic reticulum stress and autophagy. Int J Biochem Cell Biol. 2019; 113:48-57. https://doi.org/10.1016/j.biocel.2019.05.012.

[50]

Chen G, Wang R, Chen H, et al. Gossypol ameliorates liver fibrosis in diabetic rats induced by high-fat diet and streptozocin. Life Sci. 2016; 149:58-64. https://doi.org/10.1016/j.lfs.2016.02.044.

[51]

Mukhopadhyay P, Horvath B, Rajesh M, et al. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J Hepatol. 2017; 66(3):589-600. https://doi.org/10.1016/j.jhep.2016.10.023.

[52]

Newman DJ.Natural products and drug discovery. Natl Sci Rev. 2022; 9(11):nwac206. https://doi.org/10.1093/nsr/nwac206.

[53]

Damiano S, Longobardi C, Andretta E, et al. Antioxidative effects of curcumin on the hepatotoxicity induced by ochratoxin A in rats. Antioxidants. 2021; 10(1):125. https://doi.org/10.3390/antiox10010125.

[54]

You Y, Zhu F, Li Z, et al. Phyllanthin prevents diethylnitrosamine (DEN) induced liver carcinogenesis in rats and induces apoptotic cell death in HepG2 cells. Biomed Pharmacother. 2021;137:111335. https://doi.org/10.1016/j.biopha.2021.111335.

[55]

Yang L, Bi L, Jin L, et al. Geniposide ameliorates liver fibrosis through reducing oxidative stress and inflammatory respose, inhibiting apoptosis and modulating overall metabolism. Front Pharmacol. 2021;12:772635. https://doi.org/10.3389/fphar.2021.772635.

[56]

Li XX, Jiang ZH, Zhou B, et al. Hepatoprotective effect of gastrodin against alcohol-induced liver injury in mice. J Physiol Biochem. 2019; 75(1):29-37. https://doi.org/10.1007/s13105-018-0647-8.

[57]

Zhou DJ, Mu D, Jiang MD, et al. Hepatoprotective effect of juglone on dimethylnitrosamine-induced liver fibrosis and its effect on hepatic antioxidant defence and the expression levels of α-SMA and collagen III. Mol Med Report. 2015; 12(3):4095-4102. https://doi.org/10.3892/mmr.2015.3992.

[58]

Geng Y, Wang Y, Sun R, et al.Carnosol alleviates nonalcoholic fatty liver disease by inhibiting mitochondrial dysfunction and apoptosis through targeting of PRDX3. Toxicol Appl Pharmacol. 2021;432:115758. https://doi.org/10.1016/j.taap.2021.115758.

[59]

Zhang Q, Luo P, Zheng L, et al. 18β-Glycyrrhetinic acid induces ROS-mediated apoptosis to ameliorate hepatic fibrosis by targeting PRDX1/2 in activated HSCs. J Pharm Anal. 2022; 12(4):570-582. https://doi.org/10.1016/j.jpha.2022.06.001.

[60]

Luo P, Liu D, Zhang Q, et al.Celastrol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1. Acta Pharm Sin B. 2022; 12(5):2300-2314. https://doi.org/10.1016/j.apsb.2021.12.007.

[61]

Pan L, Hao W, Xue Y, et al. 8-Oxoguanine targeted by 8-oxoguanine DNA glycosylase 1 (OGG1) is central to fibrogenic gene activation upon lung injury. Nucleic Acids Res. 2023; 51(3):1087-1102. https://doi.org/10.1093/nar/gkac1241.

[62]

Tanner L, Single AB, Bhongir RKV, et al. Small-molecule-mediated OGG 1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model. Nat Commun. 2023; 14(1):643. https://doi.org/10.1038/s41467-023-36314-5.

[63]

Qiu Y, Liu B, Zhou W, et al. Repair-driven DNA tetrahedral nanomachine combined with DNAzyme for 8-oxo guanine DNA glycosylase activity assay, drug screening and intracellular imaging. Analyst. 2024; 149(2):537-545. https://doi.org/10.1039/d3an01521a.

[64]

Zuo T, Zhang Z, Jiang P, et al. Characterization of chikusetsusaponin IV and V induced apoptosis in HepG2 cancer cells. Mol Biol Rep. 2022; 49(6):4247-4255. https://doi.org/10.1007/s11033-022-07259-7.

[65]

Kim JM, Park CH, Park SK, et al. Ginsenoside Re ameliorates brain insulin resistance and cognitive dysfunction in high fat diet-induced C57BL/6 mice. J Agric Food Chem. 2017; 65(13):2719-2729. https://doi.org/10.1021/acs.jafc.7b00297.

[66]

Jiang Y, Sui D, Li M, et al. Ginsenoside Re improves inflammation and fibrosis in hepatic tissue by upregulating PPARγ expression and inhibiting oxidative stress in db/db mice. Evid Based Complement Alternat Med. 2021;2021:9003603. https://doi.org/10.1155/2021/9003603.

[67]

Du Y, Zhou Y, Yan X, et al. APE1 inhibition enhances ferroptotic cell death and contributes to hepatocellular carcinoma therapy. Cell Death Differ. 2024; 31(4):431-446. https://doi.org/10.1038/s41418-024-01270-0.

[68]

Li F, Xie Q, Qin Y, et al. Real-time monitoring and effector screening of APE1 based on rGO assisted DNA nanoprobe. Anal Biochem.. 2021;633:114394. https://doi.org/10.1016/j.ab.2021.114394.

[69]

Chen Z, Wu A, Jin H, et al. β-Sitosterol attenuates liver injury in a rat model of chronic alcohol intake. Arch Pharmacal Res. 2020; 43(11):1197-1206. https://doi.org/10.1007/s12272-020-01271-w.

[70]

Devaraj E, Roy A, Veeraragavan GR, et al. β-Sitosterol attenuates carbon tetrachloride-induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393(6):1067-1075. https://doi.org/10.1007/s00210-020-01810-8.

[71]

Abo-Zaid OAR, Moawed FSM, Ismail ES, et al. β-Sitosterol attenuates high-fat diet-induced hepatic steatosis in rats by modulating lipid metabolism, inflammation and ER stress pathway. BMC Pharmacol Toxicol. 2023; 24(1):31. https://doi.org/10.1186/s40360-023-00671-0.

[72]

Wang Y, Liu K. Therapeutic potential of oleanolic acid in liver diseases. Naunyn Schmiedebergs Arch Pharmacol. 2024; 397(7):4537-4554. https://doi.org/10.1007/s00210-024-02959-2.

[73]

Yang C, He X, Zhao J, et al. Hepatoprotection by ginsenoside Rg1 in alcoholic liver disease. Int Immunopharmacol. 2021;92:107327. https://doi.org/10.1016/j.intimp.2020.107327.

[74]

Hou Y, Gu D, Peng J, et al. Ginsenoside Rg 1 regulates liver lipid factor metabolism in NAFLD model rats. Acs Omega. 2020; 5(19):10878-10890. https://doi.org/10.1021/acsomega.0c00529.

[75]

Wei X, Chen Y, Huang W. Ginsenoside Rg 1 ameliorates liver fibrosis via suppressing epithelial to mesenchymal transition and reactive oxygen species production in vitro and in vivo. BioFactors. 2018; 44(4):327-335. https://doi.org/10.1002/biof.1432.

[76]

Liu X, Mi X, Wang Z, et al. Ginsenoside Rg 3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis. 2020; 11(6):454. https://doi.org/10.1038/s41419-020-2597-7.

[77]

Sun MY, Song YN, Zhang M, et al. Ginsenoside Rg 3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9. Oncol Lett. 2019; 17(1):965-973. https://doi.org/10.3892/ol.2018.9701.

[78]

Lee JB, Yoon SJ, Lee SH, et al. Ginsenoside Rg 3 ameliorated HFD-induced hepatic steatosis through downregulation of STAT5-PPARγ. J Endocrinol. 2017; 235(3):223-235. https://doi.org/10.1530/joe-17-0233.

[79]

Li W, Zhou J, Zhang Y, et al. Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer. Cancer Cell Int. 2021; 21(1):304. https://doi.org/10.1186/s12935-021-01890-3.

[80]

Tao Z, Zhang L, Wu T, et al. Echinacoside ameliorates alcohol-induced oxidative stress and hepatic steatosis by affecting SREBP1c/FASN pathway via PPARα. Food Chem Toxicol. 2021;148:111956. https://doi.org/10.1016/j.fct.2020.111956.

[81]

Wang W, Jiang S, Zhao Y, et al. Echinacoside: a promising active natural products and pharmacological agents. Pharmacol Res. 2023;197:106951. https://doi.org/10.1016/j.phrs.2023.106951.

[82]

Thida M, Li B, Zhang X, et al. Echinacoside alleviates acetaminophen-induced liver injury by attenuating oxidative stress and inflammatory cytokines in mice. J Appl Biomed. 2021; 19(2):105-112. https://doi.org/10.32725/jab.2021.011.

[83]

Yokoyama T, Kitakami R, Mizuguchi M. Discovery of a new class of MTH1 inhibitor by X-ray crystallographic screening. Eur J Med Chem. 2019; 167:153-160. https://doi.org/10.1016/j.ejmech.2019.02.011.

[84]

Fu T, Wang S, Liu J, et al. Protective effects of α-mangostin against acetaminophen-induced acute liver injury in mice. Eur J Pharmacol. 2018; 827:173-180. https://doi.org/10.1016/j.ejphar.2018.03.002.

[85]

Fu T, Li H, Zhao Y, et al. Hepatoprotective effect of α-mangostin against lipopolysaccharide/D-galactosamine-induced acute liver failure in mice. Biomed Pharmacother. 2018; 106:896-901. https://doi.org/10.1016/j.biopha.2018.07.034.

[86]

Choi YH, Bae JK, Chae HS, et al. α-Mangostin regulates hepatic steatosis and obesity through SirT1-AMPK and PPARγ pathways in high-fat diet-induced obese mice. J Agric Food Chem. 2015; 63(38):8399-8406. https://doi.org/10.1021/acs.jafc.5b01637.

[87]

Supawadee S, Thanet S, Wisut P, et al. Investigation of therapeutic effects of alpha-mangostin on thioacetamide-induced cirrhosis in rats. J Med Assoc Thai. 2015; 98(Suppl 9):S91-S97.

[88]

Zhang H, Tan YP, Zhao L, et al.Anticancer activity of dietary xanthone α-mangostin against hepatocellular carcinoma by inhibition of STAT3 signaling via stabilization of SHP1. Cell Death Dis. 2020; 11(1):63. https://doi.org/10.1038/s41419-020-2227-4.

[89]

Taiyab A, Choudhury A, Haidar S, et al. Exploring MTH 1 inhibitory potential of thymoquinone and baicalin for therapeutic targeting of breast cancer. Biomed Pharmacother. 2024;173:116332. https://doi.org/10.1016/j.biopha.2024.116332.

[90]

Zhang D, Zhang Y, Wang Z, et al. Thymoquinone attenuates hepatic lipid accumulation by inducing autophagy via AMPK/mTOR/ULK1-dependent pathway in nonalcoholic fatty liver disease. Phytother Res. 2023; 37(3):781-797. https://doi.org/10.1002/ptr.7662.

[91]

Geng W, Li C, Zhan Y, et al. Thymoquinone alleviates liver fibrosis via miR-30a-mediated epithelial-mesenchymal transition. J Cell Physiol. 2021; 236(5):3629-3640. https://doi.org/10.1002/jcp.30097.

[92]

Kong LY, Li GP, Yang P, et al. Protective effect of thymoquinone on cholestatic rats with liver injury. Gen Mol Res. 2015; 14(4):12247-12253. https://doi.org/10.4238/2015.October.9.13.

[93]

Aslan M, Afsar E, Kirimlioglu E, et al. Antiproliferative effects of thymoquinone in MCF-7 breast and HepG2 liver cancer cells: possible role of ceramide and ER stress. Nutr Cancer. 2021; 73(3):460-472. https://doi.org/10.1080/01635581.2020.1751216.

[94]

Hu Q, Zhang W, Wu Z, et al. Baicalin and the liver-gut system: pharmacological bases explaining its therapeutic effects. Pharmacol Res. 2021;165:105444. https://doi.org/10.1016/j.phrs.2021.105444.

[95]

Kumar N, Theil AF, Roginskaya V, et al. Global and transcription-coupled repair of 8-OxoG is initiated by nucleotide excision repair proteins. Nat Commun. 2022; 13(1):974. https://doi.org/10.1038/s41467-022-28642-9.

[96]

Song M, Li JL, Li XP, et al. Targeting human poly(ADP-ribose) polymerase-1 with natural medicines and its potential applications in ovarian cancer therapeutics. Arch Pharm. 2015; 348(11):817-823. https://doi.org/10.1002/ardp.201500183.

[97]

Liou CJ, Wu SJ, Shen SC, et al. Phloretin ameliorates hepatic steatosis through regulation of lipogenesis and Sirt1/AMPK signaling in obese mice. Cell Biosci. 2020; 10(1):114. https://doi.org/10.1186/s13578-020-00477-1.

[98]

Le CT, Nguyen G, Park SY, et al. Phloretin ameliorates succinate-induced liver fibrosis by regulating hepatic stellate cells. Endocrinol Metab. 2023; 38(4):395-405. https://doi.org/10.3803/EnM.2023.1661.

[99]

Alansari WS, Eskandrani AA. The anticarcinogenic effect of the apple polyphenol phloretin in an experimental rat model of hepatocellular carcinoma. Arab J Sci Eng. 2020; 45(6):4589-4597. https://doi.org/10.1007/s13369-020-04478-7.

[100]

Li X, Yao Y, Wei L. Indirubin alleviates CCl4-induced liver fibrosis by regulation of TGF-β-mediated signaling pathways. Iran J Basic Med Sci. 2023; 26(9):1047-1052. https://doi.org/10.22038/ijbms.2023.70476.15319.

[101]

Xue H, Wei M, Ji L. Chlorogenic acids: a pharmacological systematic review on their hepatoprotective effects. Phytomedicine. 2023;118:154961. https://doi.org/10.1016/j.phymed.2023.154961.

[102]

Zhou J, Zhang N, Aldhahrani A, et al. Puerarin ameliorates nonalcoholic fatty liver in rats by regulating hepatic lipid accumulation, oxidative stress, and inflammation. Front Immunol. 2022;13:956688. https://doi.org/10.3389/fimmu.2022.956688.

[103]

Li X, Zhang H, Pan L, et al. Puerarin alleviates liver fibrosis via inhibition of the ERK1/2 signaling pathway in thioacetamide-induced hepatic fibrosis in rats. Exp Ther Med. 2019; 18(1):133-138. https://doi.org/10.3892/etm.2019.7534.

[104]

Wang S, Shi XL, Feng M, et al. Puerarin protects against CCl4-induced liver fibrosis in mice: possible role of PARP-1 inhibition. Int Immunopharmacol. 2016; 38:238-245. https://doi.org/10.1016/j.intimp.2016.06.008.

[105]

Hu Y, Wang S, Wu L, et al.Puerarin inhibits inflammation and lipid accumulation in alcoholic liver disease through regulating MMP8. Chin J Nat Med. 2023; 21(9):670-681. https://doi.org/10.1016/s1875-5364(23)60399-1.

[106]

Fan Y, Yan LT, Yao Z, et al. Biochanin A regulates cholesterol metabolism further delays the progression of nonalcoholic fatty liver disease. Diabetes Metab Syndr Obes. 2021; 14:3161-3172. https://doi.org/10.2147/dmso.S315471.

[107]

Ibrahim MY, Alamri ZZ, Juma ASM, et al. Hepatoprotective effects of biochanin A on thioacetamide-induced liver cirrhosis in experimental rats. Molecules. 2023; 28(22):7608. https://doi.org/10.3390/molecules28227608.

[108]

Cogoi S, Ferino A, Miglietta G, et al. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res.. 2018; 46(2):661-676. https://doi.org/10.1093/nar/gkx1142.

[109]

Wang KB, Wang Y, Dickerhoff J, et al. DNA G-quadruplexes as targets for natural product drug discovery. Engineering. 2024; 38:39-51. https://doi.org/10.1016/j.eng.2024.03.015.

[110]

Song L, Luo Y, Wang X, et al. Exploring the active mechanism of berberine against HCC by systematic pharmacology and experimental validation. Mol Med Report. 2019; 20(5):4654-4664. https://doi.org/10.3892/mmr.2019.10698.

[111]

Kim SY, Hwangbo H, Lee H, et al. Induction of apoptosis by coptisine in Hep3B hepatocellular carcinoma cells through activation of the ROS-mediated JNK signaling pathway. Int J Mol Sci. 2020; 21(15):5502. https://doi.org/10.3390/ijms21155502.

[112]

Wang J, Su Q, Wu Q, et al. Sanguinarine impairs lysosomal function and induces ROS-dependent mitophagy and apoptosis in human hepatocellular carcinoma cells. Arch Pharmacal Res. 2021; 44(11):1025-1036. https://doi.org/10.1007/s12272-021-01356-0.

[113]

Takahashi S, Kim KT, Podbevsek P, et al. Recovery of the formation and function of oxidized G-quadruplexes by a pyrene-modified guanine tract. J Am Chem Soc. 2018; 140(17):5774-5783. https://doi.org/10.1021/jacs.8b01577.

[114]

Jana J, Mondal S, Bhattacharjee P, et al. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-quadruplex structures at their promoter regions. Sci Rep. 2017;7:40706. https://doi.org/10.1038/srep40706.

[115]

Bhattacharjee S, Sengupta PK, Bhowmik S. Exploring the preferential interaction of quercetin with VEGF promoter G-quadruplex DNA and construction of a pH-dependent DNA-based logic gate. Rsc Advances. 2017; 7(59):37230-37240. https://doi.org/10.1039/c7ra05930b.

[116]

Bhattacharjee S, Chakraborty S, Chorell E, et al. Importance of the hydroxyl substituents in the B-ring of plant flavonols on their preferential binding interactions with VEGF G-quadruplex DNA: multi-spectroscopic and molecular modeling studies. Int J Biol Macromol. 2018; 118(PtA):629-639. https://doi.org/10.1016/j.ijbiomac.2018.06.115.

[117]

Sanchez MV, del Carmen PCM, Soriano LA, et al. Gallic acid: a natural phenolic compound exerting antitumoral activities in colorectal cancer via interaction with G-quadruplexes. Cancers (Basel). 2022; 14(11):2648. https://doi.org/10.3390/cancers14112648.

[118]

Lin Y, Zhang Q, Xie B, et al. Chelerythrine-induced apoptotic cell death in HepG2 cells involves the inhibition of Akt pathway and the activation of oxidative stress and mitochondrial apoptotic pathway. Antioxidants. 2022; 11(9):1837. https://doi.org/10.3390/antiox11091837.

[119]

Hisaka T, Sakai H, Sato T, et al. Quercetin suppresses proliferation of liver cancer cell lines in vitro. Anticancer Res. 2020; 40(8):4695-4700. https://doi.org/10.21873/anticanres.14469.

[120]

Sharma N, Biswas S, Al-Dayan N, et al. Antioxidant role of kaempferol in prevention of hepatocellular carcinoma. Antioxidants. 2021; 10(9):1419. https://doi.org/10.3390/antiox10091419.

[121]

Sun G, Zhang S, Xie Y, et al. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol Lett. 2016; 11(1):150-158. https://doi.org/10.3892/ol.2015.3845.

[122]

Wang D, Lao L, Pang X, et al. Asiatic acid from Potentilla chinensis alleviates non-alcoholic fatty liver by regulating endoplasmic reticulum stress and lipid metabolism. Int Immunopharmacol. 2018; 65:256-267. https://doi.org/10.1016/j.intimp.2018.10.013.

[123]

Fan C, Ling-hu A, Sun D, et al. Nobiletin ameliorates hepatic lipid deposition, oxidative stress, and inflammation by mechanisms that involve the Nrf2/NF-κB axis in nonalcoholic fatty liver disease. J Agric Food Chem. 2023; 71(50):20105-20117. https://doi.org/10.1021/acs.jafc.3c06498.

[124]

Pan PH, Lin SY, Wang YY, et al. Protective effects of rutin on liver injury induced by biliary obstruction in rats. Free Radical Biol Med. 2014; 73:106-116. https://doi.org/10.1016/j.freeradbiomed.2014.05.001.

[125]

Wang X, Tian H, Chen J, et al. Isobavachalcone attenuates liver fibrosis via activation of the Nrf2/HO-1 pathway in rats. Int Immunopharmacol. 2024;128:111398. https://doi.org/10.1016/j.intimp.2023.111398.

[126]

Chen T, Wang Q, Liu C, et al. Ovatodiolide inhibited hepatocellular carcinoma stemness through SP1/MTDH/STAT3 signaling pathway. Chem Biol Interact. 2024;400:111161. https://doi.org/10.1016/j.cbi.2024.111161.

[127]

Farombi EO, Shrotriya S, Surh YJ.Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-κB and AP-1. Life Sci. 2009; 84(5-6):149-155. https://doi.org/10.1016/j.lfs.2008.11.012.

[128]

Zhang H, Yang S, Wang J, et al. Blockade of AMPK-mediated cAMP-PKA-CREB/ATF1 signaling synergizes with aspirin to inhibit hepatocellular carcinoma. Cancers (Basel). 2021; 13(7):1738. https://doi.org/10.3390/cancers13071738.

[129]

Li XM, Wu ZJ, Fan JY, et al. Role of 8-hydroxyguanine DNA glycosidase 1 deficiency in exacerbating diabetic cardiomyopathy through the regulation of insulin resistance. J Mol Cell Cardiol. 2024; 194:3-15. https://doi.org/10.1016/j.yjmcc.2024.05.012.

[130]

Alfarhan MW, Al-Hussaini H, Kilarkaje N. Role of PPAR-γ in diabetes-induced testicular dysfunction, oxidative DNA damage and repair in leptin receptor-deficient obese type 2 diabetic mice. Chem Biol Interact. 2022;361:109958. https://doi.org/10.1016/j.cbi.2022.109958.

[131]

Nakajima T, Kamijo Y, Tanaka N, et al. Peroxisome proliferator-activated receptor α protects against alcohol-induced liver damage. Hepatology. 2004; 40(4):972-980. https://doi.org/10.1002/hep.20399.

[132]

Liu Y, Chen X, Qiu M, et al. Emodin ameliorates ethanol-induced fatty liver injury in mice. Pharmacology. 2014; 94(1-2):71-77. https://doi.org/10.1159/000363413.

[133]

Kim MJ, Sim MO, Lee HI, et al. Dietary umbelliferone attenuates alcohol-induced fatty liver via regulation of PPARα and SREBP-1c in rats. Alcohol. 2014; 48(7):707-715. https://doi.org/10.1016/j.alcohol.2014.08.008.

[134]

Xia SF, Le GW, Wang P, et al. Regressive effect of myricetin on hepatic steatosis in mice fed a high-fat diet. Nutrients. 2016; 8(12):799. https://doi.org/10.3390/nu8120799.

[135]

Pai SA, Munshi RP, Panchal FH, et al. Plumbagin reduces obesity and nonalcoholic fatty liver disease induced by fructose in rats through regulation of lipid metabolism, inflammation and oxidative stress. Biomed Pharmacother. 2019; 111:686-694. https://doi.org/10.1016/j.biopha.2018.12.139.

PDF (14142KB)

164

Accesses

0

Citation

Detail

Sections
Recommended

/