Expanding molecular diversity of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products by radical S-adenosylmethionine (SAM) enzymes: recent advances and mechanistic insights

Jiawei Feng , Jiarong Mo , Xinya Hemu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (3) : 257 -268.

PDF (11880KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (3) :257 -268. DOI: 10.1016/S1875-5364(25)60845-4
Review
research-article

Expanding molecular diversity of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products by radical S-adenosylmethionine (SAM) enzymes: recent advances and mechanistic insights

Author information +
History +
PDF (11880KB)

Abstract

Ribosomally synthesized and post-translationally modified peptides (RiPPs) constitute a vast and diverse family of bioactive peptides. These peptides, synthesized by ribosomes and subsequently modified by various tailoring enzymes, possess a wide chemical space. Among these modifications, radical S-adenosylmethionine (rSAM) enzymes employ unique radical chemistry to introduce a variety of novel peptide structures, which are crucial for their activity. This review examines the major types of modifications in RiPPs catalyzed by rSAM enzymes, incorporating recent advancements in protein structure analysis techniques and computational methods. Additionally, it elucidates the diverse catalytic mechanisms and substrate selectivity of these enzymes through an analysis of the latest crystal structures.

Keywords

Ribosomally synthesized and post-translationally modified peptides / Radical S-adenosylmethionine / Epimerization / Methylation / Side-chain cross-linking

Cite this article

Download citation ▾
Jiawei Feng, Jiarong Mo, Xinya Hemu. Expanding molecular diversity of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products by radical S-adenosylmethionine (SAM) enzymes: recent advances and mechanistic insights. Chinese Journal of Natural Medicines, 2025, 23(3): 257-268 DOI:10.1016/S1875-5364(25)60845-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Montalbán-López M, Scott TA, Ramesh S, et al.New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep. 2021; 38(1):130-239. https://doi.org/10.1039/D0NP00027B.

[2]

Peng H, Wang J, Chen J, et al. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin Drug Deliv. 2023; 20(10):1349-1369. https://doi.org/10.1080/17425247.2023.2237408.

[3]

Lubelski J, Rink R, Khusainov R, et al. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci. 2008; 65(3):455-476. https://doi.org/10.1007/s00018-007-7171-2.

[4]

Imai Y, Meyer KJ, Iinishi A, et al. A new antibiotic selectively kills Gram-negative pathogens. Nature. 2019; 576(7787):459-464. https://doi.org/10.1038/s41586-019-1791-1.

[5]

Ding W, Liu WQ, Jia Y, et al. Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes. Proc Natl Acad Sci U S A. 2016; 113(13):3521-3526. https://doi.org/10.1073/pnas.1522907113.

[6]

Wang L, Li MD, Cao PP, et al. Astin B, a tide from Aster tataricus, induces apoptosis and autophagy in human hepatic L-02 cells. Chem Biol Interact. 2014; 223:1-9. https://doi.org/10.1016/j.cbi.2014.09.003.

[7]

Akondi KB, Muttenthaler M, Dutertre S, et al. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev. 2014; 114(11):5815-5847. https://doi.org/10.1021/cr400401e.

[8]

Kong Y, Wang Y, Yang W, et al. LX0702, a novel snake venom peptide derivative, inhibits thrombus formation via affecting the binding of fibrinogen with GPIIb/IIIa. J Pharmacol Sci. 2015; 127(4):462-466. https://doi.org/10.1016/j.jphs.2015.03.010.

[9]

Zou X, He Y, Qiao J, et al. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells. Toxicon. 2016; 109:33-41. https://doi.org/10.1016/j.toxicon.2015.11.005.

[10]

Yang HL, Shen ZQ, Liu X, et al. Two novel antimicrobial peptides from skin venoms of spadefoot toad Megophrys minor. Chin J Nat Med. 2016; 14(4):294-298. https://doi.org/10.1016/S1875-5364(16)30030-9.

[11]

Jin AH, Muttenthaler M, Dutertre S, et al.Conotoxins: chemistry and biology. Chem Rev. 2019; 119(21):11510-11549. https://doi.org/10.1021/acs.chemrev.9b00207.

[12]

Zou X, Wang Y, Yu Y, et al. BmK NSP, a new sodium channel activator from Buthus martensii Karsch, promotes neurite outgrowth in primary cultured spinal cord neurons. Toxicon. 2020; 182:13-20. https://doi.org/10.1016/j.toxicon.2020.04.096.

[13]

Zheng YZ, Ji XR, Liu YY, et al. WPK5, a novel kunitz-type peptide from the leech Whitmania pigra inhibiting factor XIa, and its loop-replaced mutant to improve potency. Biomedicines. 2021; 9(12):1745. https://doi.org/10.3390/biomedicines9121745.

[14]

Jia Z, Liu Y, Ji X, et al. DAKS1, a kunitz scaffold peptide from the venom gland of Deinagkistrodon acutus prevents carotid-artery and middle-cerebral-artery thrombosis via targeting factor XIa. Pharmaceuticals. 2021; 14(10):966. https://doi.org/10.3390/ph14100966.

[15]

Huang J, Song W, Hua H, et al. Antithrombotic and anticoagulant effects of a novel protein isolated from the venom of the Deinagkistrodon acutus snake. Biomed Pharmacother. 2021;138:111527. https://doi.org/10.1016/j.biopha.2021.111527.

[16]

Li T, Xi C, Yu Y, et al. Targeted discovery of amantamide B, an ion channel modulating nonapeptide from a South China Sea Oscillatoria cyanobacterium. J Nat Prod. 2022; 85(3):493-500. https://doi.org/10.1021/acs.jnatprod.1c00983.

[17]

Colgrave ML, Kotze AC, Kopp S, et al. Anthelmintic activity of cyclotides: in vitro studies with canine and human hookworms. Acta Trop. 2009; 109(2):163-166. https://doi.org/10.1016/j.actatropica.2008.11.003.

[18]

Morita H, Shimbo K, Shigemori H, et al. Antimitotic activity of moroidin, a bicyclic peptide from the seeds of Celosia argentea. Bioorg Med Chem Lett. 2000; 10(5):469-471. https://doi.org/10.1016/s0960-894x(00)00029-9.

[19]

Liu FJ, Zhu ZH, Jiang Y, et al. A pair of cyclopeptide epimers from the seeds of Celosia argentea. Chin J Nat Med. 2018; 16(1):63-69. https://doi.org/10.1016/S1875-5364(18)30030-X.

[20]

Kersten RD, Mydy LS, Fallon TR, et al. Gene-guided discovery and ribosomal biosynthesis of moroidin peptides. J Am Chem Soc. 2022; 144(17):7686-7692. https://doi.org/10.1021/jacs.2c00014.

[21]

Hetrick KJ, Van Der DWA. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr Opin Chem Biol. 2017; 38:36-44. https://doi.org/10.1016/j.cbpa.2017.02.005.

[22]

Funk MA, Van Der DWA. Ribosomal natural products, tailored to fit. Acc Chem Res. 2017; 50(7):1577-1586. https://doi.org/10.1021/acs.accounts.7b00175.

[23]

Freeman MF, Gurgui C, Helf MJ, et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science. 2012; 338(6105):387-390. https://doi.org/10.1126/science.1226121.

[24]

Fujimori DG.Radical SAM-mediated methylation reactions. Curr Opin Chem Biol. 2013; 17(4):597-604. https://doi.org/10.1016/j.cbpa.2013.05.032.

[25]

Bauerle MR, Schwalm EL, Booker SJ. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J Biol Chem. 2015; 290(7):3995-4002. https://doi.org/10.1074/jbc.R114.607044.

[26]

Schramma KR, Bushin LB, Seyedsayamdost MR. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat Chem. 2015; 7(5):431-437. https://doi.org/10.1038/nchem.2237.

[27]

Parent A, Benjdia A, Guillot A, et al. Mechanistic investigations of PoyD, a radical S-adenosyl-L-methionine enzyme catalyzing iterative and directional epimerizations in polytheonamide A biosynthesis. J Am Chem Soc. 2018; 140(7):2469-2477. https://doi.org/10.1021/jacs.7b08402.

[28]

Morinaka BI, Lakis E, Verest M, et al. Natural noncanonical protein splicing yields products with diverse β-amino acid residues. Science. 2018; 359(6377):779-782. https://doi.org/10.1126/science.aao0157.

[29]

Ayikpoe R, Govindarajan V, Latham JA. Occurrence, function, and biosynthesis of mycofactocin. Appl Microbiol Biotechnol. 2019; 103(7):2903-2912. https://doi.org/10.1007/s00253-019-09684-4.

[30]

Sofia HJ, Chen G, Hetzler BG, et al. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 2001; 29(5):1097-1106. https://doi.org/10.1093/nar/29.5.1097.

[31]

Frey PA, Hegeman AD, Ruzicka FJ.The radical SAM superfamily. Crit Rev Biochem Mol Biol. 2008; 43(1):63-88. https://doi.org/10.1080/10409230701829169.

[32]

Vey JL, Drennan CL. Structural insights into radical generation by the radical SAM superfamily. Chem Rev. 2011; 111(4):2487-2506. https://doi.org/10.1021/cr9002616.

[33]

Benjdia A, Balty C, Berteau O. Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Front Chem. 2017;5:87. https://doi.org/10.3389/fchem.2017.00087.

[34]

Mahanta N, Hudson GA, Mitchell DA. Radical S-adenosylmethionine enzymes involved in RiPP biosynthesis. Biochemistry. 2017; 56(40):5229-5244. https://doi.org/10.1021/acs.biochem.7b00771.

[35]

Benjdia A, Berteau O. Radical SAM enzymes and ribosomally‐synthesized and post‐translationally modified peptides: a growing importance in the microbiomes. Front Chem. 2021;9:678068. https://doi.org/10.3389/fchem.2021.678068.

[36]

Moody JD, Hill S, Lundahl MN, et al. Computational engineering of previously crystallized pyruvate formate-lyase activating enzyme reveals insights into SAM binding and reductive cleavage. J Biol Chem. 2023; 299(6):104791. https://doi.org/10.1016/j.jbc.2023.104791.

[37]

Broderick JB, Duffus BR, Duschene KS, et al.Radical S-adenosylmethionine enzymes. Chem Rev. 2014; 114(8):4229-4317. https://doi.org/10.1021/cr4004709.

[38]

Horitani M, Shisler K, Broderick WE, et al. Radical SAM catalysis via an organometallic intermediate with an Fe-[5′-C]-deoxyadenosyl bond. Science. 2016; 352(6287):822-825. https://doi.org/10.1126/science.aaf5327.

[39]

Hoffman BM, Broderick WE, Broderick JB. Mechanism of radical initiation in the radical SAM enzyme superfamily. Annu Rev Biochem. 2023; 92:333-349. https://doi.org/10.1146/annurev-biochem-052621-090638.

[40]

Ogasawara Y, Dairi T. Peptide epimerization machineries found in microorganisms. Front Microbiol. 2018;9:156. https://doi.org/10.3389/fmicb.2018.00156.

[41]

Flühe L, Marahiel MA. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis. Curr Opin Chem Biol. 2013; 17(4):605-612. https://doi.org/10.1016/j.cbpa.2013.06.031.

[42]

Chen Y, Wang J, Li G, et al. Current advancements in sactipeptide natural products. Front Chem. 2021;9:595991. https://doi.org/10.3389/fchem.2021.595991.

[43]

Guo S, Wang S, Ma S, et al. Radical SAM-dependent ether crosslink in daropeptide biosynthesis. Nat Commun. 2022; 13(1):2361. https://doi.org/10.1038/s41467-022-30084-2.

[44]

Johnson BA, Clark KA, Bushin LB, et al. Expanding the landscape of noncanonical amino acids in RiPP biosynthesis. J Am Chem Soc. 2024; 146(6):3805-3815. https://doi.org/10.1021/jacs.3c10824.

[45]

Zhang Q, Li Y, Chen D, et al.Radical-mediated enzymatic carbon chain fragmentation-recombination. Nat Chem Biol. 2011; 7(3):154-160. https://doi.org/10.1038/nchembio.512.

[46]

Zhang Q, Van Der DWA, Liu W. Radical-mediated enzymatic methylation: a tale of two SAMS. Acc Chem Res. 2012; 45(4):555-564. https://doi.org/10.1021/ar200202c.

[47]

Grell TAJ, Goldman PJ, Drennan CL. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes. J Biol Chem. 2015; 290(7):3964-3971. https://doi.org/10.1074/jbc.R114.581249.

[48]

Bushin LB, Clark KA, Pelczer I, et al. Charting an unexplored streptococcal biosynthetic landscape reveals a unique peptide cyclization motif. J Am Chem Soc. 2018; 140(50):17674-17684. https://doi.org/10.1021/jacs.8b10266.

[49]

He B, Cheng Z, Zhong Z, et al. Expanded sequence space of radical S‐adenosylmethionine‐dependent enzymes involved in post‐translational macrocyclization. Angew Chem Int Ed Engl. 2022; 61(48):e202212447. https://doi.org/10.1002/anie.202212447.

[50]

Oberg N, Precord TW, Mitchell DA, et al. RadicalSAM. org: a resource to interpret sequence-function space and discover new radical sam enzyme chemistry. ACS Bio Med Chem Au. 2022; 2(1):22-35. https://doi.org/10.1021/acsbiomedchemau.1c00048.

[51]

Benjdia A, Guillot A, Ruffié P, et al. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nat Chem. 2017; 9(7):698-707. https://doi.org/10.1038/nchem.2714.

[52]

Friedel MG, Berteau O, Pieck JC, et al. The spore photoproduct lyase repairs the 5S- and not the 5R-configured spore photoproduct DNA lesion. Chem Commun (Camb). 2006; 4:445-447. https://doi.org/10.1039/b514103f.

[53]

Chandor PA, Berteau O, Douki T, et al. DNA repair and free radicals, new insights into the mechanism of spore photoproduct lyase revealed by single amino acid substitution. J Biol Chem. 2008; 283(52):36361-36368. https://doi.org/10.1074/jbc.M806503200.

[54]

Berteau O, Benjdia A. DNA repair by the radical SAM enzyme spore photoproduct lyase: from biochemistry to structural investigations. Photochem Photobiol. 2017; 93(1):67-77. https://doi.org/10.1111/php.12702.

[55]

Morinaka BI, Vagstad AL, Helf MJ, et al. Radical S‐adenosyl methionine epimerases: regioselective introduction of diverse D‐amino acid patterns into peptide natural products. Angew Chem Int Ed Engl. 2014; 53(32):8503-8507. https://doi.org/10.1002/anie.201400478.

[56]

Méjean A, Mazmouz R, Mann S, et al. The genome sequence of the cyanobacterium Oscillatoria sp. PCC 6506 reveals several gene clusters responsible for the biosynthesis of toxins and secondary metabolites. J Bacteriol. 2010; 192(19):5264-5265. https://doi.org/10.1128/JB.00704-10.

[57]

Thiel T, Pratte BS, Zhong J, et al.Complete genome sequence of Anabaena variabilis ATCC 29413. Stand Genomic Sci. 2014; 9(3):562-573. https://doi.org/10.4056/sigs.3899418.

[58]

Shih PM, Wu D, Latifi A, et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A. 2013; 110(3):1053-1058. https://doi.org/10.1073/pnas.1217107110.

[59]

Pei ZF, Zhu L, Nair SK. Core-dependent post-translational modifications guide the biosynthesis of a new class of hypermodified peptides. Nat Commun. 2023; 14(1):7734. https://doi.org/10.1038/s41467-023-43604-5.

[60]

Popp PF, Friebel L, Benjdia A, et al. The epipeptide biosynthesis locus epeXEPAB is widely distributed in Firmicutes and triggers intrinsic cell envelope stress. Microb Physiol. 2021; 31(3):306-318. https://doi.org/10.1159/000516750.

[61]

Butcher BG, Lin YP, Helmann JD. The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the liars two-component system. J Bacteriol. 2007; 189(23):8616-8625. https://doi.org/10.1128/JB.01181-07.

[62]

Kubiak X, Polsinelli I, Chavas LMG, et al. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme. Nat Chem Biol. 2024; 20(3):382-391. https://doi.org/10.1038/s41589-023-01493-1.

[63]

Grillo MA, Colombatto S.S-adenosylmethionine and its products. Amino Acids. 2008; 34(2):187-193. https://doi.org/10.1007/s00726-007-0500-9.

[64]

O'Hagan D, Schmidberger JW. Enzymes that catalyse SN2 reaction mechanisms. Nat Prod Rep. 2010; 27(6):900-918. https://doi.org/10.1039/b919371p.

[65]

Yan F, LaMarre JM, Röhrich R, et al. RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA. J Am Chem Soc. 2010; 132(11):3953-3964. https://doi.org/10.1021/ja910850y.

[66]

Hu Y, Ribbe MW. Maturation of nitrogenase cofactor-the role of a class E radical SAM methyltransferase NifB. Curr Opin Chem Biol. 2016; 31:188-194. https://doi.org/10.1016/j.cbpa.2016.02.016.

[67]

Nguyen TQ, Nicolet Y. Structure and catalytic mechanism of radical SAM methylases. Life. 2022; 12(11):1732. https://doi.org/10.3390/life12111732.

[68]

Cheng J, Liu WQ, Zhu X, et al.Functional diversity of HemN-like proteins. ACS Bio Med Chem Au. 2022; 2(2):109-119. https://doi.org/10.1021/acsbiomedchemau.1c00058.

[69]

Freeman MF, Helf MJ, Bhushan A, et al. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat Chem. 2017; 9(4):387-395. https://doi.org/10.1038/nchem.2666.

[70]

Parent A, Guillot A, Benjdia A, et al. The B12-radical SAM enzyme PoyC catalyzes valine Cβ-methylation during polytheonamide biosynthesis. J Am Chem Soc. 2016; 138(48):15515-15518. https://doi.org/10.1021/jacs.6b06697.

[71]

Huo L, Rachid S, Stadler M, et al. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem Biol. 2012; 19(10):1278-1287. https://doi.org/10.1016/j.chembiol.2012.08.013.

[72]

Pierre S, Guillot A, Benjdia A, et al. Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nat Chem Biol. 2012; 8(12):957-959. https://doi.org/10.1038/nchembio.1091.

[73]

Benjdia A, Pierre S, Gherasim C, et al. The thiostrepton A tryptophan methyltransferase TsrM catalyses a Cob(II)Alamin-dependent methyl transfer reaction. Nat Commun. 2015;6:8377. https://doi.org/10.1038/ncomms9377.

[74]

Blaszczyk AJ, Knox HL, Booker SJ. Understanding the role of electron donors in the reaction catalyzed by Tsrm, a cobalamin-dependent radical S-adenosylmethionine methylase. J Biol Inorg Chem. 2019; 24(6):831-839. https://doi.org/10.1007/s00775-019-01689-8.

[75]

Knox HL, Chen PT, Blaszczyk AJ, et al. Structural basis for non-radical catalysis by TsrM, a radical SAM methylase. Nat Chem Biol. 2021; 17(4):485-491. https://doi.org/10.1038/s41589-020-00717-y.

[76]

Ding W, Li Y, Zhao J, et al. The catalytic mechanism of the class C radical S‐adenosylmethionine methyltransferase NosN. Angew Chem Int Ed Engl. 2017; 56(14):3857-3861. https://doi.org/10.1002/anie.201609948.

[77]

Schinke C, Martins T, Queiroz SCN, et al.Antibacterial compounds from marine bacteria, 2010-2015. J Nat Prod. 2017; 80(4):1215-1228. https://doi.org/10.1021/acs.jnatprod.6b00235.

[78]

Jin WB, Wu S, Xu YF, et al. Recent advances in HemN-like radical S-adenosyl-L-methionine enzyme-catalyzed reactions. Nat Prod Rep. 2020; 37(1):17-28. https://doi.org/10.1039/c9np00032a.

[79]

Zhang Z, Mahanta N, Hudson GA, et al. Mechanism of a class C radical S-adenosyl-L-methionine thiazole methyl transferase. J Am Chem Soc. 2017; 139(51):18623-18631. https://doi.org/10.1021/jacs.7b10203.

[80]

Mahanta N, Zhang Z, Hudson GA, et al. Reconstitution and substrate specificity of the radical S-adenosyl-methionine thiazole C-methyltransferase in thiomuracin biosynthesis. J Am Chem Soc. 2017; 139(12):4310-4313. https://doi.org/10.1021/jacs.7b00693.

[81]

Repka LM, Chekan JR, Nair SK, et al. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem Rev. 2017; 117(8):5457-5520. https://doi.org/10.1021/acs.chemrev.6b00591.

[82]

Hudson GA, Burkhart BJ, DiCaprio AJ, et al. Bioinformatic mapping of radical S-adenosylmethionine-dependent ribosomally synthesized and post-translationally modified peptides identifies new Cα, Cβ, and Cγ-linked thioether-containing peptides. J Am Chem Soc. 2019; 141(20):8228-8238. https://doi.org/10.1021/jacs.9b01519.

[83]

Babasaki K, Takao T, Shimonishi Y, et al. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem. 1985; 98(3):585-603. https://doi.org/10.1093/oxfordjournals.jbchem.a135315.

[84]

Lee H, Churey JJ, Worobo RW. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett. 2009; 299(2):205-213. https://doi.org/10.1111/j.1574-6968.2009.01749.x.

[85]

Rea MC, Sit CS, Clayton E, et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci USA. 2010; 107(20):9352-9357. https://doi.org/10.1073/pnas.0913554107.

[86]

Sit CS, McKay RT, Hill C, et al. The 3D structure of thuricin CD, a two-component bacteriocin with cysteine sulfur to α-carbon cross-links. J Am Chem Soc. 2011; 133(20):7680-7683. https://doi.org/10.1021/ja201802f.

[87]

Liu WT, Yang YL, Xu Y, et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc Natl Acad Sci U S A. 2010; 107(37):16286-16290. https://doi.org/10.1073/pnas.1008368107.

[88]

Flühe L, Burghaus O, Wieckowski BM, et al. Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor. J Am Chem Soc. 2013; 135(3):959-962. https://doi.org/10.1021/ja310542g.

[89]

Duarte AFDS, Ceotto VH, Barrias ES, et al. Hyicin 4244, the first sactibiotic described in Staphylococci, exhibits an anti-staphylococcal biofilm activity. Int J Antimicrob Agents. 2018; 51(3):349-356. https://doi.org/10.1016/j.ijantimicag.2017.06.025.

[90]

Mo T, Ji X, Yuan W, et al. Thuricin Z: a narrow‐spectrum sactibiotic that targets the cell membrane. Angew Chem Int Ed Engl. 2019; 58(52):18793-18797. https://doi.org/10.1002/anie.201908490.

[91]

Chiumento S, Roblin C, Kieffer JS, et al. Ruminococcin C, a promising antibiotic produced by a human gut symbiont. Sci Adv. 2019; 5(9):eaaw9969. https://doi.org/10.1126/sciadv.aaw9969.

[92]

Balty C, Guillot A, Fradale L, et al. Biosynthesis of the sactipeptide ruminococcin C by the human microbiome: mechanistic insights into thioether bond formation by radical SAM enzymes. J Biol Chem. 2020; 295(49):16665-16677. https://doi.org/10.1074/jbc.RA120.015371.

[93]

Roblin C, Chiumento S, Bornet O, et al. The unusual structure of ruminococcin C1 antimicrobial peptide confers clinical properties. Proc Natl Acad Sci U S A. 2020; 117(32):19168-19177. https://doi.org/10.1073/pnas.2004045117.

[94]

Bushin LB, Covington BC, Rued BE, et al. Discovery and biosynthesis of streptosactin, a sactipeptide with an alternative topology encoded by commensal bacteria in the human microbiome. J Am Chem Soc. 2020; 142(38):16265-16275. https://doi.org/10.1021/jacs.0c05546.

[95]

Flühe L, Knappe TA, Gattner MJ, et al. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol. 2012; 8(4):350-357. https://doi.org/10.1038/nchembio.798.

[96]

Bruender NA, Wilcoxen J, Britt RD, et al. Biochemical and spectroscopic characterization of a radical S-adenosyl-L-methionine enzyme involved in the formation of a peptide thioether cross-link. Biochemistry. 2016; 55(14):2122-2134. https://doi.org/10.1021/acs.biochem.6b00145.

[97]

Benjdia A, Guillot A, Lefranc B, et al. Thioether bond formation by SPASM domain radical SAM enzymes: Cα H-atom abstraction in subtilosin a biosynthesis. Chem Commun (Camb). 2016; 52(37):6249-6252. https://doi.org/10.1039/c6cc01317a.

[98]

Ding W, Li Y, Zhang Q. Substrate-controlled stereochemistry in natural product biosynthesis. ACS Chem Biol. 2015; 10(7):1590-1598. https://doi.org/10.1021/acschembio.5b00104.

[99]

Grove TL, Himes PM, Hwang S, et al. Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J Am Chem Soc. 2017; 139(34):11734-11744. https://doi.org/10.1021/jacs.7b01283.

[100]

Caruso A, Bushin LB, Clark KA, et al. Radical approach to enzymatic β-thioether bond formation. J Am Chem Soc. 2019; 141(2):990-997. https://doi.org/10.1021/jacs.8b11060.

[101]

Zorzi A, Deyle K, Heinis C. Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol. 2017; 38:24-29. https://doi.org/10.1016/j.cbpa.2017.02.006.

[102]

Clark KA, Seyedsayamdost MR. Bioinformatic atlas of radical SAM enzyme-modified RiPP natural products reveals an isoleucine-tryptophan crosslink. J Am Chem Soc. 2022; 144(39):17876-17888. https://doi.org/10.1021/jacs.2c06497.

[103]

Caruso A, Martinie RJ. Macrocyclization via an arginine-tyrosine crosslink broadens the reaction scope of radical S-adenosylmethionine enzymes. J Am Chem Soc. 2019; 141(42):16610-16614. https://doi.org/10.1021/jacs.9b09210.

[104]

Davis KM, Schramma KR, Hansen WA, et al. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition. Proc Natl Acad Sci U S A. 2017; 114(39):10420-10425. https://doi.org/10.1073/pnas.1703663114.

[105]

Balo AR, Caruso A, Tao L, et al. Trapping a cross-linked lysine-tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB. Proc Natl Acad Sci U S A. 2021; 118(21):e2101571118. https://doi.org/10.1073/pnas.2101571118.

[106]

Clark KA, Bushin LB, Seyedsayamdost MR. Aliphatic ether bond formation expands the scope of radical SAM enzymes in natural product biosynthesis. J Am Chem Soc. 2019; 141(27):10610-10615. https://doi.org/10.1021/jacs.9b05151.

[107]

Hug JJ, Dastbaz J, Adam S, et al. Biosynthesis of cittilins, unusual ribosomally synthesized and post-translationally modified peptides from Myxococcus xanthus. ACS Chem Biol. 2020; 15(8):2221-2231. https://doi.org/10.1021/acschembio.0c00430.

[108]

Zdouc MM, Alanjary MM, Zarazúa GS, et al. A biaryl-linked tripeptide from Planomonospora reveals a widespread class of minimal RiPP Gene clusters. Cell Chem Biol. 2021; 28(5):733-739.e4. https://doi.org/10.1016/j.chembiol.2020.11.009.

[109]

Greule A, Izoré T, Iftime D, et al. Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics. Nat Commun. 2019; 10(1):2613. https://doi.org/10.1038/s41467-019-10384-w.

[110]

Li X, Ma S, Zhang Q. Chemical synthesis and biosynthesis of darobactin. Tetrahedron Lett. 2023;116:154337. https://doi.org/10.1016/j.tetlet.2023.154337.

[111]

Ma S, Guo S, Ding W, et al.Daropeptide natural products. Explor Drug Sci. 2024;2:190-202.

[112]

Nguyen H, Made Kresna ID, Böhringer N, et al. Characterization of a radical SAM oxygenase for the ether crosslinking in darobactin biosynthesis. J Am Chem Soc. 2022; 144(41):18876-18886. https://doi.org/10.1021/jacs.2c05565.

[113]

Ma S, Xi W, Wang S, et al. Substrate-controlled catalysis in the ether cross-link-forming radical SAM enzymes. J Am Chem Soc. 2023; 145(42):22945-22953. https://doi.org/10.1021/jacs.3c04355.

[114]

Bushin LB, Covington BC, Clark KA, et al. Bicyclostreptins are radical SAM enzyme-modified peptides with unique cyclization motifs. Nat Chem Biol. 2022; 18(10):1135-1143. https://doi.org/10.1038/s41589-022-01090-8.

[115]

Nguyen TQN, Tooh YW, Sugiyama R, et al. Post-translational formation of strained cyclophanes in bacteria. Nat Chem. 2020; 12(11):1042-1053. https://doi.org/10.1038/s41557-020-0519-z.

[116]

Zhu W, Walker LM, Tao L, et al. Structural properties and catalytic implications of the SPASM domain iron-sulfur clusters in Methylorubrum extorquens PqqE. J Am Chem Soc. 2020; 142(29):12620-12634. https://doi.org/10.1021/jacs.0c02044.

[117]

Ma S, Chen H, Li H, et al. Post‐translational formation of aminomalonate by a promiscuous peptide‐modifying radical SAM enzyme. Angew Chem Int Ed Engl. 2021; 60(36):19957-19964. https://doi.org/10.1002/anie.202107192.

[118]

Zhu W, Iavarone AT, Klinman JP. Hydrogen-deuterium exchange mass spectrometry identifies local and long-distance interactions within the multicomponent radical SAM enzyme, PqqE. ACS Cent Sci. 2024; 10(2):251-263. https://doi.org/10.1021/acscentsci.3c01023.

[119]

Booker SJ, Lloyd CT. Twenty years of radical SAM! The genesis of the superfamily. ACS Bio Med Chem Au. 2022; 2(6):538-547. https://doi.org/10.1021/acsbiomedchemau.2c00078.

PDF (11880KB)

101

Accesses

0

Citation

Detail

Sections
Recommended

/