Emd-D inhibited ovarian cancer progression via PFKFB4-dependent glycolysis and apoptosis

Xin Zhao , Chao Chen , Xuefei Feng , Haoqi Lei , Lingling Qi , Hongxia Zhang , Haiying Xu , Jufeng Wan , Yan Zhang , Baofeng Yang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) : 431 -442.

PDF (6574KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) :431 -442. DOI: 10.1016/S1875-5364(25)60843-0
Original article
research-article

Emd-D inhibited ovarian cancer progression via PFKFB4-dependent glycolysis and apoptosis

Author information +
History +
PDF (6574KB)

Abstract

Ovarian cancer poses a significant threat to women’s health, necessitating effective therapeutic strategies. Emd-D, an emodin derivative, demonstrates enhanced pharmaceutical properties and bioavailability. In this study, Cell Counting Kit 8 (CCK8) assays and Ki-67 staining revealed dose-dependent inhibition of cell proliferation by Emd-D. Migration and invasion experiments confirmed its inhibitory effects on OVHM cells, while flow cytometry analysis demonstrated Emd-D-induced apoptosis. Mechanistic investigations elucidated that Emd-D functions as an inhibitor by directly binding to the glycolysis-related enzyme PFKFB4. This was corroborated by alterations in intracellular lactate and pyruvate levels, as well as glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) expression. PFKFB4 overexpression experiments further supported the dependence of Emd-D on PFKFB4-mediated glycolysis and SRC3/mTORC1 pathway-associated apoptosis. In vivo experiments exhibited reduced xenograft tumor sizes upon Emd-D treatment, accompanied by suppressed glycolysis and increased expression of Bax/Bcl-2 apoptotic proteins within the tumors. In conclusion, our findings demonstrate Emd-D’s potential as an anti-ovarian cancer agent through inhibition of the PFKFB4-dependent glycolysis pathway and induction of apoptosis. These results provide a foundation for further exploration of Emd-D as a promising drug candidate for ovarian cancer treatment.

Keywords

Ovarian cancer / Emd-D / Glycolysis / Apoptosis / PFKFB

Cite this article

Download citation ▾
Xin Zhao, Chao Chen, Xuefei Feng, Haoqi Lei, Lingling Qi, Hongxia Zhang, Haiying Xu, Jufeng Wan, Yan Zhang, Baofeng Yang. Emd-D inhibited ovarian cancer progression via PFKFB4-dependent glycolysis and apoptosis. Chinese Journal of Natural Medicines, 2025, 23(4): 431-442 DOI:10.1016/S1875-5364(25)60843-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020; 70(1):7-30. https://doi.org/10.3322/caac.21590.

[2]

Zheng RS, Sun KX, Zhang SW, et al. Report of cancer epidemiology in China, 2015. Chin J Oncol. 2019; 41(1):19-28.

[3]

Miller KD, Nogueira L, Mariotto AB, et al.Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019; 69(5):363-385. https://doi.org/10.3322/caac.21565.

[4]

Orr B, Edwards RP. Diagnosis and treatment of ovarian cancer. Hematol Oncol Clin North Am. 2018; 32(6):943-964. https://doi.org/10.1016/j.hoc.2018.07.010.

[5]

Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016; 23(1):27-47. https://doi.org/10.1016/j.cmet.2015.12.006.

[6]

Schwartz L, Supuran CT, Alfarouk KO. The warburg effect and the hallmarks of cancer. Anticancer Agents Med Chem. 2017; 17(2):164-170. https://doi.org/10.2174/1871520616666161031143301.

[7]

Kobayashi Y, Banno K, Kunitomi H, et al.Warburg effect in Gynecologic cancers. J Obstet Gynaecol Res. 2019; 45(3):542-548. https://doi.org/10.1111/jog.13867.

[8]

Floridi A, Paggi MG, Marcante ML, et al. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. J Natl Cancer Inst. 1981; 66(3):497-499.

[9]

Di Cosimo S, Ferretti G, Papaldo P, et al. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc). 2003; 39(3):157-174. https://doi.org/10.1358/dot.2003.39.3.799451.

[10]

Pajak B, Siwiak E, Soltyka M, et al. 2-Deoxy-D-glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci. 2019; 21(1):234. https://doi.org/10.3390/ijms21010234.

[11]

Woodward GE, Hudson MT. The effect of 2-desoxy-D-glucose on glycolysis and respiration of tumor and normal tissues. Cancer Res. 1954; 14(8):599-605.

[12]

Wang KJ, Meng XY, Chen JF, et al. Emodin induced necroptosis and inhibited glycolysis in the renal cancer cells by enhancing ROS. Oxid Med Cell Longev. 2021;2021:8840590. https://doi.org/10.1155/2021/8840590.

[13]

Xiang Y, Guo Z, Zhu P, et al. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med. 2019; 8(5):1958-1975. https://doi.org/10.1002/cam4.2108.

[14]

Monisha BA, Kumar N, Tiku AB. Emodin and its role in chronic diseases. Adv Exp Med Biol. 2016; 928:47-73. https://doi.org/10.1007/978-3-319-41334-1_3.

[15]

Ma L, Yang Y, Yin Z, et al. Emodin suppresses the nasopharyngeal carcinoma cells by targeting the chloride channels. Biomed Pharmacother. 2017; 90:615-625. https://doi.org/10.1016/j.biopha.2017.03.088.

[16]

Chang X, Zhao J, Tian F, et al. Aloe-emodin suppresses esophageal cancer cell TE1 proliferation by inhibiting AKT and ERK phosphorylation. Oncol Lett. 2016; 12(3):2232-2238. https://doi.org/10.3892/ol.2016.4910.

[17]

Chen C, Gao J, Wang TS, et al. NMR-based metabolomic techniques identify the toxicity of emodin in HepG2 cells. Sci Rep. 2018; 8(1):9379. https://doi.org/10.1038/s41598-018-27359-4.

[18]

Chang MH, Huang FJ, Chan WH. Emodin induces embryonic toxicity in mouse blastocysts through apoptosis. Toxicology. 2012; 299(1):25-32. https://doi.org/10.1016/j.tox.2012.05.006.

[19]

He Q, Liu K, Wang S, et al. Toxicity induced by emodin on zebrafish embryos. Drug Chem Toxicol. 2012; 35(2):149-154. https://doi.org/10.3109/01480545.2011.589447.

[20]

Liu X, Han W, An N, et al. Kanglexin protects against cardiac fibrosis and dysfunction in mice by TGF-β1/ERK1/2 noncanonical pathway. Front Pharmacol. 2020;11:572637. https://doi.org/10.3389/fphar.2020.572637.

[21]

Trotto O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2):455-461. https://doi.org/10.1002/jcc.21334.

[22]

Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999; 17(1):57-61.

[23]

Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16):2785-2791. https://doi.org/10.1002/jcc.21256.

[24]

Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013; 19(11):1450-1464. https://doi.org/10.1038/nm.3391.

[25]

Zhang D, Li Y, Yang S, et al. Identification of a glycolysis-related gene signature for survival prediction of ovarian cancer patients. Cancer Med. 2021; 10(22):8222-8237. https://doi.org/10.1002/cam4.4317.

[26]

Kotowski K, Rosik J, Machaj F, et al. Role of PFKFB3 and PFKFB4 in cancer: genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers (Basel). 2021; 13(4):909.

[27]

Jalal S, Zhang T, Deng J, et al. β-Elemene isopropanolamine derivative LXX-8250 induces apoptosis through impairing autophagic flux via PFKFB4 repression in melanoma cells. Front Pharmacol. 2022;13:900973. https://doi.org/10.3389/fphar.2022.900973.

[28]

Palmieri C, Gojis O, Rudraraju B, et al. Expression of steroid receptor coactivator 3 in ovarian epithelial cancer is a poor prognostic factor and a marker for platinum resistance. Br J Cancer. 2013; 108(10):2039-2044. https://doi.org/10.1038/bjc.2013.199.

[29]

Yoshida H, Liu J, Samuel S, et al. Steroid receptor coactivator-3, a homolog of Taiman that controls cell migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Mol Cell Endocrinol. 2005; 245(1-2):77-85. https://doi.org/10.1016/j.mce.2005.10.008.

[30]

Dasgupta S, Rajapakshe K, Zhu B, et al. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature. 2018; 556(7700):249-254. https://doi.org/10.1038/s41586-018-0018-1.

[31]

Statzer C, Meng J, Venz R, et al.ATF-4 and hydrogen sulfide signalling mediate longevity in response to inhibition of translation or mTORC1. Nat Commun. 2022; 13(1):967. https://doi.org/10.1038/s41467-022-28599-9.

[32]

Su N, Kilberg MS. C/EBP homology protein (CHOP) interacts with activating transcription factor 4 (ATF4) and negatively regulates the stress-dependent induction of the asparagine synthetase gene. J Biol Chem. 2008; 283(50):35106-35117. https://doi.org/10.1074/jbc.M806874200.

[33]

Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 2017; 36(16):2191-2201. https://doi.org/10.1038/onc.2016.363.

[34]

Vernieri C, Corti F, Nichetti F, et al. Everolimus versus alpelisib in advanced hormone receptor-positive HER2-negative breast cancer: targeting different nodes of the PI3K/AKT/mTORC1 pathway with different clinical implications. Breast Cancer Res. 2020; 22(1):33. https://doi.org/10.1186/s13058-020-01271-0.

[35]

Eisenhauer EA. Real-world evidence in the treatment of ovarian cancer. Ann Oncol. 2017; 28(suppl_8):viii61-viii5. https://doi.org/10.1093/annonc/mdx443.

[36]

Yang C, Xia BR, Zhang ZC, et al. Immunotherapy for ovarian cancer: adjuvant, combination, and neoadjuvant. Front Immunol. 2020;11:577869. https://doi.org/10.3389/fimmu.2020.577869.

[37]

Cheng L, Zhang S, Shang F, et al. Emodin improves glucose and lipid metabolism disorders in obese mice via activating brown adipose tissue and inducing browning of white adipose tissue. Front Endocrinol (Lausanne). 2021;12:618037. https://doi.org/10.3389/fendo.2021.618037.

[38]

Zhang P, Tao W, Lu C, et al. Bruceine A induces cell growth inhibition and apoptosis through PFKFB4/GSK3β signaling in pancreatic cancer. Pharmacol Res. 2021;169:105658. https://doi.org/10.1016/j.phrs.2021.105658.

[39]

Truong TH, Benner EA, Hagen KM, et al. PELP1/SRC-3-dependent regulation of metabolic PFKFB kinases drives therapy resistant ER+ breast cancer. Oncogene. 2021; 40(25):4384-4397. https://doi.org/10.1038/s41388-021-01871-w.

[40]

Gwinn DM, Lee AG, Briones-Martin-Del-Campo M, et al. Oncogenic KRAS regulates amino acid homeostasis and asparagine biosynthesis via ATF4 and alters sensitivity to L-asparaginase. Cancer Cell. 2018; 33(1):91-107.e6. https://doi.org/10.1016/j.ccell.2017.12.003.

PDF (6574KB)

85

Accesses

0

Citation

Detail

Sections
Recommended

/