Ustusolate E and 11α-Hydroxy-Ustusolate E induce apoptosis in cancer cell lines by regulating the PI3K/AKT/mTOR and p-53 pathways

Mewlude Rehmutulla , Sitian Zhang , Jie Yin , Jianzheng Huang , Yang Xiao , Zhengxi Hu , Qingyi Tong , Yonghui Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (3) : 346 -353.

PDF (17782KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (3) :346 -353. DOI: 10.1016/S1875-5364(25)60840-5
Original article
research-article

Ustusolate E and 11α-Hydroxy-Ustusolate E induce apoptosis in cancer cell lines by regulating the PI3K/AKT/mTOR and p-53 pathways

Author information +
History +
PDF (17782KB)

Abstract

Cancer represents a significant disease that profoundly impacts human health and longevity. Projections indicate a 47% increase in the global cancer burden by 2040 compared to 2020, accompanied by a further rise in the associated economic burden. Consequently, there is an urgent need to discover and develop new alternative drugs to mitigate the global impact of cancer. Natural products (NPs) play a crucial role in the identification and development of anticancer therapeutics. This study identified ustusolate E (UE) and its analog 11α-hydroxy-ustusolate E (HUE) from strain Aspergillus calidoustus TJ403-EL05, and examined their antitumor activities and mechanisms of action. The findings demonstrate that both compounds significantly inhibited the proliferation and colony formation of AGS (human gastric cancer cells) and 786-O (human renal clear cell carcinoma cells), induced irreversible DNA damage, blocked the cell cycle at the G2/M phase, and further induced apoptosis in tumor cells. To the best of the authors’ knowledge, this is the first report on the anticancer effects of UE and HUE and their underlying mechanisms. The present study suggests that HUE and UE could serve as lead compounds for the development of novel anticancer drugs.

Keywords

Ustusolate E / 11α-Hydroxy-ustusolate E / Cancer / PI3K/AKT/mTOR pathway / p-53 Pathway

Cite this article

Download citation ▾
Mewlude Rehmutulla, Sitian Zhang, Jie Yin, Jianzheng Huang, Yang Xiao, Zhengxi Hu, Qingyi Tong, Yonghui Zhang. Ustusolate E and 11α-Hydroxy-Ustusolate E induce apoptosis in cancer cell lines by regulating the PI3K/AKT/mTOR and p-53 pathways. Chinese Journal of Natural Medicines, 2025, 23(3): 346-353 DOI:10.1016/S1875-5364(25)60840-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3):209-249. https://doi.org/10.3322/caac.21660.

[2]

Fattahi S, Amjadi-Moheb F, Tabaripour R, et al. PI3K/AKT/mTOR signaling in gastric cancer: epigenetics and beyond. Life Sci. 2020;262:118513. https://doi.org/10.1016/j.lfs.2020.118513.

[3]

Moch H, Cubilla AL, Humphrey PA, et al.The 2016 WHO classification of tumours of the urinary system and male genital organs-Part A: renal, penile, and testicular tumours. Eur Urol. 2016; 70(1):93-105. https://doi.org/10.1016/j.eururo.2016.02.029.

[4]

Capitanio U, Montorsi F. Renal cancer. Lancet. 2016; 387(10021):894-906. https://doi.org/10.1016/S0140-6736(15)00046-X.

[5]

Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018; 15(5):273-291. https://doi.org/10.1038/nrclinonc.2018.28.

[6]

Ul Islam B, Suhail M, Khan MS, et al. Flavonoids and PI3K/Akt/mTOR signaling cascade: a potential crosstalk in anticancer treatment. Curr Med Chem. 2021; 28(39):8083-8097. https://doi.org/10.2174/0929867328666210804091548.

[7]

Tan AC. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer. 2020; 11(3):511-518. https://doi.org/10.1111/1759-7714.13328.

[8]

Finlay CA, Hinds PW, Tan TH, et al.Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol. 1988; 8(2):531-539. https://doi.org/10.1128/mcb.8.2.531-539.1988.

[9]

Halevy O, Rodel J, Peled A, et al. Frequent p 53 mutations in chemically induced murine fibrosarcoma. Oncogene. 1991; 6(9):1593-1600.

[10]

Liu Y, Tavana O, Gu W. p53 Modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol. 2019; 11(7):564-577. https://doi.org/10.1093/jmcb/mjz060.

[11]

Matthews HK, Bertoli C, De Bruin RAM.Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022; 23(1):74-88. https://doi.org/10.1038/s41580-021-00404-3.

[12]

Naeem A, Hu P, Yang M, et al. Natural products as anticancer agents: current status and future perspectives. Molecules. 2022; 27(23):8367. https://doi.org/10.3390/molecules27238367.

[13]

Hu Q, Li Z, Li Y, et al. Natural products targeting signaling pathways associated with regulated cell death in gastric cancer: recent advances and perspectives. Phytother Res. 2023; 37(6):2661-2692. https://doi.org/10.1002/ptr.7866.

[14]

Liu Y, Yang S, Wang K, et al. Cellular senescence and cancer: focusing on traditional Chinese medicine and natural products. Cell Prolif. 2020; 53(10):e12894. https://doi.org/10.1111/cpr.12894.

[15]

Li F, Mo S, Yin J, et al. Structurally diverse metabolites from a soil-derived fungus Aspergillus calidoustus. Bioorg Chem. 2022;127:105988. https://doi.org/10.1016/j.bioorg.2022.105988.

[16]

Abu-Izneid T, Rauf A, Shariati MA, et al. Sesquiterpenes and their derivatives-natural anticancer compounds: an update. Pharmacol Res. 2020;161:105165. https://doi.org/10.1016/j.phrs.2020.105165.

[17]

Lu Z, Wang Y, Miao C, et al.Sesquiterpenoids and benzofuranoids from the marine-derived fungus Aspergillus ustus 094102. J Nat Prod. 2009; 72(10):1761-1767. https://doi.org/10.1021/np900268z.

[18]

Zhang S, Mo S, Li F, et al.Drimane sesquiterpenoids from a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05. Nat Prod Bioprospect. 2022; 12(1):27. https://doi.org/10.1007/s13659-022-00349-w.

[19]

Zhu H, Chen C, Tong Q, et al.Asperflavipine A: a cytochalasan heterotetramer uniquely defined by a highly complex tetradecacyclic ring system from Aspergillus flavipes QCS12. Angew Chem Int Ed. 2017; 56(19):5242-5246. https://doi.org/10.1002/anie.201701125.

[20]

Yin J, Zhao Z, Huang J, et al. Single-cell transcriptomics reveals intestinal cell heterogeneity and identifies Ep300 as a potential therapeutic target in mice with acute liver failure. Cell Discov. 2023; 9(1):77. https://doi.org/10.1038/s41421-023-00578-4.

[21]

Tong Q, You H, Chen X, et al. ZYH005, a novel DNA intercalator, overcomes all-trans retinoic acid resistance in acute promyelocytic leukemia. Nucleic Acids Res. 2018; 46(7):3284-3297. https://doi.org/10.1093/nar/gky202.

[22]

Manning BD, Cantley LC.AKT/PKB signaling: navigating downstream. Cell. 2007; 129(7):1261-1274. https://doi.org/10.1016/j.cell.2007.06.009.

[23]

Tian LY, Smit DJ, Jücker M. The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int J Mol Sci. 2023; 24(3):2652. https://doi.org/10.3390/ijms24032652.

[24]

Ahmad I, Hoque M, Alam SSM, et al. Curcumin and plumbagin synergistically target the PI3K/Akt/mTOR pathway: a prospective role in cancer treatment. Int J Mol Sci. 2023; 24(7):6651. https://doi.org/10.3390/ijms24076651.

[25]

Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015; 33(8):1582-1614. https://doi.org/10.1016/j.biotechadv.2015.08.001.

[26]

Ogawa T, Uosaki Y, Tanaka T, et al.RES-1149-1 and -2, novel non-peptidic endothelin type B receptor antagonists produced by Aspergillus sp. III. Biochemical properties of RES-1149-1, -2 and structure-activity relationships. J Antibiot (Tokyo). 1996; 49(2):168-172. https://doi.org/10.7164/antibiotics.49.168.

[27]

Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023; 22(1):138. https://doi.org/10.1186/s12943-023-01827-6.

[28]

Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol. 2022; 85:69-94. https://doi.org/10.1016/j.semcancer.2021.06.019.

[29]

Carson DA, Lois A.Cancer progression and p53. Lancet. 1995; 346(8981):1009-1011. https://doi.org/10.1016/S0140-6736(95)91693-8.

[30]

Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001; 411(6835):366-374. https://doi.org/10.1038/35077232.

[31]

Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006; 12(9):440-450. https://doi.org/10.1016/j.molmed.2006.07.007.

[32]

Surova O, Zhivotovsky B. Various modes of cell death induced by DNA damage. Oncogene. 2013; 32(33):3789-3797. https://doi.org/10.1038/onc.2012.556.

[33]

Van Maanen JM, Retèl J, De Vries J, et al. Mechanism of action of antitumor drug etoposide: a review. J Natl Cancer Inst. 1988; 80(19):1526-1533. https://doi.org/10.1093/jnci/80.19.1526.

[34]

Zhao Y, Pu JX, Huang SX, et al. ent-Kaurane diterpenoids from Isodon scoparius. J Nat Prod. 2009; 72(1):125-129. https://doi.org/10.1021/np800484j.

PDF (17782KB)

93

Accesses

0

Citation

Detail

Sections
Recommended

/