New acylphloroglucinol-sesquiterpenoid adducts with antiviral activities from Dryopteris atrata

Jihui Zhang , Jinghao Wang , Wei Tang , Xi Shen , Jinlin Chen , Huilin Ou , Qianyi Situ , Yaolan Li , Guocai Wang , Yubo Zhang , Nenghua Chen

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (3) : 377 -384.

PDF (9798KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (3) :377 -384. DOI: 10.1016/S1875-5364(25)60839-9
Original article
research-article

New acylphloroglucinol-sesquiterpenoid adducts with antiviral activities from Dryopteris atrata

Author information +
History +
PDF (9798KB)

Abstract

Seven novel acylphloroglucinol-sesquiterpenoid adducts, designated as dryatraols J-P (1-7), were isolated from the rhizomes of Dryopteris atrata (Wall. ex Kunze) Ching. The structures, including absolute configurations, were elucidated using comprehensive spectroscopic data, calculated 13C Nuclear Magnetic Resonance-Diastereotopic Probability Assignment Plus (13C NMR-DP4+) probability analysis, and ECD calculations. These structures represent a rare subclass of carbon skeleton of acylphloroglucinol-sesquiterpenoid adducts with a furan ring connecting the acylphloroglucinol and sesquiterpenoid moieties. Notably, compounds 1-6 are the first reported examples of acylphloroglucinol-sesquiterpenoid adducts with dimeric acylphloroglucinol incorporated into the aristolane- or rulepidanol-type sesquiterpene, while compound 7 features a hydroxylated monomeric acylphloroglucinol motif. A preliminary evaluation of their antiviral activities revealed that compounds 1-6 exhibited more potent activities against respiratory syncytial virus (RSV) with IC50 values ranging from 0.75 to 3.12 μmol·L−1 compared to the positive control (ribavirin).

Keywords

Dryopteris atrata / Acylphloroglucinol-sesquiterpenoid adducts / Structural elucidation / Antiviral activities

Cite this article

Download citation ▾
Jihui Zhang, Jinghao Wang, Wei Tang, Xi Shen, Jinlin Chen, Huilin Ou, Qianyi Situ, Yaolan Li, Guocai Wang, Yubo Zhang, Nenghua Chen. New acylphloroglucinol-sesquiterpenoid adducts with antiviral activities from Dryopteris atrata. Chinese Journal of Natural Medicines, 2025, 23(3): 377-384 DOI:10.1016/S1875-5364(25)60839-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Celaj O, Durán AG, Cennamo P, et al. Phloroglucinols from Myrtaceae: attractive targets for structural characterization, biological properties and synthetic procedures. Phytochem Rev. 2021; 20:259-299. https://doi.org/10.1007/s11101-020-09697-2.

[2]

Singh IP, Bharate SB. Phloroglucinol compounds of natural origin. Nat Prod Rep. 2006; 23:558-591. https://doi.org/10.1039/b600518g.

[3]

Han X, Li Z, Li CY, et al. Phytochemical constituents and biological activities of plants from the genus Dryopteris. Chem Biodivers. 2015; 12:1131-1162. https://doi.org/10.1002/cbdv.201400157.

[4]

Chen NH, Wu ZN, Li W, et al. Acylphloroglucinols-based meroterpenoid enantiomers with antiviral activities from Dryopteris crassirhizoma. Ind Crop Prod. 2020; 150:112415-112423. https://doi.org/10.1016/j.indcrop.2020.112415.

[5]

Hai P, Rao KR, Jiang N, et al. Structure elucidation, biogenesis, and bioactivities of acylphloroglucinol-derived meroterpenoid enantiomers from Dryopteris crassirhizoma. Bioorg Chem. 2022; 119:105567-105579. https://doi.org/10.1016/j.bioorg.2021.105567.

[6]

Hai P, He YQ, Wang RR, et al. New tocopherol and acylphloroglucinol derivatives from Dryopteris crassirhizoma and their antimicrobial activities. Fitoterapia. 2023; 165:105401-105409. https://doi.org/10.1016/j.fitote.2022.105401.

[7]

Hai P, He YQ, Wang RR, et al. Antimicrobial acylphloroglucinol meroterpenoids and acylphloroglucinols from Dryopteris crassirhizoma. Planta Med. 2023; 89(3):295-307. https://doi.org/10.1055/a-1917-7910.

[8]

Chen NH, Zhang YB, Huang XJ, et al. Drychampones A-C: three meroterpenoids from Dryopteris championii. J Org Chem. 2016; 81(19):9443-9448. https://doi.org/10.1021/acs.joc.6b01720.

[9]

Zhang JH, Chen JL, Xu WB, et al. Undescribed phloroglucinol derivatives with antiviral activities from Dryopteris atrata (Wall. Ex Kunze) Ching. Phytochemistry. 2023; 208:113585-113594. https://doi.org/10.1016/j.phytochem.2023.113585.

[10]

Hou B, Liu Z, Yang XB, et al. Total synthesis of dryocrassin ABBA and its analogues with potential inhibitory activity against drug-resistant neuraminidases. Bioorg Med Chem. 2019; 27(17):3846-3852. https://doi.org/10.1016/j.bmc.2019.07.013.

[11]

Ji NY, Li XM, Ding LP, et al. Two new aristolane sesquiterpenes from Laurencia similis. Chin Chem Lett. 2007; 18(2):178-180. https://doi.org/10.1016/j.cclet.2006.12.043.

[12]

Äyräs P, Lötjönen S, Widén CJ. NMR spectroscopy of naturally occurring phloroglucinol derivatives. Planta Med. 1981; 42:187-194. https://doi.org/10.1055/s-2007-971624.

[13]

Maryam M, Te KK, Wong FC, et al. Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against dengue virus. J Integr Agr. 2020; 19(4):1085-1096. https://doi.org/10.1016/S2095-3119(19)62820-0.

[14]

Jin YH, Jeon S, Lee J, et al. Anticoronaviral activity of the natural phloroglucinols. dryocrassin ABBA and filixic acid ABA from the rhizome of Dryopteris crassirhizoma by targeting the main protease of SARS-CoV-2. Pharmaceutics. 2022; 14(2):376-386. https://doi.org/10.3390/pharmaceutics14020376.

[15]

Hou B, Zhang YM, Liao HY, et al. Target-based virtual screening and LC/MS-guided isolation procedure for identifying phloroglucinol-terpenoid inhibitors of SARS-CoV-2. J Nat Prod. 2022; 85(2):327-336. https://doi.org/10.1021/acs.jnatprod.1c00805.

[16]

Wang J, Yan YT, Fu SZ, et al. Anti-influenza virus (H5N1) activity screening on the phloroglucinols from rhizomes of Dryopteris crassirhizoma. Molecules. 2017; 22(3):431-446. https://doi.org/10.3390/molecules22030431.

[17]

Zhang JY, Liu F, Jin Q, et al. Discovery of unusual phloroglucinol-triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chin Chem Lett. 2023; 34:108881-108888. https://doi.org/10.1016/j.cclet.2023.108881.

PDF (9798KB)

102

Accesses

0

Citation

Detail

Sections
Recommended

/