Zishen Huoxue decoction (ZSHX) alleviates ischemic myocardial injury (MI) via Sirt5-β-tubulin mediated synergistic mechanism of "mitophagy-unfolded protein response" and mitophagy

Xing Chang , Siyuan Zhou , Yu Huang , Jinfeng Liu , Yanli Wang , Xuanke Guan , Qiaomin Wu , Zhiming Liu , Ruxiu Liu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (3) : 311 -321.

PDF (12311KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (3) :311 -321. DOI: 10.1016/S1875-5364(25)60838-7
Original article
research-article

Zishen Huoxue decoction (ZSHX) alleviates ischemic myocardial injury (MI) via Sirt5-β-tubulin mediated synergistic mechanism of "mitophagy-unfolded protein response" and mitophagy

Author information +
History +
PDF (12311KB)

Abstract

Zishen Huoxue decoction (ZSHX) enhances cardiomyocyte viability following hypoxic stress; however, its upstream therapeutic targets remain unclear. Network pharmacology and RNA sequencing analyses revealed that ZSHX target genes were closely associated with mitophagy and apoptosis in the mitochondrial pathway. In vitro, ZSHX inhibited pathological mitochondrial fission following hypoxic stress, regulated FUN14 domain-containing protein 1 (FUNDC1)-related mitophagy, and increased the levels of mitophagy lysosomes and microtubule-associated protein 1 light chain 3 beta II (LC3II)/translocase of outer mitochondrial membrane 20 (TOM20) expression while inhibiting the over-activated mitochondrial unfolded protein response. Additionally, ZSHX regulated the stability of beta-tubulin through Sirtuin 5 (SIRT5) and could modulate FUNDC1-related synergistic mechanisms of mitophagy and unfolded protein response in the mitochondria (UPRmt) via the SIRT5 and -β-tubulin axis. This targeting pathway may be crucial for cardiomyocytes to resist hypoxia. Collectively, these findings suggest that ZSHX can protect against cardiomyocyte injury via the SIRT5-β-tubulin axis, which may be associated with the synergistic protective mechanism of SIRT5-β-tubulin axis-related mitophagy and UPRmt on cardiomyocytes.

Keywords

Mitophagy / Mitochondrial unfolded protein response / Zishen Huoxue decoction / Sirtuin 5 / β-Tubulin / Mitochondrial oxidative stress

Cite this article

Download citation ▾
Xing Chang, Siyuan Zhou, Yu Huang, Jinfeng Liu, Yanli Wang, Xuanke Guan, Qiaomin Wu, Zhiming Liu, Ruxiu Liu. Zishen Huoxue decoction (ZSHX) alleviates ischemic myocardial injury (MI) via Sirt5-β-tubulin mediated synergistic mechanism of "mitophagy-unfolded protein response" and mitophagy. Chinese Journal of Natural Medicines, 2025, 23(3): 311-321 DOI:10.1016/S1875-5364(25)60838-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chang X, Toan S, Li R, et al. Therapeutic strategies in ischemic cardiomyopathy: Focus on mitochondrial quality surveillance. EBioMedicine. 2022;84:104260. https://doi.org/10.1016/j.ebiom.2022.104260.

[2]

Qiang M, Hao J, Liu H, et al. Er-xian ameliorates myocardial ischemia-reperfusion injury in rats through RISK pathway involving estrogen receptors. Chin J Nat Med. 2022; 20(12):902-913. https://doi.org/10.1016/S1875-5364(22)60213-9.

[3]

Chang X, Zhang W, Zhao Z, et al. Regulation of mitochondrial quality control by natural drugs in the treatment of cardiovascular diseases: potential and advantages. Front Cell Dev Biol. 2020;8:616139. https://doi.org/10.3389/fcell.2020.616139.

[4]

Eldeeb MA, Thomas RA, Ragheb MA, et al. Mitochondrial quality control in health and in Parkinson’s disease. Physiol Rev. 2022; 102:1721-1755. https://doi.org/10.1152/physrev.00041.2021.

[5]

Qiang GF. Natural products targeting mitochondria: a promising strategy for metabolic syndrome. Chin J Nat Med. 2020; 18(11):801-802. https://doi.org/10.1016/S1875-5364(20)60020-6.

[6]

Ren Z, Xiao G, Chen Y, et al. SBC (Sanhuang Xiexin Tang combined with Baihu Tang plus Cangzhu) alleviates NAFLD by enhancing mitochondrial biogenesis and ameliorating inflammation in obese patients and mice. Chin J Nat Med. 2023; 21(11):830-841. https://doi.org/10.1016/S1875-5364(23)60469-8.

[7]

Chang X, Zhao ZY, Zhang WJ, et al. Natural antioxidants improve the vulnerability of cardiomyocytes and vascular endothelial cells under stress conditions: a focus on mitochondrial quality control. Oxid Med Cell Longev. 2021;2021:6620677. https://doi.org/10.1155/2021/6620677.

[8]

Chang X, Lochner A, Wang HH, et al. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics. 2021; 11:6766-6785. https://doi.org/10.7150/thno.60143.

[9]

Chang X, Li Y, Liu J, et al. ss-tubulin contributes to Tongyang Huoxue decoction-induced protection against hypoxia/reoxygenation-induced injury of sinoatrial node cells through SIRT1-mediated regulation of mitochondrial quality surveillance. Phytomedicine. 2023;108:154502. https://doi.org/10.1016/j.phymed.2022.154502.

[10]

Liu R, Chang X, Li J, et al. Zishen Huoxue recipe protecting mitochondrial function of hypoxic/reoxygenated myocardial cells through mTORC1 signaling pathway. Evid Based Compl Alt. 2020;2020:8327307. https://doi.org/10.1155/2020/8327307.

[11]

Chang X, Zhang T, Meng Q, et al. Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/ TMBIM6-related mitophagy and endoplasmic reticulum stress. Oxid Med Cell Longev. 2021;2021:5529913. https://doi.org/10.1155/2021/5529913.

[12]

Chang X, Zhang T, Wang J, et al. SIRT5-related desuccinylation modification contributes to quercetin-induced protection against heart failure and high-glucose-prompted cardiomyocytes injured through regulation of mitochondrial quality surveillance. Oxid Med Cell Longev. 2021;2021:5876841. https://doi.org/10.1155/2021/5876841.

[13]

Liu CJ, Yao L, Hu YM, et al. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int J Nanomedicine. 2021; 16:741-752. https://doi.org/10.2147/IJN.S277377.

[14]

Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. Biochim Biophys Acta Bioenerg. 2021;1862:148428. https://doi.org/10.1016/j.bbabio.2021.148428.

[15]

Svagusa T, Martinic M, Martinic M, et al. Mitochondrial unfolded protein response, mitophagy and other mitochondrial quality control mechanisms in heart disease and aged heart. Croat Med J. 2020; 61:126-138. https://doi.org/10.3325/cmj.2020.61.126.

[16]

Chang X, Liu J, Wang Y, et al. Mitochondrial disorder and treatment of ischemic cardiomyopathy: potential and advantages of Chinese herbal medicine. Biomed Pharmacother. 2023;159:114171. https://doi.org/10.1016/j.biopha.2022.114171.

[17]

Zhu H, Tan Y, Du W, et al. Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biol. 2021;38:101777. https://doi.org/10.1016/j.redox.2020.101777.

[18]

Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011; 334:806-809. https://doi.org/10.1126/science.1207861.

[19]

von Lewinski D, Kolesnik E, Tripolt NJ, et al. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J. 2022; 43:4421-4432. https://doi.org/10.1093/eurheartj/ehac494.

[20]

Zhou H, Wang S, Zhu P, et al. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018; 15:335-346. https://doi.org/10.1016/j.redox.2017.12.019.

[21]

Cai C, Guo Z, Chang X, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKalpha1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 2022;52:102288. https://doi.org/10.1016/j.redox.2022.102288.

[22]

Andersson KB, Finsen AV, Sjåland C, et al. Mice carrying a conditional Serca2flox allele for the generation of Ca2+ handling-deficient mouse models. Cell Calcium. 2009; 46:219-225. https://doi.org/10.1016/j.ceca.2009.07.004.

[23]

Wang Y, Jasper H, Toan S, et al. Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biol. 2021;45:102049. https://doi.org/10.1016/j.redox.2021.102049.

[24]

Zhou H, Toan S, Zhu P, et al. DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis. Basic Res Cardiol. 2020;115:11. https://doi.org/10.1007/s00395-019-0773-7.

[25]

Zhou H, Dai Z, Li J, et al. TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury. Metabolism. 2023;140:155383. https://doi.org/10.1016/j.metabol.2022.155383.

[26]

Zou R, Shi W, Qiu J, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 2022;21:106. https://doi.org/10.1186/s12933-022-01532-6.

[27]

Zhou H, Zhu P, Guo J, et al. Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol. 2017; 13:498-507. https://doi.org/10.1016/j.redox.2017.07.007.

[28]

Zhou H, Hu S, Jin Q, et al. Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc. 2017; 6(3):e005328. https://doi.org/10.1161/JAHA.116.005328.

[29]

Wang CC, Li Y, Qian XQ, et al. Empagliflozin alleviates myocardial I/R injury and cardiomyocyte apoptosis via inhibiting ER stress-induced autophagy and the PERK/ATF4/Beclin1 pathway. J Drug Target. 2022; 30:858-872. https://doi.org/10.1080/1061186X.2022.2064479.

[30]

Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018; 186:73-87. https://doi.org/10.1016/j.pharmthera.2018.01.001.

[31]

Chang X, Liu R, Li R, et al. Molecular mechanisms of mitochondrial quality control in ischemic cardiomyopathy. Int J Biol Sci. 2023; 19:426-448. https://doi.org/10.7150/ijbs.76223.

[32]

Zhu H, Toan S, Mui D, et al. Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol (Oxf). 2021;231:e13590. https://doi.org/10.1111/apha.13590.

[33]

Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28:R170-R185. https://doi.org/10.1016/j.cub.2018.01.004.

[34]

Yang X, Xue P, Yuan M, et al. SESN2 protects against denervated muscle atrophy through unfolded protein response and mitophagy. Cell Death Dis. 2021;12:805. https://doi.org/10.1038/s41419-021-04094-9.

[35]

Ding Q, Qi Y, Tsang SY. Mitochondrial biogenesis, mitochondrial dynamics, and mitophagy in the maturation of cardiomyocytes. Cells. 2021; 10(9):2463. https://doi.org/10.3390/cells10092463.

[36]

Popov LD.Mitochondrial biogenesis: an update. J Cell Mol Med. 2020; 24:4892-4899. https://doi.org/10.1111/jcmm.15194.

[37]

Beider K, Rosenberg E, Dimenshtein-Voevoda V, et al. Blocking of transient receptor potential vanilloid 1 (TRPV1) promotes terminal mitophagy in multiple myeloma, disturbing calcium homeostasis and targeting ubiquitin pathway and bortezomib-induced unfolded protein response. J Hematol Oncol. 2020;13:158. https://doi.org/10.1186/s13045-020-00993-0.

[38]

Quiles JM, Gustafsson AB. The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol. 2022; 19:723-736. https://doi.org/10.1038/s41569-022-00703-y.

[39]

Jin JY, Wei XX, Zhi XL, et al. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin. 2021; 42:655-664. https://doi.org/10.1038/s41401-020-00518-y.

[40]

Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharm Sin B. 2020; 10:1866-1879. https://doi.org/10.1016/j.apsb.2020.03.004.

[41]

Park J, Chen Y, Tishkoff DX, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013; 50:919-930. https://doi.org/10.1016/j.molcel.2013.06.001.

[42]

Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol. 2015;309:H1375-H1389. https://doi.org/10.1152/ajpheart.00053.2015.

[43]

Guo AH, Baliira R, Skinner ME, et al. Sirtuin 5 levels are limiting in preserving cardiac function and suppressing fibrosis in response to pressure overload. Sci Rep. 2022;12:12258. https://doi.org/10.1038/s41598-022-16506-7.

[44]

Wang S, Zhu H, Li R, et al. DNA-PKcs interacts with and phosphorylates Fis1 to induce mitochondrial fragmentation in tubular cells during acute kidney injury. Sci Signal. 2022;15:eabh1121. https://doi.org/10.1126/scisignal.abh1121.

[45]

Huang J, Li R, Wang C. The role of mitochondrial quality control in cardiac ischemia/reperfusion injury. Oxid Med Cell Longev. 2021;2021:5543452. https://doi.org/10.1155/2021/5543452.

PDF (12311KB)

102

Accesses

0

Citation

Detail

Sections
Recommended

/