Advances in the study of pharmacotherapy for addiction to naturally-derived psychoactive substances

Kexin Xie , Deli Xiao , Peng Xu , Haowei Shen , Bin Di

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) : 897 -908.

PDF (10196KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) :897 -908. DOI: 10.1016/S1875-5364(25)60831-4
Review
research-article

Advances in the study of pharmacotherapy for addiction to naturally-derived psychoactive substances

Author information +
History +
PDF (10196KB)

Abstract

Drug addiction, a disorder characterized by chronic relapse and compulsive drug use, poses a significant threat to public safety and human health. Addictive substances can be categorized as natural, semi-synthetic, or synthetic based on their origin. Additionally, they can be classified into three groups according to their pharmacological targets: opioids, hallucinogens, and cannabinoids that act on G-protein-coupled receptors (GPCRs); alcohols, nicotine, ketamine, barbiturates, and benzodiazepines (BDZs) that affect ligand-gated ion channel-type receptors; and psychostimulants that interact with monoamine transporters. Current treatments for drug addiction primarily include substitution therapy and non-pharmacological approaches. However, these methods have limitations, particularly in addressing the underlying causes of relapse. Several drugs in clinical trials have demonstrated potential therapeutic effects for addiction to opioids, heroin, cocaine, and other substances. This review examines the origins and pharmacological mechanisms of addiction to naturally-derived psychoactive substances (NPS) and provides an overview of recent advancements in pharmacotherapy for drug addiction.

Keywords

Addiction / Natural drug / Pharmacological effect / Pharmacotherapy

Cite this article

Download citation ▾
Kexin Xie, Deli Xiao, Peng Xu, Haowei Shen, Bin Di. Advances in the study of pharmacotherapy for addiction to naturally-derived psychoactive substances. Chinese Journal of Natural Medicines, 2025, 23(8): 897-908 DOI:10.1016/S1875-5364(25)60831-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stanley TH.The fentanyl story. J Pain. 2014; 15(12):1215-1226. https://doi.org/10.1016/j.jpain.2014.08.010.

[2]

Ward CF, Ward GC, Saidman LJ. Drug abuse in anesthesia training programs. A survey: 1970 through 1980. JAMA. 1983; 250(7):922-925. https://doi.org/10.1001/jama.250.7.922.

[3]

Ciccarone D. The rise of illicit fentanyls, stimulants and the fourth wave of the opioid overdose crisis. Curr Opin Psychiatry. 2021; 34(4):344-350. https://doi.org/10.1097/yco.0000000000000717.

[4]

So much more to know. Science. 2005; 309(5731):78-102. https://doi.org/10.1126/science.309.5731.78b.

[5]

Saal D, Dong Y, Bonci A, et al. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron. 2003; 37(4):577-582. https://doi.org/10.1016/s0896-6273(03)00021-7.

[6]

Luescher C, Ungless MA. The mechanistic classification of addictive drugs. PLoS Med. 2006; 3(11):2005-2010. https://doi.org/10.1371/journal.pmed.0030437.

[7]

Suzuki J, El-Haddad S. A review: fentanyl and non-pharmaceutical fentanyls. Drug Alcohol Depend. 2017; 171:107-116. https://doi.org/10.1016/j.drugalcdep.2016.11.033.

[8]

Che T, Roth BL. Molecular basis of opioid receptor signaling. Cell. 2023; 186(24):5203-5219. https://doi.org/10.1016/j.cell.2023.10.029.

[9]

Wise RA, Robble MA.Dopamine and addiction. Annu Rev Psychol. 2020; 71:79-106. https://doi.org/10.1146/annurev-psych-010418-103337.

[10]

Wang SC, Chen YC, Lee CH, et al. Opioid addiction, genetic susceptibility, and medical treatments: a review. Int J Mol Sci. 2019; 20(17):4294. https://doi.org/10.3390/ijms20174294.

[11]

Kiguchi N, Ding H, Ko MC. Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse. J Neurosci Res. 2022; 100(1):191-202. https://doi.org/10.1002/jnr.24624.

[12]

Wang W, Xie XY, Zhuang XW, et al. Striatal m-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect. Cell Rep. 2023; 42(2):112089. https://doi.org/10.1016/j.celrep.2023.112089.

[13]

Volkow ND, Jones EB, Einstein EB, et al. Prevention and treatment of opioid misuse and addiction a review. JAMA Psychiat. 2019; 76(2):208-216. https://doi.org/10.1001/jamapsychiatry.2018.3126.

[14]

Izzo AA, Borrelli F, Capasso R, et al. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci. 2009; 30(10):515-527. https://doi.org/10.1016/j.tips.2009.07.006.

[15]

Pacher P, Steffens S, Hasko G, et al. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol. 2018; 15(3):151-166. https://doi.org/10.1038/nrcardio.2017.130.

[16]

Banister SD, Moir M, Stuart J, et al. Pharmacology of indole and indazole synthetic cannabinoid designer drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem Neurosci. 2015; 6(9):1546-1559. https://doi.org/10.1021/acschemneuro.5b00112.

[17]

Stella N. THC and CBD: similarities and differences between siblings. Neuron. 2023; 111(3):302-327. https://doi.org/10.1016/j.neuron.2022.12.022.

[18]

Chen DJ, Gao M, Gao FF, et al. Brain cannabinoid receptor 2: expression, function and modulation. Acta Pharmacol Sin. 2017; 38(3):312-316. https://doi.org/10.1038/aps.2016.149.

[19]

Miller LK, Devi LA. The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev. 2011; 63(3):461-470. https://doi.org/10.1124/pr.110.003491.

[20]

Zhang HY, Gao M, Liu QR, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A. 2014; 111(46):E5007-E5015. https://doi.org/10.1073/pnas.1413210111.

[21]

Luo Z, Yin F, Wang X, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/s1875-5364(24)60582-0.

[22]

Calderon SN, Bonson KR, Reissig CJ, et al. Considerations in assessing the abuse potential of psychedelics during drug development. Neuropharmacology. 2023;224:109352. https://doi.org/10.1016/j.neuropharm.2022.109352.

[23]

Rickli A, Luethi D, Reinisch J, et al. Receptor interaction profiles of novel N-2-methoxybenzyl (NSOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology. 2015; 99:546-553. https://doi.org/10.1016/j.neuropharm.2015.08.034.

[24]

Shafi A, Berry AJ, Sumnall H, et al. New psychoactive substances: a review and updates. Ther Adv Psychopharmacol. 2020;10:2045125320967197. http://doi.org/10.1177/2045125320967197.

[25]

McCurdy CR, Sharma A, Smith KE, et al. An update on the clinical pharmacology of kratom: uses, abuse potential, and future considerations. Expert Rev Clin Pharmacol. 2024; 17(2):131-142. https://doi.org/10.1080/17512433.2024.2305798.

[26]

Obeng S, Leon F, Patel A, et al. Interactive effects of μ-opioid and adrenergic-α2 receptor agonists in rats: pharmacological investigation of the primary kratom alkaloid mitragynine and its metabolite 7-hydroxymitragynine. J Pharmacol Exp Ther. 2022; 383(3):182-198. https://doi.org/10.1124/jpet.122.001192.

[27]

Singh D, Muelller CP, Vicknasingam BK. Kratom (Mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend. 2014; 139:132-137. https://doi.org/10.1016/j.drugalcdep.2014.03.017.

[28]

Smith TT, Rupprecht LE, Cwalina SN, et al. Effects of monoamine oxidase inhibition on the reinforcing properties of low-dose nicotine. Neuropsychopharmacology. 2016; 41(9):2335-2343. https://doi.org/10.1038/npp.2016.36.

[29]

Fischler PV, Soyka M, Seifritz E, et al. Off-label and investigational drugs in the treatment of alcohol use disorder: a critical review. Front Pharmacol. 2022;13:927703. https://doi.org/10.3389/fphar.2022.927703.

[30]

Soderpalm B, Lido HH, Ericson M. The glycine receptor-A functionally important primary brain target of ethanol. Alcohol Clin Exp Res. 2017; 41(11):1816-1830. https://doi.org/10.1111/acer.13483.

[31]

Tan KR, Brown M, Labouebe G, et al. Neural bases for addictive properties of benzodiazepines. Nature. 2010; 463(7282):769-778. https://doi.org/10.1038/nature08758.

[32]

Tan KR, Rudolph U, Luescher C. Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci. 2011; 34(4):188-197. https://doi.org/10.1016/j.tins.2011.01.004.

[33]

Zhu F, Liu L, Li J, et al. Cocaine increases quantal norepinephrine secretion through NET-dependent PKC activation in locus coeruleus neurons. Cell Rep. 2022; 40(7):111199. https://doi.org/10.1016/j.celrep.2022.111199.

[34]

Moszczynska A, Callan SP. Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: implications for treatment. J Pharmacol Exp Ther. 2017; 362(3):474-488. https://doi.org/10.1124/jpet.116.238501.

[35]

Paulus MP, Stewart JL. Neurobiology, clinical presentation, and treatment of methamphetamine use disorder a review. JAMA Psychiat. 2020; 77(9):959-966. https://doi.org/10.1001/jamapsychiatry.2020.0246.

[36]

Jayanthi S, Daiwile AP, Cadet JL. Neurotoxicity of methamphetamine: main effects and mechanisms. Exp Neurol. 2021;344:113795. https://doi.org/10.1016/j.expneurol.2021.113795.

[37]

Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiat. 2016; 3(8):760-773. https://doi.org/10.1016/S2215-0366(16)00104-8.

[38]

Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N Engl J Med. 2016; 374(4):363-371. https://doi.org/10.1056/NEJMra1511480.

[39]

Jennings JH, Sparta DR, Stamatakis AM, et al. Distinct extended amygdala circuits for divergent motivational states. Nature. 2013; 496(7444):224-228. https://doi.org/10.1038/nature12041.

[40]

Kaufling J, Aston-Jones G. Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. J Neurosci. 2015; 35(28):10290-10303. https://doi.org/10.1523/jneurosci.0715-15.2015.

[41]

Kosten TR, Baxter LE. Review article: effective management of opioid withdrawal symptoms: a gateway to opioid dependence treatment. Am J Addict. 2019; 28(2):55-62. https://doi.org/10.1111/ajad.12862.

[42]

Krupitsky E, Nunes EV, Ling W, et al. Injectable extended-release naltrexone for opioid dependence: a double-blind, placebo-controlled, multicentre randomised trial. Lancet. 2011; 377(9776):1506-1513. https://doi.org/10.1016/s0140-6736(11)60358-9.

[43]

Flynn SM, Epperly PM, Davenport AT, et al. Effects of stimulation of mu opioid and nociceptin/orphanin FQ peptide (NOP) receptors on alcohol drinking in rhesus monkeys. Neuropsychopharmacology. 2019; 44(8):1476-1484. https://doi.org/10.1038/s41386-019-0390-z.

[44]

Ding H, Kiguchi N, Yasuda D, et al. A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med. 2018; 10(456):aar3483. https://doi.org/10.1126/scitranslmed.aar3483.

[45]

Nickols JER, Dursun SM, Taylor AMW. Preclinical evidence for the use of the atypical antipsychotic, brexpiprazole, for opioid use disorder. Neuropharmacology. 2023;233:109546. https://doi.org/10.1016/j.neuropharm.2023.109546.

[46]

Chen Y, Li M, Ji Q, et al. Clinical study of paliperidone palmitate long-acting injection combined with electroacupuncture in the treatment of methamphetamine addicts. Front Pharmacol. 2021;12:698740. https://doi.org/10.3389/fphar.2021.698740.

[47]

Gu SM, Cha HJ, Seo SW, et al. Dopamine D 1 receptor antagonist reduces stimulant-induced conditioned place preferences and dopamine receptor supersensitivity. Naunyn-Schmiedebergs Arch Pharmacol. 2020; 393(1):131-138. https://doi.org/10.1007/s00210-019-01694-3.

[48]

Hall BJ, Slade S, Wells C, et al. Bupropion-varenicline interactions and nicotine self-administration behavior in rats. Pharmacol Biochem Behav. 2015; 130:84-89. https://doi.org/10.1016/j.pbb.2015.01.009.

[49]

Carroll FI, Howard JL, Howell LL, et al. Development of the dopamine transporter selective RTI-336 as a pharmacotherapy for cocaine abuse. Aaps J. 2006; 8(1):E196-E203. https://doi.org/10.1208/aapsj080124.

[50]

Froimowitz M, Taboada R, Poulos ZJ, et al. Chiral resolution of the enantiomers of the slow-onset dopamine reuptake inhibitor CTDP-32476 and their activities. ACS Omega. 2023; 8(39):35738-35745. https://doi.org/10.1021/acsomega.3c02997.

[51]

Cameron LP, Tombari RJ, Lu J, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2021; 589(7842):474-479. https://doi.org/10.1038/s41586-020-3008-z.

[52]

Arout C, Cooper Z, Reed SC, et al. 5HT-2C agonist lorcaserin decreases cannabis self-administration in daily cannabis smokers. Addict Biol. 2021; 26(4):12993. https://doi.org/10.1111/adb.12993.

[53]

Barbosa-Mendez S, Perez-Sanchez G, Salazar-Juarez A. Vortioxetine treatment decreases cocaine-induced locomotor sensitization in rats. Physiol Behav. 2022;257:113989. https://doi.org/10.1016/j.physbeh.2022.113989.

[54]

Salazar-Juarez A, Barbosa-Mendez S, Jurado N, et al. Mirtazapine prevents induction and expression of cocaine-induced behavioral sensitization in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2016; 68:15-24. https://doi.org/10.1016/j.pnpbp.2016.02.010.

[55]

Montemitro C, Angebrandt A, Wang TY, et al. Mechanistic insights into the efficacy of memantine in treating certain drug addictions. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110409. https://doi.org/10.1016/j.pnpbp.2021.110409.

[56]

Manhapra A, Chakraborty A, Arias AJ. Topiramate pharmacotherapy for alcohol use disorder and other addictions: a narrative review. J Addict Med. 2019; 13(1):7-22. https://doi.org/10.1097/adm.0000000000000443.

[57]

Sepulveda-Orengo MT, Healey KL, Kim R, et al. Riluzole impairs cocaine reinstatement and restores adaptations in intrinsic excitability and GLT-I expression. Neuropsychopharmacology. 2018; 43(6):1212-1223. https://doi.org/10.1038/npp.2017.244.

[58]

Xie X, Lasseter HC, Ramirez DR, et al. Subregion-specific role of glutamate receptors in the nucleus accumbens on drug context-induced reinstatement of cocaine-seeking behavior in rats. Addict Biol. 2012; 17(2):287-299. https://doi.org/10.1111/j.1369-1600.2011.00325.x.

[59]

Justinova Z, Panlilio LV, Secci ME, et al. The novel metabotropic glutamate receptor 2 positive allosteric modulator, AZD8529, decreases nicotine self-administration and relapse in squirrel monkeys. Biol Psychiat. 2015; 78(7):452-462. https://doi.org/10.1016/j.biopsych.2015.01.014.

[60]

Hay GL, Baracz SJ, Everett NA, et al. Cannabidiol treatment reduces the motivation to self-administer methamphetamine and methamphetamine-primed relapse in rats. J Psychopharmacol. 2018; 32(12):1369-1378. https://doi.org/10.1177/0269881118799954.

[61]

Schindler CW, Redhi GH, Vemuri K, et al. Blockade of nicotine and cannabinoid reinforcement and relapse by a cannabinoid CB1-receptor neutral antagonist AM4113 and inverse agonist rimonabant in squirrel monkeys. Neuropsychopharmacology. 2016; 41(9):2283-2293. https://doi.org/10.1038/npp.2016.27.

[62]

Vallee M, Vitiello S, Bellocchio L, et al. Pregnenolone can protect the brain from cannabis intoxication. Science. 2014; 343(6166):94-98. https://doi.org/10.1126/science.1243985.

[63]

Chuong V, Farokhnia M, Khom S, et al. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission. JCI Insight. 2023; 8(12):170671. https://doi.org/10.1172/jci.insight.170671.

[64]

Yammine L, Green CE, Kosten TR, et al. Exenatide adjunct to nicotine patch facilitates smoking cessation and may reduce post-cessation weight gain: a pilot randomized controlled trial. Nicotine Tob Res. 2021; 23(10):1682-1690. https://doi.org/10.1093/ntr/ntab066.

[65]

Fiellin DA, Schottenfeld RS, Cutter CJ, et al. Primary care-based buprenorphine taper vs maintenance therapy for prescription opioid dependence a randomized clinical trial. JAMA Intern Med. 2014; 174(12):1947-1954. https://doi.org/10.1001/jamainternmed.2014.5302.

[66]

Skolnick P. The opioid epidemic: crisis and solutions. Annu Rev Pharmacol Toxicol. 2018; 58:143-159. https://doi.org/10.1146/annurev-pharmtox-010617-052534.

[67]

Zhuang Y, Xu P, Mao C, et al. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell. 2021; 184(4):931-942. https://doi.org/10.1016/j.cell.2021.01.027.

[68]

Gong S, Fayette N, Heinsbroek JA, et al. Cocaine shifts dopamine D2 receptor sensitivity to gate conditioned behaviors. Neuron. 2021; 109(21):3421-3435. https://doi.org/10.1016/j.neuron.2021.08.012.

[69]

Cai J, Wang Y, Chen X, et al. New class of benzothiophene morpholine analogues with high selectivity and affinity were designed and evaluated for anti-drug addiction. Chem Biol Drug Des. 2022; 99(4):634-649. https://doi.org/10.1111/cbdd.14032.

[70]

Das S, Barnwal P, Winston BA, et al.Brexpiprazole: so far so good. Ther Adv Psychopharmacol. 2016; 6(1):39-54. https://doi.org/10.1177/2045125315614739.

[71]

Diefenderfer LA, Iuppa C. Brexpiprazole: a review of a new treatment option for schizophrenia and major depressive disorder. Ment Health Clin. 2017; 7(5):207-212. https://doi.org/10.9740/mhc.2017.09.207.

[72]

Narita M, Takei D, Shiokawa M, et al. Suppression of dopamine-related side effects of morphine by aripiprazole, a dopamine system stabilizer. Eur J Pharmacol. 2008; 600(1-3):105-109. https://doi.org/10.1016/j.ejphar.2008.10.030.

[73]

Chiappini S, Cavallotto C, Mosca A, et al. Investigating the effectiveness of brexpiprazole in subjects with schizophrenia spectrum illness and co-occurring substance use disorder: a prospective, multicentric, real-world study. Pharmaceuticals. 2024; 17(4):535. https://doi.org/10.3390/ph17040535.

[74]

Sun L, Song R, Cheg Y, et al. A selective D3 receptor antagonist YQA14 attenuates methamphetamine-induced behavioral sensitization and conditioned place preference in mice. Acta Pharmacol Sin. 2016; 37(2):157-165. https://doi.org/10.1038/aps.2015.96.

[75]

Mugnaini M, Iavarone L, Cavallini P, et al. Occupancy of brain dopamine D3 receptors and drug craving: a translational approach. Neuropsychopharmacology. 2013; 38(2):302-312. https://doi.org/10.1038/npp.2012.171.

[76]

Appel NM, Li SH, Holmes TH, et al. Dopamine D 3 receptor antagonist (GSK598809) potentiates the hypertensive effects of cocaine in conscious, freely-moving dogs. J Pharmacol Exp Ther. 2015; 354(3):484-492. https://doi.org/10.1124/jpet.115.224121.

[77]

Ward K, Citrome L. AXS-05: an investigational treatment for Alzheimer’s disease-associated agitation. Expert Opin Investig Drugs. 2022; 31(8):773-780. https://doi.org/10.1080/13543784.2022.2096006.

[78]

Tabuteau H, Jones A, Anderson A, et al. Effect of AXS-05 (dextromethorphan-bupropion) in major depressive disorder: a randomized double-blind controlled trial. Am J Psychiat. 2022; 179(7):490-499. https://doi.org/10.1176/appi.ajp.21080800.

[79]

Blair G, Wells C, Ko A, et al. Dextromethorphan and bupropion reduces high level remifentanil self-administration in rats. Pharmacol Biochem Behav. 2020;193:172919. https://doi.org/10.1016/j.pbb.2020.172919.

[80]

Peng XQ, Xi ZX, Li X, et al. Is slow-onset long-acting monoamine transport blockade to cocaine as methadone is to heroin ? Implication for anti-addiction medications. Neuropsychopharmacology. 2010; 35(13):2564-2578. https://doi.org/10.1038/npp.2010.133.

[81]

Xi ZX, Song R, Li X, et al. CTDP-32476: a promising agonist therapy for treatment of cocaine addiction. Neuropsychopharmacology. 2017; 42(3):682-694. https://doi.org/10.1038/npp.2016.155.

[82]

Carroll FI, Kosten TR, Buda JJ, et al. A double-blind, A double-blind, placebo-controlled trial demonstrating the safety, tolerability, and pharmacokinetics of single, escalating oral doses of RTI-336., escalating oral doses of RTI-336. Front Pharmacol. 2018;9:00712. https://doi.org/10.3389/fphar.2018.00712.

[83]

van der Meer PB, Fuentes JJ, Kaptein AA, et al. Therapeutic effect of psilocybin in addiction: a systematic review. Front Psychiatry. 2023;14:1134454. https://doi.org/10.3389/fpsyt.2023.1134454.

[84]

Higgins GA, Fletcher PJ, Shanahan WR. Lorcaserin: a review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol Ther. 2020;205:107417. https://doi.org/10.1016/j.pharmthera.2019.107417.

[85]

Brandt L, Jones JD, Martinez S, et al. Effects of lorcaserin on oxycodone self-administration and subjective responses in participants with opioid use disorder. Drug Alcohol Depend. 2020;208:107859. https://doi.org/10.1016/j.drugalcdep.2020.107859.

[86]

Johns SE, Keyser-Marcus L, Abbate A, et al. Safety and preliminary efficacy of lorcaserin for cocaine use disorder: a phase I randomized clinical trial. Front Psychiatry. 2021;12:666945. https://doi.org/10.3389/fpsyt.2021.666945.

[87]

Modica MN, Lacivita E, Intagliata S, et al. Structure-activity relationships and therapeutic potentials of 5-HT7 receptor ligands: an update. J Med Chem. 2018; 61(19):8475-8503. https://doi.org/10.1021/acs.jmedchem.7b01898.

[88]

Zulkifli MH, Viswenaden P, Jasamai M, et al. Potential roles of 5-HT3 receptor (5-HT3R) antagonists in modulating the effects of nicotine. Biomed Pharmacother. 2019;112:108630. https://doi.org/10.1016/j.biopha.2019.108630.

[89]

Li SH, Abd-Elrahman KS, Ferguson SSG. Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases. Pharmacol Ther. 2022;239:108275. https://doi.org/10.1016/j.pharmthera.2022.108275.

[90]

Elias AM, Pepin MJ, Brown JN. Adjunctive memantine for opioid use disorder treatment: a systematic review. J Subst Abuse Treat. 2019; 107:38-43. https://doi.org/10.1016/j.jsat.2019.10.003.

[91]

Gobin C, Schwendt M. The cognitive cost of reducing relapse to cocaine-seeking with mGlu5 allosteric modulators. Psychopharmacology. 2020; 237(1):115-125. https://doi.org/10.1007/s00213-019-05351-8.

[92]

Scheen AJ, Finer N, Hollander P, et al. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet. 2006; 368(9548):1660-1672. https://doi.org/10.1016/s0140-6736(06)69571-8.

[93]

Huestis MA, Boyd SJ, Heishman SJ, et al. Single and multiple doses of rimonabant antagonize acute effects of smoked cannabis in male cannabis users. Psychopharmacology. 2007; 194(4):505-515. https://doi.org/10.1007/s00213-007-0861-5.

[94]

Thuy N, Thomas BF, Zhang Y. Overcoming the psychiatric side effects of the cannabinoid CB1 receptor antagonists: current approaches for therapeutics development. Curr Top Med Chem. 2019; 19(16):1418-1435. https://doi.org/10.2174/1568026619666190708164841.

[95]

Balla A, Dong B, Shilpa BM, et al. Cannabinoid-1 receptor neutral antagonist reduces binge-like alcohol consumption and alcohol-induced accumbal dopaminergic signaling. Neuropharmacology. 2018; 131:200-208. https://doi.org/10.1016/j.neuropharm.2017.10.040.

[96]

Wills KL, Vemuri K, Kalmar A, et al. CB1 antagonism: interference with affective properties of acute naloxone-precipitated morphine withdrawal in rats. Psychopharmacology. 2014; 231(22):4291-4300. https://doi.org/10.1007/s00213-014-3575-5.

[97]

Calpe-Lopez C, Pilar Garcia-Pardo M, Aguilar MA. Cannabidiol treatment might promote resilience to cocaine and methamphetamine use disorders: a review of possible mechanisms. Molecules. 2019; 24(14):2583. https://doi.org/10.3390/molecules24142583.

[98]

Haney M, Vallee M, Fabre S, et al. Signaling-specific inhibition of the CB1 receptor for cannabis use disorder: phase 1 and phase 2a randomized trials. Nat Med. 2023; 29(6):1487-1499. https://doi.org/10.1038/s41591-023-02381-w.

[99]

Egecioglu E, Engel JA, Jerlhag E. The glucagon-like peptide 1 analogue, exendin-4, attenuates the rewarding properties of psychostimulant drugs in mice. PLoS One. 2013; 8(7):0069010. https://doi.org/10.1371/journal.pone.0069010.

[100]

Klausen MK, Jensen ME, Moller M, et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. JCI Insight. 2022; 7(19):159863. https://doi.org/10.1172/jci.insight.159863.

[101]

Engel JA, Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. Cns Drugs. 2014; 28(10):875-886. https://doi.org/10.1007/s40263-014-0178-y.

[102]

Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol. 2019;10:00155. https://doi.org/10.3389/fendo.2019.00155.

[103]

Gorodetzky CW, Walsh SL, Martin PR, et al. A phase III, randomized, multi-center, double blind, placebo controlled study of safety and efficacy of lofexidine for relief of symptoms in individuals undergoing inpatient opioid withdrawal. Drug Alcohol Depend. 2017; 176:79-88. https://doi.org/10.1016/j.drugalcdep.2017.02.020.

[104]

Grigsby KB, Mangieri RA, Roberts AJ, et al. Preclinical and clinical evidence for suppression of alcohol intake by apremilast. J Clin Invest. 2023; 133(6):159103. https://doi.org/10.1172/jci159103.

[105]

Metz VE, Jones JD, Manubay J, et al. Effects of ibudilast on the subjective, reinforcing, and analgesic effects of oxycodone in recently detoxified adults with opioid dependence. Neuropsychopharmacology. 2017; 42(9):1825-1832. https://doi.org/10.1038/npp.2017.70.

[106]

Makarova M, Rycek L, Hajicek J, et al.Tetrodotoxin: history, biology, and synthesis. Angew Chem Int Ed. 2019; 58(51):18338-18387. https://doi.org/10.1002/anie.201901564.

[107]

Akuzawa S, Irie M, Kanki M, et al. Effect of ASP 8062 on morphine self-administration and morphine-induced respiratory suppression in monkeys. J Pharmacol Sci. 2023; 151(4):171-176. https://doi.org/10.1016/j.jphs.2023.02.003.

[108]

Farokhnia M, Browning BD, Leggio L. Prospects for pharmacotherapies to treat alcohol use disorder: an update on recent human studies. Curr Opin Psychiatry. 2019; 32(4):255-265. https://doi.org/10.1097/yco.0000000000000519.

[109]

Eckard ML, Kinsey SG. Gabapentin attenuates somatic signs of precipitated THC withdrawal in mice. Neuropharmacology. 2021;190:108554. https://doi.org/10.1016/j.neuropharm.2021.108554.

[110]

Juncosa JI, Takaya K, Le HV, et al. Design and mechanism of (S)-3-amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid, a highly potent γ-aminobutyric acid aminotransferase inactivator for the treatment of addiction. J Am Chem Soc. 2018; 140(6):2151-2164. https://doi.org/10.1021/jacs.7b10965.

[111]

Gotti C, Clementi F.Cytisine and cytisine derivatives. More than smoking cessation aids. Pharmacol Res. 2021;170:105700. https://doi.org/10.1016/j.phrs.2021.105700.

[112]

Liu L, Liu M, Zhao W, et al. Levo-tetrahydropalmatine: a new potential medication for methamphetamine addiction and neurotoxicity. Exp Neurol. 2021;344:113809. https://doi.org/10.1016/j.expneurol.2021.113809.

[113]

Zeng R, Pu HY, Zhang XY, et al. Methamphetamine: mechanism of action and Chinese herbal medicine treatment for its addiction. Chin J Integr Med. 2023; 29(7):665-672. https://doi.org/10.1007/s11655-023-3635-y.

[114]

Li XX, Fan HY, Sun L, et al. Changes and the impact on immune function of opioid-dependent subjects by Jitai tabelets during the withdrawal stage. Chin J Epidemiol. 2017; 38(4):531-536. https://doi.org/10.3760/cma.j.issn.0254-6450.2017.04.024.

[115]

Lu T, Li X, Zheng W, et al. Vaccines to treat substance use disorders: current status and future directions. Pharmaceutics. 2024; 16(1):84. https://doi.org/10.3390/pharmaceutics16010084.

[116]

Barbosa-Mendez S, Matus-Ortega M, Hernandez-Miramontes R, et al. COT-TT vaccine attenuates cocaine-seeking and cocaine-conditioned place preference in rats. Hum Vaccin Immunother. 2024; 20(1):2299068. https://doi.org/10.1080/21645515.2023.2299068.

[117]

Celik M, Fuehrlein B. A review of immunotherapeutic approaches for substance use disorders: current status and future prospects. Immunotargets Ther. 2022; 11:55-66. https://doi.org/10.2147/itt.S370435.

[118]

Cornish KE, Harris AC, LeSage MG, et al. Combined active and passive immunization against nicotine: minimizing monoclonal antibody requirements using a target antibody concentration strategy. Int Immunopharmacol. 2011; 11(11):1809-1815. https://doi.org/10.1016/j.intimp.2011.07.009.

[119]

Hoogsteder PHJ, Kotz D, van Spiegel PI, et al. Efficacy of the nicotine vaccine 3′-AmNic-rEPA (NicVAX) co-administered with varenicline and counselling for smoking cessation: a randomized placebo-controlled trial. Addiction. 2014; 109(8):1252-1259. https://doi.org/10.1111/add.12573.

[120]

Esterlis I, Hannestad JO, Perkins E, et al. Effect of a nicotine vaccine on nicotine binding to β2*-nicotinic acetylcholine receptors in vivo in human tobacco smokers. Am J Psychiatry. 2013; 170(4):399-407. https://doi.org/10.1176/appi.ajp.2012.12060793.

[121]

Raleigh MD, King SJ, Baruffaldi F, et al. Pharmacological mechanisms underlying the efficacy of antibodies generated by a vaccine to treat oxycodone use disorder. Neuropharmacology. 2021;195:108653. https://doi.org/10.1016/j.neuropharm.2021.108653.

[122]

Havlicek DF, Rosenberg JB, De BP, et al. Cocaine vaccine dAd5GNE protects against moderate daily and high-dose “binge” cocaine use. PLoS One. 2020; 15(11):0239780. https://doi.org/10.1371/journal.pone.0239780.

PDF (10196KB)

77

Accesses

0

Citation

Detail

Sections
Recommended

/