Design and synthesis of novel saponin-triazole derivatives in the regulation of adipogenesis

Yongsheng Fang , Zhiyun Zhu , Chun Xie , Dazhen Xia , Huimin Zhao , Zihui Wang , Qian Lu , Caimei Zhang , Wenyong Xiong , Xiaodong Yang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) : 920 -931.

PDF (14387KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) :920 -931. DOI: 10.1016/S1875-5364(25)60830-2
Original article
research-article

Design and synthesis of novel saponin-triazole derivatives in the regulation of adipogenesis

Author information +
History +
PDF (14387KB)

Abstract

Saponins associated with Panax notoginseng (P. notoginseng) demonstrate significant therapeutic efficacy across multiple diseases. However, certain high-yield saponins face limited clinical applications due to their reduced pharmacological efficacy. This study synthesized and evaluated 36 saponin-1,2,3-triazole derivatives of ginsenosides Rg1/Rb1 and notoginsenoside R1 for anti-adipogenesis activity in vitro. The research revealed that the ginsenosides Rg1-1,2,3-triazole derivative a17 demonstrates superior adipogenesis inhibitory effects. Structure-activity relationships (SARs) analysis indicates that incorporating an amidyl-substituted 1,2,3-triazole into the saponin side chain via Click reaction enhances anti-adipogenesis activity. Additionally, several other derivatives exhibit general adipogenesis inhibition. Compound a17 demonstrated enhanced potency compared to the parent ginsenoside Rg1. Mechanistic investigations revealed that a17 exhibits dose-dependent inhibition of adipogenesis in vitro, accompanied by decreased expression of preadipocytes. Peroxisome proliferator-activated receptor γ (PPARγ), fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4) adipogenesis regulators. These findings establish the ginsenoside Rg1-1,2,3-triazole derivative a17 as a promising adipocyte differentiation inhibitor and potential therapeutic agent for obesity and associated metabolic disorders. This research provides a foundation for developing effective therapeutic approaches for various metabolic syndromes.

Keywords

Panax notoginseng / Saponin-triazole derivatives / Adipocyte differentiation and maturation / Lipid metabolism / Structure-activity relationships

Cite this article

Download citation ▾
Yongsheng Fang, Zhiyun Zhu, Chun Xie, Dazhen Xia, Huimin Zhao, Zihui Wang, Qian Lu, Caimei Zhang, Wenyong Xiong, Xiaodong Yang. Design and synthesis of novel saponin-triazole derivatives in the regulation of adipogenesis. Chinese Journal of Natural Medicines, 2025, 23(8): 920-931 DOI:10.1016/S1875-5364(25)60830-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

De Lorenzo A, Gratteri S, Gualtieri P, et al. Why primary obesity is a disease. J Transl Med. 2019; 17(1):169. https://doi.org/10.1186/s12967-019-1919-y.

[2]

Jin X, Qiu T, Li L, et al. Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 2023; 13(6):2403-2424. https://doi.org/10.1016/j.apsb.2023.01.012.

[3]

Geng J, Ni Q, Sun W, et al. The links between gut microbiota and obesity and obesity related diseases. Biomed Pharmacother. 2022;147:112678. https://doi.org/10.1016/j.biopha.2022.112678.

[4]

Su HG, Wang Q, Zhou L, et al. Highly oxygenated lanostane triterpenoids from Ganoderma applanatum as a class of agents for inhibiting lipid accumulation in adipocytes. Bioorg Chem. 2020;104:104263. https://doi.org/10.1016/j.bioorg.2020.104263.

[5]

Su HG, Wang Q, Zhou L, et al. Functional triterpenoids from medicinal fungi Ganoderma applanatum: a continuous search for antiadipogenic agents. Bioorg Chem. 2021;112:104977. https://doi.org/10.1016/j.bioorg.2021.104977.

[6]

Kelly T, Yang W, Chen CS, et al. Global burden of obesity in 2005 and projections to 2030. Int J Obesity. 2008; 32(9):1431-1437. https://doi.org/10.1038/ijo.2008.102.

[7]

Valenzuela PL, Carrera-Bastos P, Castillo-Garcia A, et al. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol. 2023; 20(7):475-494. https://doi.org/10.1038/s41569-023-00847-5.

[8]

de Klerk MT, Smeets PAM la Fleur SE. Inhibitory control as a potential treatment target for obesity. Nutr Neurosci. 2023; 26(5):429-444. https://doi.org/10.1080/1028415X.2022.2053406.

[9]

Wang Y, Wang L, Qu W. New national data show alarming increase in obesity and noncommunicable chronic diseases in China. Eur J Clin Nutr. 2017; 71(1):149-150. https://doi.org/10.1038/ejcn.2016.171.

[10]

Corkey BE, Apovian CM. “En attendant godot”: waiting for the answer to obesity and longevity. Obesity. 2022; 30(11):2105-2106. https://doi.org/10.1002/oby.23462.

[11]

Luo Z, Yin F, Wang X, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[12]

Newman DJ, Cragg GM.Natural products as sources of new drugs over the nearly four decades from 01/ 1981 to 09/2019. J Nat Prod. 2020; 83(3):770-803. https://doi.org/10.1021/acs.jnatprod.9b01285.

[13]

Shen B. A new golden age of natural products drug discovery. Cell. 2015; 163(6):1297-1300. https://doi.org/10.1016/j.cell.2015.11.031.

[14]

Yang WZ, Bo T, Ji S, et al. Rapid chemical profiling of saponins in the flower buds of Panax notoginseng by integrating MCI gel column chromatography and liquid chromatography/mass spectrometry analysis. Food Chem. 2013; 139:762-769. https://doi.org/10.1016/j.foodchem.2013.01.051.

[15]

Yousof AM, Jannat S, Mizanur RM. Ginsenoside derivatives inhibit advanced glycation end-product formation and glucose-fructose mediated protein glycation in vitro via a specific structure-activity relationship. Bioorg Chem. 2021;111:104844. https://doi.org/10.1016/j.bioorg.2021.104844.

[16]

Guo YP, Shao L, Chen MY, et al. In vivo metabolic profiles of Panax notoginseng saponins mediated by gut microbiota in rats. J Agr Food Chem. 2020; 68(25):6835-6844. https://doi.org/10.1021/acs.jafc.0c01857.

[17]

Qiu S, Yang WZ, Yao CL, et al. Malonylginsenosides with potential antidiabetic activities from the flower buds of Panax ginseng. J Nat Prod. 2017; 80(4):899-908. https://doi.org/10.1021/acs.jnatprod.6b00789.

[18]

Wang T, Guo R, Zhou G, et al.Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F. H. Chen: a review. J Ethnopharmacol. 2016; 188:234-258. https://doi.org/10.1016/j.jep.2016.05.005.

[19]

Gu CZ, Lv JJ, Zhang XX, et al. Triterpenoids with promoting effects on the differentiation of PC12 cells from the steamed roots of Panax notoginseng. J Nat Prod. 2015; 78(8):1829-1840. https://doi.org/10.1021/acs.jnatprod.5b00027.

[20]

Xu Y, Wang N, Tan HY, et al. Gut-liver axis modulation of Panax notoginseng saponins in nonalcoholic fatty liver disease. Hepatol Int. 2021; 15(2):350-365. https://doi.org/10.1007/s12072-021-10138-1.

[21]

Yang JW, Kim S. Ginsenoside Rc promotes anti-adipogenic activity on 3T3-L1 adipocytes by down-regulating C/EBPα and PPARγ. Molecules. 2015; 20(1):1293-1303. https://doi.org/10.3390/molecules20011293.

[22]

Wang Q, Mu RF, Liu X, et al.Steaming changes the composition of saponins of Panax notoginseng (Burk.) F. H. Chen that function in treatment of hyperlipidemia and obesity. J Agr Food Chem. 2020; 68(17):4865-4875. https://doi.org/10.1021/acs.jafc.0c00746.

[23]

Ding RB, Tian K, Cao YW, et al. Protective effect of Panax notoginseng saponins on acute ethanol-induced liver injury is associated with ameliorating hepatic lipid accumulation and reducing ethanol-mediated oxidative stress. J Agr Food Chem. 2015; 63(9):2413-2422. https://doi.org/10.1021/jf502990n.

[24]

Lee K, Seo YJ, Song JH, et al. Ginsenoside Rg 1 promotes browning by inducing UCP1 expression and mitochondrial activity in 3T3-L1 and subcutaneous white adipocytes. J Ginseng Res. 2019; 43(4):589-599. https://doi.org/10.1016/j.jgr.2018.07.005.

[25]

Park SJ, Park M, Sharma A, et al. Black ginseng and ginsenoside Rb1 promote browning by inducing UCP1 expression in 3T3-L1 and primary white adipocytes. Nutrients. 2019;11:2747. https://doi.org/10.3390/nu11112747.

[26]

Wang W, Zhan W, Liang M, et al. Ginsenoside Rb 1 ameliorates the abnormal hepatic glucose metabolism by activating STAT3 in T2DM mice. J Funct Foods. 2023;104:105534. https://doi.org/10.1016/j.jff.2023.105534.

[27]

Peng H, Chen L, Deng Y, et al. Ginsenoside Rh 2 mitigates myocardial damage in acute myocardial infarction by regulating pyroptosis of cardiomyocytes. Clin Exp Hypertens. 2023; 45(1):1-7. https://doi.org/10.1080/10641963.2023.2229536.

[28]

Li X, Chu S, Lin M, et al. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem. 2020;203:112627. https://doi.org/10.1016/j.ejmech.2020.112627.

[29]

Zhu Y, Yang H, Deng J, et al. Ginsenoside Rg 5 improves insulin resistance and mitochondrial biogenesis of liver via regulation of the Sirt1/PGC-1α signaling pathway in db/db mice. J Agr Food Chem. 2021; 69(30):8428-8439. https://doi.org/10.1021/acs.jafc.1c02476.

[30]

Xia W, Zhu Z, Xiang S, et al. Ginsenoside Rg 5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells. J Ginseng Res. 2023; 47(6):784-794. https://doi.org/10.1016/j.jgr.2023.06.006.

[31]

Zhang H, Tian Y, Kang D, et al. Discovery of uracil-bearing DAPYs derivatives as novel HIV-1 NNRTIs via crystallographic overlay-based molecular hybridization. Eur J Med Chem. 2017; 130:209-222. https://doi.org/10.1016/j.ejmech.2017.02.047.

[32]

Berube G. An overview of molecular hybrids in drug discovery. Expert Opin Drug Dis. 2016; 11(3):281-305. https://doi.org/10.1517/17460441.2016.1135125.

[33]

Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010; 141(7):1117-1134. https://doi.org/10.1016/j.cell.2010.06.011.

[34]

Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chem Rev. 2013; 113(7):4905-4979. https://doi.org/10.1021/cr200409f.

[35]

Jiang X, Hao X, Jing L, et al. Recent applications of click chemistry in drug discovery. Expert Opin Drug Dis. 2019; 14(8):779-789. https://doi.org/10.1080/17460441.2019.1614910.

[36]

Brighty GJ, Botham RC, Li S, et al. Using sulfuramidimidoyl fluorides that undergo sulfur(VI) fluoride exchange for inverse drug discovery. Nat Chem. 2020; 12(10):906-913. https://doi.org/10.1038/s41557-020-0530-4.

[37]

Sletten EM, Bertozzi CR. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Edit. 2009; 48(38):6974-9698. https://doi.org/10.1002/anie.200900942.

[38]

Kondengadan SM, Bansal S, Yang C, et al. Click chemistry and drug delivery: a bird’s-eye view. Acta Pharm Sin B. 2023; 13(5):1990-2016. https://doi.org/10.1016/j.apsb.2022.10.015.

[39]

Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorgan Med Chem. 2019; 27(16):3511-3531. https://doi.org/10.1016/j.bmc.2019.07.005.

[40]

Abdul Rahman SM, Bhatti JS, Thareja S, et al. Current development of 1,2,3-triazole derived potential antimalarial scaffolds: structure activity relationship (SAR) and bioactive compounds. Eur J Med Chem. 2023;259:115699. https://doi.org/10.1016/j.ejmech.2023.115699.

[41]

Daher SS, Lee M, Jin X, et al. Alternative approaches utilizing click chemistry to develop next-generation analogs of solithromycin. Eur J Med Chem. 2022;233:114213. https://doi.org/10.1016/j.ejmech.2022.114213.

[42]

Nguyen BCQ, Takahashi H, Uto Y, et al. 1,2,3-Triazolyl ester of ketorolac: a “click chemistry”-based highly potent PAK1-blocking cancer-killer. Eur J Med Chem. 2017; 126:270-276. https://doi.org/10.1016/j.ejmech.2016.11.038.

[43]

Zhao S, Liu J, Lv Z, et al. Recent updates on 1,2,3-triazole-containing hybrids with in vivo therapeutic potential against cancers: a mini-review. Eur J Med Chem. 2023;251:115254. https://doi.org/10.1016/j.ejmech.2023.115254.

[44]

Zhang L, Zhang X, Yao Z, et al. Discovery of fluorogenic diarylsydnone-alkene photoligation: conversion of ortho-dual-twisted diarylsydnones into planar pyrazolines. J Am Chem Soc. 2018; 140(24):7390-7394. https://doi.org/10.1021/jacs.8b02493.

[45]

Wang FC, Peng B, Ren TT, et al.A 1,2,3-triazole derivative of quinazoline exhibits antitumor activity by tethering RNF 168 to SQSTM1/P62. J Med Chem. 2022; 65(22):15028-15047. https://doi.org/10.1021/acs.jmedchem.2c00432.

[46]

Bhardwaj A, Kaur J, Wuest M, et al. In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat Commun. 2017; 8(1):1-14. https://doi.org/10.1038/s41467-016-0009-6.

[47]

Bonandi E, Christodoulou MS, Fumagalli G, et al. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today. 2017; 22(10):1572-1581. https://doi.org/10.1016/j.drudis.2017.05.014.

[48]

Avula SK, Khan A, Rehman NU, et al. Synthesis of 1H-1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorg Chem. 2018; 81:98-106. https://doi.org/10.1016/j.bioorg.2018.08.008.

[49]

Saeedi M, Mohammadi-Khanaposhtani M, Pourrabia P, et al. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg Chem. 2019; 83:161-169. https://doi.org/10.1016/j.bioorg.2018.10.023.

[50]

Rajan S, Puri S, Kumar D, et al. Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway. Eur J Med Chem. 2018; 143:1345-1360. https://doi.org/10.1016/j.ejmech.2017.10.034.

[51]

Deng G, Zhou B, Wang J, et al. Synthesis and antitumor activity of novel steroidal imidazolium salt derivatives. Eur J Med Chem. 2019; 168:232-252. https://doi.org/10.1016/j.ejmech.2019.02.025.

[52]

Liu LX, Wang XQ, Yan JM, et al. Synthesis and antitumor activities of novel dibenzo[b, d]furan-imidazole hybrid compounds. Eur J Med Chem. 2013; 66:423-437. https://doi.org/10.1016/j.ejmech.2013.06.011.

[53]

Wang XQ, Liu LX, Li Y, et al. Design, synthesis and biological evaluation of novel hybrid compounds of imidazole scaffold-based 2-benzylbenzofuran as potent anticancer agents. Eur J Med Chem. 2013; 62:111-121. https://doi.org/10.1016/j.ejmech.2012.12.040.

[54]

Yin M, Fang Y, Sun X, et al. Synthesis and anticancer activity of podophyllotoxin derivatives with nitrogen-containing heterocycles. Front Chem. 2023;11:1191498. https://doi.org/10.3389/fchem.2023.1191498.

[55]

Huang M, Duan S, Ma X, et al. Synthesis and antitumor activity of aza-brazilan derivatives containing imidazolium salt pharmacophores. Medchemcomm. 2019; 10(6):1027-1036. https://doi.org/10.1039/C9MD00112C.

[56]

Zhou B, Liu ZF, Deng GG, et al. Synthesis and antitumor activity of novel N-substituted tetrahydro-β-carboline-imidazolium salt derivatives. Org Biomol Chem. 2016; 14(39):9423-9430. https://doi.org/10.1039/C6OB01495J.

[57]

Liu JM, Wang M, Zhou YJ, et al. Novel 3-substituted fluorine imidazolium/triazolium salt derivatives: synthesis and antitumor activity. RSC Adv. 2015; 5(78):63936-63944. https://doi.org/10.1039/C5RA07947K.

[58]

Liu LX, Wang XQ, Zhou B, et al. Synthesis and antitumor activity of novel N-substituted carbazole imidazolium salt derivatives. Sci Rep-UK. 2015;5:13101. https://doi.org/10.1038/srep13101.

[59]

Cho HH, Jang SH, Won C, et al. Derhamnosylmaysin inhibits adipogenesis via inhibiting expression of PPARγ and C/EBPα in 3T3-L1 cells. Molecules. 2022; 27(13):4232. https://doi.org/10.3390/molecules27134232.

[60]

Liu DW, Ye YS, Huang CG, et al. Sampsonione F suppresses adipogenesis via activating p53 pathway during the mitotic clonal expansion progression of adipocyte differentiation. Eur J Pharmacol. 2022;925:175002. https://doi.org/10.1016/j.ejphar.2022.175002.

[61]

Zhou J, Zhang J, Li J, et al. Ginsenoside F2 suppresses adipogenesis in 3T3-L1 cells and obesity in mice via the AMPK pathway. J Agr Food Chem. 2021; 69(32):9299-9312. https://doi.org/10.1021/acs.jafc.1c03420.

[62]

Cowherd RM, Lyle RE, Jr McGehee RE.Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol. 1999; 10(1):3-10. https://doi.org/10.1006/scdb.1998.0276.

[63]

Farmer SR.Transcriptional control of adipocyte formation. Cell Metab. 2006; 4(4):263-273. https://doi.org/10.1016/j.cmet.2006.07.001.

[64]

Zhao L, Gregoire F, Sook SH. Transient induction of ENC-1, a Kelch-related actin-binding protein, is required for adipocyte differentiation. J Biol Chem. 2000; 275(22):16845-16850. https://doi.org/10.1074/jbc.275.22.16845.

[65]

Lefterova MI, Lazar MA.New developments in adipogenesis. Trends Endocrin Met. 2009; 20(3):107-114. https://doi.org/10.1016/j.tem.2008.11.005.

[66]

Liu S, Wu D, Fan Z, et al. FABP4 in obesity-associated carcinogenesis: novel insights into mechanisms and therapeutic implications. Front Mol Biosci. 2022; 9:1-14. https://doi.org/10.3389/fmolb.2022.973955.

PDF (14387KB)

81

Accesses

0

Citation

Detail

Sections
Recommended

/