Research progress on polysaccharides from medicine and food homology materials in functional foods

Dejun Hu , Yifan Zhang , Boyao Li , Chongjiang Cao

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1025 -1035.

PDF (2362KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) :1025 -1035. DOI: 10.1016/S1875-5364(25)60829-6
Review
research-article

Research progress on polysaccharides from medicine and food homology materials in functional foods

Author information +
History +
PDF (2362KB)

Abstract

Polysaccharides, a class of complex macromolecules, are distinguished by their diverse biological functions and essential role in functional foods. The distinctive biological activities of polysaccharides from medicine and food homology materials (MFPs), including immunomodulation, carbohydrate metabolism regulation, and lipid metabolism regulation properties, have attracted considerable scientific attention. The relationship between polysaccharides and gut microbiota is fundamental to human health, as polysaccharides demonstrate efficacy in ameliorating various conditions—from inflammatory bowel disease (IBD) to obesity and diabetes—through their influence on intestinal flora composition and diversity. Although polysaccharide research and applications show promise, significant challenges persist, particularly regarding extraction and purification methodologies, and the complete understanding of their biological mechanisms. Future investigations should prioritize understanding the correlation between polysaccharide structure and function, advancing large-scale production and application technologies, and establishing productive interdisciplinary collaborations. MFPs demonstrate significant potential for advancing sustainable development and human health, building upon current research findings. This paper presents a comprehensive review of global developments in the extraction, purification, structural characterization, biological activities, and applications of MFPs, emphasizing opportunities for scientific and technological innovations in specialized dietary food development.

Keywords

Polysaccharide / Extraction / Purification / Structural characterization / Bioactivity / Intestinal flora

Cite this article

Download citation ▾
Dejun Hu, Yifan Zhang, Boyao Li, Chongjiang Cao. Research progress on polysaccharides from medicine and food homology materials in functional foods. Chinese Journal of Natural Medicines, 2025, 23(9): 1025-1035 DOI:10.1016/S1875-5364(25)60829-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang B, Huang B, Yang B, et al. Structural elucidation of a novel polysaccharide from Ophiopogonis Radix and its self-assembly mechanism in aqueous solution. Food Chem. 2023;402:134165. https://doi.org/10.1016/j.foodchem.2022.134165.

[2]

Wang B, Yan LL, Guo SC, et al. Structural elucidation, modification, and structure-activity relationship of polysaccharides in Chinese herbs: a review. Front Nutr. 2022;9:908175. https://doi.org/10.3389/fnut.2022.908175.

[3]

Xie JH, Jin ML, Morris GA, et al. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci. 2016;56:S60-S84. https://doi.org/10.1080/10408398.2015.1069255.

[4]

Yang LQ, Zhang LM. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohyd Polym. 2009; 76:349-361. https://doi.org/10.1016/j.carbpol.2008.12.015.

[5]

Zhu LL, Fan LD, Hu MH, et al. Hematopoietic effect of small molecular fraction of Polygoni multiflori Radix Praeparata in cyclophosphamide-induced anemia mice. Chin J Nat Med. 2019; 17:535-544. https://doi.org/10.3724/SP.J.1009.2019.00535.

[6]

Liu SJ, Zhang SF, Lv XY, et al. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway. Int Immunopharmacol. 2019;75:105768. https://doi.org/10.1016/j.intimp.2019.105768.

[7]

Chen Y, Le TH, Du QM, et al. Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling. Int Immunopharmacol. 2019; 71:144-154. https://doi.org/10.1016/j.intimp.2019.01.021.

[8]

Si HY, Chen YM, Yang J, et al. Characterization and comparison of polysaccharides from Achyranthes bidentata, Cyathula officinalis and Achyranthes aspera by saccharides mapping. J Pharmaceut Biomed. 2023;227:115272. https://doi.org/10.1016/j.jpba.2023.115272.

[9]

Liu W, Wang JJ, Zhang ZZ, et al. In vitro and in vivo antioxidant activity of a fructan from the roots of Arctium lappa L. Int J Biol Macromol. 2014; 65:446-453. https://doi.org/10.1016/j.ijbiomac.2014.01.062.

[10]

Xie X, Shen W, Zhou YR, et al. Characterization of a polysaccharide from Eupolyphaga sinensis Walker and its effective antitumor activity via lymphocyte activation. Int J Biol Macromol. 2020; 162:31-42. https://doi.org/10.1016/j.ijbiomac.2020.06.120.

[11]

Tang S, Liu W, Zhao QQ, et al. Combination of polysaccharides from Astragalus membranaceus and Codonopsis pilosula ameliorated mice colitis and underlying mechanisms. J Ethnopharmacol. 2021;264:113280. https://doi.org/10.1016/j.jep.2020.113280.

[12]

Yao TM, Ma MT, Sui ZQ. Structure and function of polysaccharides and oligosaccharides in foods. Foods. 2023;12:3872. https://doi.org/10.3390/foods12203872.

[13]

Phimolsiripol Y, Seesuriyachan P. Polysaccharides as active ingredients, nutraceuticals and functional foods. Int J Food Sci Tech. 2022; 57:1-3. https://doi.org/10.1111/ijfs.15439.

[14]

Yu Y, Shen MY, Song QQ, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohyd Polym. 2018; 183:91-101. https://doi.org/10.1016/j.carbpol.2017.12.009.

[15]

He LA, Yan XT, Liang J, et al. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem. Carbohyd Polym. 2018; 198:101-108. https://doi.org/10.1016/j.carbpol.2018.06.073.

[16]

Li SJ, Xiong QP, Lai XP, et al. Molecular modification of polysaccharides and resulting bioactivities. Compr Rev Food Sci F. 2016; 15:237-250. https://doi.org/10.1111/1541-4337.12161.

[17]

Li JW, Liu Y, Li BH, et al. A polysaccharide purified from Radix Adenophorae promotes cell activation and pro-inflammatory cytokine production in murine RAW264.7 macrophages. Chin J Nat Med. 2016; 14:370-376. https://doi.org/10.3724/SP.J.1009.2016.00370.

[18]

Jiao H, Shang XH, Dong Q, et al. Polysaccharide constituents of three types of sea urchin shells and their anti-inflammatory activities. Mar Drugs. 2015; 13:5882-5900. https://doi.org/10.3390/md13095882.

[19]

Du B, Zhu FM, Xu BJ. β-Glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology. J Cereal Sci. 2014; 59:95-100. https://doi.org/10.1016/j.jcs.2013.11.004.

[20]

Xu JK, Hou HJ, Hu JP, et al. Optimized microwave extraction, characterization and antioxidant capacity of biological polysaccharides from Eucommia ulmoides Oliver leaf. Sci Rep-Uk. 2018;8:6561. https://doi.org/10.1038/s41598-018-24957-0.

[21]

Lu JK, Li JJ, Jin RC, et al. Extraction and characterization of pectin from Premna microphylla Turcz leaves. Int J Biol Macromol. 2019; 131:323-328. https://doi.org/10.1016/j.ijbiomac.2019.03.056.

[22]

Chen XY, Wang RP, Tan ZJ. Extraction and purification of grape seed polysaccharides using pH-switchable deep eutectic solvents-based three-phase partitioning. Food Chem. 2023;412:135557. https://doi.org/10.1016/j.foodchem.2023.135557.

[23]

Xia B, Liu Q, Sun D, et al. Ultrasound-assisted deep eutectic solvent extraction of polysaccharides from Anji White Tea: characterization and comparison with the conventional method. Foods. 2023;12:588. https://doi.org/10.3390/foods12030588.

[24]

Yi Y, Xu W, Wang HX, et al. Natural polysaccharides experience physiochemical and functional changes during preparation: a review. Carbohyd Polym. 2020;234:115896. https://doi.org/10.1016/j.carbpol.2020.115896.

[25]

Kang QZ, Chen SS, Li SF, et al. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. Int J Biol Macromol. 2019; 124:1137-1144. https://doi.org/10.1016/j.ijbiomac.2018.11.215.

[26]

Wei XL, Chen MA, Xiao JB, et al. Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohyd Polym. 2010; 79:418-422. https://doi.org/10.1016/j.carbpol.2009.08.030.

[27]

Yang RF, Zhao C, Chen X, et al. Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. J Funct Foods. 2015; 17:903-909. https://doi.org/10.1016/j.jff.2015.06.045.

[28]

Chen GJ, Chen XH, Yang B, et al. New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: impact of extraction processes on its prebiotic activity. Food Hydrocolloid. 2019; 95:367-377. https://doi.org/10.1016/j.foodhyd.2019.04.046.

[29]

Wang FF, Ye SH, Ding Y, et al. Research on structure and antioxidant activity of polysaccharides from Ginkgo biloba leaves. J Mol Struct. 2022;1252:132185. https://doi.org/10.1016/j.molstruc.2021.132185.

[30]

Zhang JX, Wen CT, Qin W, et al. Ultrasonic-enhanced subcritical water extraction of polysaccharides by two steps and its characterization from Lentinus edodes. Int J Biol Macromol. 2018; 118:2269-2277. https://doi.org/10.1016/j.ijbiomac.2018.07.098.

[31]

Olawuyi IF, Kim SR, Hahn D, et al. Influences of combined enzyme-ultrasonic extraction on the physicochemical characteristics and properties of okra polysaccharides. Food Hydrocolloid. 2020;100:105396. https://doi.org/10.1016/j.foodhyd.2019.105396.

[32]

Shi L. Bioactivities, isolation and purification methods of polysaccharides from natural products: a review. Int J Biol Macromol. 2016; 92:37-48. https://doi.org/10.1016/j.ijbiomac.2016.06.100.

[33]

Yang R, Meng DM, Song Y, et al. Simultaneous decoloration and deproteinization of crude polysaccharide from pumpkin residues by cross-linked polystyrene macroporous resin. J Agr Food Chem. 2012; 60:8450-8456. https://doi.org/10.1021/jf3031315.

[34]

Zeng XT, Li PY, Chen X, et al. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides. Int J Biol Macromol. 2019; 126:867-876. https://doi.org/10.1016/j.ijbiomac.2018.12.222.

[35]

Chen Y, Xie MY, Li WJ, et al. An effective method for deproteinization of bioactive polysaccharides extracted from Lingzhi (Ganoderma atrum). Food Sci Biotechnol. 2012; 21:191-198. https://doi.org/10.1007/s10068-012-0024-2.

[36]

Zhang HL, Cui SH, Zha XQ, et al. Jellyfish skin polysaccharides: extraction and inhibitory activity on macrophage-derived foam cell formation. Carbohyd Polym. 2014; 106:393-402. https://doi.org/10.1016/j.carbpol.2014.01.041.

[37]

Wu XY, Li RC, Zhao YJ, et al. Separation of polysaccharides from Spirulina platensis by HSCCC with ethanol-ammonium sulfate ATPS and their antioxidant activities. Carbohyd Polym. 2017; 173:465-472. https://doi.org/10.1016/j.carbpol.2017.06.023.

[38]

Yang SY, Li Y, Jia DY, et al. The synergy of Box-Behnken designs on the optimization of polysaccharide extraction from mulberry leaves. Ind Crop Prod. 2017; 99:70-78. https://doi.org/10.1016/j.indcrop.2017.01.024.

[39]

Shi XD, Nie SP, Yin JY, et al. Polysaccharide from leaf skin of Aloe barbadensis Miller: Part I. Extraction, fractionation, physicochemical properties and structural characterization. Food Hydrocolloid. 2017; 73:176-183. https://doi.org/10.1016/j.foodhyd.2017.06.039.

[40]

Cao JJ, Lv QQ, Zhang B, et al. Structural characterization and hepatoprotective activities of polysaccharides from the leaves of Toona sinensis (A. Juss) Roem. Carbohyd Polym. 2019; 212:89-101. https://doi.org/10.1016/j.carbpol.2019.02.031.

[41]

Wang ZC, Zhang HR, Shen YB, et al. Characterization of a novel polysaccharide from Ganoderma Lucidum and its absorption mechanism in Caco-2 cells and mice model. Int J Biol Macromol. 2018; 118:320-326. https://doi.org/10.1016/j.ijbiomac.2018.06.078.

[42]

Haltiwanger RS. Carbohydrate Analysis: A Practical Approach. M. F. Chaplin, J. F. Kennedy. Q Rev Biol. 1996;71:117.

[43]

Tang W, Liu D, Yin JY, et al. Consecutive and progressive purification of food-derived natural polysaccharide: based on material, extraction process and crude polysaccharide. Trends Food Sci Tech. 2020; 99:76-87. https://doi.org/10.1016/j.jpgs.2020.02.015.

[44]

Yu QT, Cao J, Chen BD, et al. Efficient gene delivery to human umbilical cord mesenchymal stem cells by cationized polysaccharide nanoparticles. Int J Nanomed. 2015; 10:7097-7107. https://doi.org/10.2147/IJN.S93122.

[45]

Huo JY, Lu Y, Xia L, et al. Structural characterization and anticomplement activities of three acidic homogeneous polysaccharides from Artemisia annua. J Ethnopharmacol. 2020;247:112281. https://doi.org/10.1016/j.jep.2019.112281.

[46]

Lian YP, Zhu MM, Yang B, et al. Characterization of a novel polysaccharide from red ginseng and its ameliorative effect on oxidative stress injury in myocardial ischemia. Chin Med-Uk. 2022; 17:1-18. https://doi.org/10.1186/s13020-022-00669-6.

[47]

Zhang J, Huo JY, Zhao ZZ, et al. An anticomplement homogeneous polysaccharide from Hedyotis diffusa attenuates lipopolysaccharide-induced acute lung injury and inhibits neutrophil extracellular trap formation. Phytomedicine. 2022;107:154453. https://doi.org/10.1016/j.phymed.2022.154453.

[48]

Li JW, Liu YF, Fan LP, et al. Antioxidant activities of polysaccharides from the fruiting bodies of Zizyphus Jujuba cv. Jinsixiaozao. Carbohyd Polym. 2011; 84:390-394. https://doi.org/10.1016/j.carbpol.2010.11.051.

[49]

Zhang JX, Wen CT, Duan YQ, et al. Advance in Cordyceps militaris (Linn) Link polysaccharides: isolation, structure, and bioactivities: a review. Int J Biol Macromol. 2019; 132:906-914. https://doi.org/10.1016/j.ijbiomac.2019.04.020.

[50]

Yang ML, Ren WJ, Li GY, et al. The effect of structure and preparation method on the bioactivity of polysaccharides from plants and fungi. Food Funct. 2022; 13:12541-12560. https://doi.org/10.1039/d2fo02029g.

[51]

Xie MY, Yin JY, Nie SP. Research progress on structural analysis of polysaccharides from natural product sources. J Chin Food Sci. 2017; 17:1-19. https://doi.org/10.16429/j.1009-7848.2017.03.001.

[52]

Huang F, Liu HJ, Zhang RF, et al. Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques. Carbohyd Polym. 2019; 206:344-351. https://doi.org/10.1016/j.carbpol.2018.11.012.

[53]

Ji XL, Shen YB, Guo XD.Isolation, structures, and bioactivities of the polysaccharides from Gynostemma pentaphyllum (Thunb.) Makino: a review. Biomed Res Int. 2018;2018:6285134. https://doi.org/10.1155/2018/6285134.

[54]

Liu W, Xu JN, Zhu R, et al. Fingerprinting profile of polysaccharides from Lycium barbarum using multiplex approaches and chemometrics. Int J Biol Macromol. 2015; 78:230-237. https://doi.org/10.1016/j.ijbiomac.2015.03.062.

[55]

Ferreira SS, Passos CP, Madureira P, et al. Structure function relationships of immunostimulatory polysaccharides: a review. Carbohyd Polym. 2015; 132:378-396. https://doi.org/10.1016/j.carbpol.2015.05.079.

[56]

Chen GT, Yuan B, Wang HX, et al. Characterization and antioxidant activity of polysaccharides obtained from ginger pomace using two different extraction processes. Int J Biol Macromol. 2019; 139:801-809. https://doi.org/10.1016/j.ijbiomac.2019.08.048.

[57]

Fan JL, Wu ZW, Zhao TH, et al. Characterization, antioxidant and hepatoprotective activities of polysaccharides from Ilex latifolia Thunb. Carbohyd Polym. 2014; 101:990-997. https://doi.org/10.1016/j.carbpol.2013.10.037.

[58]

Capek P, Machová E, Turjan J. Scavenging and antioxidant activities of immunomodulating polysaccharides isolated from Salvia officinalis L. Int J Biol Macromol. 2009; 44:75-80. https://doi.org/10.1016/j.ijbiomac.2008.10.007.

[59]

Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs. 2012; 10:2795-2816. https://doi.org/10.3390/md10122795.

[60]

Wang B, Wang XF, Xiong ZW, et al. A review on the applications of traditional Chinese medicine polysaccharides in drug delivery systems. Chin Med-Uk. 2022; 17:1-15. https://doi.org/10.1186/s13020-021-00567-3.

[61]

Liu W, Hu C, Liu YM, et al.Preparation, characterization, and α-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai. Int J Biol Macromol. 2017; 99:454-464. https://doi.org/10.1016/j.ijbiomac.2017.02.065.

[62]

Sun XB, Zhao C, Pan W, et al. Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide. Carbohyd Polym. 2015; 123:283-287. https://doi.org/10.1016/j.carbpol.2015.01.062.

[63]

Wang ZJ, Xie JH, Kan LJ, et al. Sulfated polysaccharides from Cyclocarya paliurus reduce H2O2-induced oxidative stress in RAW264.7 cells. Int J Biol Macromol. 2015; 80:410-417. https://doi.org/10.1016/j.ijbiomac.2015.06.031.

[64]

Xie JH, Wang ZJ, Shen MY, et al. Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus. Food Hydrocolloid. 2016; 53:7-15. https://doi.org/10.1016/j.foodhyd.2015.02.018.

[65]

Wu SH, Chen XX, Cai RX, et al. Sulfated Chinese yam polysaccharides alleviate LPS-induced acute inflammation in mice through modulating intestinal microbiota. Foods. 2023;12:1772. https://doi.org/10.3390/foods12091772.

[66]

Wan JY, Fan Y, Yu QT, et al. Integrated evaluation of malonyl ginsenosides, amino acids and polysaccharides in fresh and processed ginseng. J Pharmaceut Biomed. 2015; 107:89-97. https://doi.org/10.1016/j.jpba.2014.11.014.

[67]

Gu DL, Wang Y, Jin HY, et al. Changes of physicochemical properties and immunomodulatory activity of polysaccharides during processing of Polygonum multiflorum Thunb. Front Pharmacol. 2022;13:934710. https://doi.org/10.3389/fphar.2022.934710.

[68]

Zeng CH, Chen XY, Jiang WW, et al. Isolation, purification and antioxidant activity of the polysaccharides from Chinese truffle Tuber sinense. Iran J Pharm Res. 2020; 19:436-447. https://doi.org/10.22037/ijpr.2020.1100954.

[69]

Liu HH, Fan YL, Wang WH, et al. Polysaccharides from Lycium barbarum leaves: isolation, characterization and splenocyte proliferation activity. Int J Biol Macromol. 2012; 51:417-422. https://doi.org/10.1016/j.ijbiomac.2012.05.025.

[70]

Zhao ZH, Dai H, Wu XM, et al. Characterization of a pectic polysaccharide from the fruit of Ziziphus jujuba. Chem Nat Compd+. 2007; 43:374-376. https://doi.org/10.1007/s10600-007-0141-y.

[71]

Yin JY, Lin HX, Li J, et al. Structural characterization of a highly branched polysaccharide from the seeds of Plantago asiatica L. Carbohyd Polym. 2012; 87:2416-2424. https://doi.org/10.1016/j.carbpol.2011.11.009.

[72]

Zhang Y, Ren CJ, Lu GB, et al.Purification, characterization and anti-diabetic activity of a polysaccharide from mulberry leaf. Regul Toxicol Pharm. 2014; 70:687-695. https://doi.org/10.1016/j.yrtph.2014.10.006.

[73]

Zhu W, Zhou SX, Liu JH, et al. Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide. Biomed Pharmacother. 2020;121:109591. https://doi.org/10.1016/j.biopha.2019.109591.

[74]

Zhao B, Lv CN, Lu JC.Natural occurring polysaccharides from Panax ginseng C. A. Meyer: a review of isolation, structures, and bioactivities. Int J Biol Macromol. 2019; 133:324-336. https://doi.org/10.1016/j.ijbiomac.2019.03.229.

[75]

Wang Y, Zhao H, Miao XL, et al. Structural determination and antitumor activities of a water-soluble polysaccharide from Mortierella hepiali. Fitoterapia. 2013; 86:13-18. https://doi.org/10.1016/j.fitote.2013.01.001.

[76]

Tian XL, Guo M, Zhang XY, et al. Strongylocentrotus nudus eggs polysaccharide enhances macrophage phagocytosis against E. coli infection by TLR4/STAT3 axis. Front Pharmacol. 2022;13:807440. https://doi.org/10.3389/fphar.2022.807440.

[77]

Hong Z, Zhou LS, Zhao ZZ, et al. Structural characterization and anticomplement activity of an acidic heteropolysaccharide from Lysimachia christinae Hance. Planta Med. 2023; 89:1457-1467. https://doi.org/10.1055/a-2148-7163.

[78]

Song JZ, Zhao X, Bo JQ, et al. A polysaccharide from Alhagi honey protects the intestinal barrier and regulates the Nrf2/HO-1-TLR4/MAPK signaling pathway to treat alcoholic liver disease in mice. J Ethnopharmacol. 2024;321:117552. https://doi.org/10.1016/j.jep.2023.117552.

[79]

Darge HF, Andrgie AT, Tsai HC, et al. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol. 2019; 133:545-563. https://doi.org/10.1016/j.ijbiomac.2019.04.131.

[80]

Zhang Y, Wang FS. Carbohydrate drugs: current status and development prospect. Drug Discov Ther. 2015; 9:79-87. https://doi.org/10.5582/ddt.2015.01028.

[81]

Yue L, Wang W, Wang Y, et al. Bletilla striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways. Int J Biol Macromol. 2016; 89:376-388. https://doi.org/10.1016/j.ijbiomac.2016.05.002.

[82]

Zhang YT, Ahmad KA, Khan FU, et al. Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway. Chem-Biol Interact. 2019; 305:54-65. https://doi.org/10.1016/j.cbi.2019.03.027.

[83]

Liu JP, Wang J, Zhou SX, et al. Ginger polysaccharides enhance intestinal immunity by modulating gut microbiota in cyclophosphamide-induced immunosuppressed mice. Int J Biol Macromol. 2022; 223:1308-1319. https://doi.org/10.1016/j.ijbiomac.2022.11.104.

[84]

Ngwuluka NC. Responsive polysaccharides and polysaccharides-based nanoparticles for drug delivery. In: Makhlouf ASH, Abu-Thabit NY. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Vol 1: Types and Triggers.Elsevier. 2018:531-554. https://doi.org/10.1016/B978-0-08-101997-9.00023-0.

[85]

Wang YN, Ni ZZ, Li JT, et al. Cordyceps cicadae polysaccharides alleviate hyperglycemia by regulating gut microbiota and its mmetabolites in high-fat diet/streptozocin-induced diabetic mice. Front Nutr. 2023;10:1203430. https://doi.org/10.3389/fnut.2023.1203430.

[86]

Zhang TT, Zhao WY, Xie BZ, et al. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota. J Funct Foods. 2020;72:104038. https://doi.org/10.1016/j.jff.2020.104038.

[87]

Zhang MS, Yao MK, Jia AR, et al. Hypolipidemic effect of soluble dietary fibers prepared from Asparagus officinalis and their effects on the modulation of intestinal microbiota. Food Sci Biotechnol. 2021; 30:1721-1731. https://doi.org/10.1007/s10068-021-01001-y.

[88]

Ren YL, Sun QG, Gao RN, et al. Low weight polysaccharide of Hericium erinaceus ameliorates colitis via inhibiting the NLRP3 inflammasome activation in association with gut microbiota modulation. Nutrients. 2023;15:739. https://doi.org/10.3390/nu15030739.

[89]

Han C, Wang Y, Liu RY, et al. Structural characterization and protective effect of Lonicerae flos polysaccharide on cyclophosphamide-induced immunosuppression in mice. Ecotoxicol Environ Saf. 2022;230:113174. https://doi.org/10.1016/j.ecoenv.2022.113174.

[90]

Deng JL, Luo KB, Xia C, et al. Phytochemical composition of Tibetan tea fermented by Eurotium cristatum and its effects on type 1 diabetes mice and gut microbiota. Heliyon. 2024; 10(5):e27145. https://doi.org/10.1016/j.heliyon.2024.e27145.

[91]

Zhang XY, Zhao SW, Song XB, et al. Inhibition effect of glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition. J Pharmacol Sci. 2018; 137:324-332. https://doi.org/10.1016/j.jphs.2018.03.006.

[92]

Hu TG, Yu YS, Wu JJ, et al. Structural elucidation of mulberry leaf oligosaccharide and its selective promotion of gut microbiota to alleviate type 2 diabetes mellitus. Food Sci Hum Well. 2024; 13:2161-2173. https://doi.org/10.26599/FSHW.2022.9250180.

[93]

Wang Y, Sun MY, Jin HY, et al. Effects of Lycium barbarum polysaccharides on immunity and the gut microbiota in cyclophosphamide-induced immunosuppressed mice. Front Microbiol. 2021;12:701566. https://doi.org/10.3389/fmicb.2021.701566.

[94]

Wang L, Roy D, Lin SS, et al. Hypoglycemic effect of Camellia chrysantha extract on type 2 diabetic mice model. Bangl J Pharmacol. 2017; 12:359-363. https://doi.org/10.3329/bjp.v12i4.32995.

[95]

Steck AK, Winter WE.Review on monogenic diabetes. Curr Opin Endocrinol. 2011; 18:252-258. https://doi.org/10.1097/MED.0b013e3283488275.

[96]

Wang PC, Zhao S, Yang BY, et al. Anti-diabetic polysaccharides from natural sources: a review. Carbohyd Polym. 2016; 148:86-97. https://doi.org/10.1016/j.carbpol.2016.02.060.

[97]

Zhu W, Huang W, Xu ZQ, et al. Analysis of patents issued in China for antihyperglycemic therapies for type 2 diabetes mellitus. Front Pharmacol. 2019;10:586. https://doi.org/10.3389/fphar.2019.00586.

[98]

Zhang XL, Shao H, Zheng X. Amino acids at the intersection of nutrition and insulin sensitivity. Drug Discov Today. 2019; 24:1038-1043. https://doi.org/10.1016/j.drudis.2019.02.008.

[99]

Zhang BB, Zhou GC, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 2009; 9:407-416. https://doi.org/10.1016/j.cmet.2009.03.012.

[100]

Zhou Y, Wang YZ, Zhang LL, et al. Discovery and biological evaluation of novel G protein-coupled receptor 119 agonists for type 2 diabetes. Arch Pharm. 2019;352:e1800267. https://doi.org/10.1002/ardp.201800267.

[101]

Zhang XX, Jiang CH, Liu Y, et al. Cyclocarya paliurus triterpenic acids fraction attenuates kidney injury via AMPK-mTOR-regulated autophagy pathway in diabetic rats. Phytomedicine. 2019;64:153060. https://doi.org/10.1016/j.phymed.2019.153060.

[102]

Jiang CH, Wang YT, Jin QM, et al. Cyclocarya paliurus triterpenoids improve diabetes-induced hepatic inflammation via the rho-kinase-dependent pathway. Front Pharmacol. 2019;0:811. https://doi.org/10.3389/fphar.2019.00811.

[103]

Rendra E, Riabov V, Mossel DM, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiol. 2019; 224:242-253. https://doi.org/10.1016/j.imbio.2018.11.010.

[104]

Sun L, Jiang J, Jing T, et al. A polysaccharide NAP-3 from Naematelia aurantialba: structural characterization and adjunctive hypoglycemic activity. Carbohyd Polym. 2023;318:121124. https://doi.org/10.1016/j.carbpol.2023.121124.

[105]

Yang B, Xiong ZW, Lin M, et al. Astragalus polysaccharides alleviate type 1 diabetes via modulating gut microbiota in mice. Int J Biol Macromol. 2023;234:123767. https://doi.org/10.1016/j.ijbiomac.2023.123767.

[106]

Zhang M, Yang LC, Zhu MM, et al. Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int J Biol Macromol. 2022; 206:849-860. https://doi.org/10.1016/j.ijbiomac.2022.03.077.

[107]

Wang ZC, Wang Z, Huang WH, et al. Antioxidant and anti-inflammatory activities of an anti-diabetic polysaccharide extracted from Gynostemma pentaphyllum herb. Int J Biol Macromol. 2020; 145:484-491. https://doi.org/10.1016/j.ijbiomac.2019.12.213.

[108]

Baothman OA, Zamzami MA, Taher I, et al. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis. 2016; 15:1-8. https://doi.org/10.1186/s12944-016-0278-4.

[109]

Guo WL, Deng JC, Pan YY, et al. Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. Int J Biol Macromol. 2020; 153:1231-1240. https://doi.org/10.1016/j.ijbiomac.2019.10.253.

[110]

Lu HX, Liu P, Zhang XX, et al. Inulin and Lycium barbarum polysaccharides ameliorate diabetes by enhancing gut barrier via modulating gut microbiota and activating gut mucosal TLR2+ intraepithelial γδ T cells in rats. J Funct Foods. 2021;79:104407. https://doi.org/10.1016/j.jff.2021.104407.

[111]

Yuan Y, Zhou JH, Zheng YF, et al. Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomed Pharmacother. 2020;127:110182. https://doi.org/10.1016/j.biopha.2020.110182.

[112]

Qian MY, Lyu QQ, Liu YJ, et al. Chitosan oligosaccharide ameliorates nonalcoholic fatty liver disease (NAFLD) in diet-induced obese mice. Mar Drugs. 2019;17:391. https://doi.org/10.3390/md17070391.

[113]

Yang H, Yang TT, Heng C, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res. 2019; 33:3140-3152. https://doi.org/10.1002/ptr.6486.

[114]

Shi GJ, Li Y, Cao QH, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother. 2019; 109:1085-1099. https://doi.org/10.1016/j.biopha.2018.10.130.

[115]

Woo M, Kim M, Noh JS, et al. Preventative activity of kimchi on high cholesterol diet-induced hepatic damage through regulation of lipid metabolism in LDL receptor knockout mice. Food Sci Biotechnol. 2018; 27:211-218. https://doi.org/10.1007/s10068-017-0202-3.

[116]

Lv A, Ge M, Hu XQ, et al. Effects of Agaricus blazei Murill polysaccharide on cadmium poisoning on the MDA5 signaling pathway and antioxidant function of chicken peripheral blood lymphocytes. Biol Trace Elem Res. 2018; 181:122-132. https://doi.org/10.1007/s12011-017-1012-4.

[117]

Lin FY, Li X, Guo X, et al. Study on the hypolipidemic effect of Inonotus obliquus polysaccharide in hyperlipidemia rats based on the regulation of intestinal flora. Food Sci Nutr. 2022; 11:191-203. https://doi.org/10.1002/fsn3.3052.

[118]

Hua H, Liu L, Zhu T, et al. Healthy regulation of Tibetan Brassica rapa L. polysaccharides on alleviating hyperlipidemia: a rodent study. Food Chem Mol Sci. 2023;6:100171. https://doi.org/10.1016/j.fochms.2023.100171.

[119]

Yu ZH, Qian ZW, Teng FX, et al. Advances in research of polysaccharides on inflammatory diseases and gut microbiota. Chin Pharmacol Bull. 2022; 38:1601-1606. https://doi.org/10.12360/CPB202109084.

[120]

Hutchings MI, Truman AW, Wilkinson B.Antibiotics: past, present and future. Curr Opin Microbiol. 2019; 51:72-80. https://doi.org/10.1016/j.mib.2019.10.008.

[121]

Li H, Fan C, Lu HM, et al. Protective role of berberine on ulcerative colitis through modulating enteric glial cells-intestinal epithelial cells-immune cells interactions. Acta Pharm Sin B. 2020; 10:447-461. https://doi.org/10.1016/j.apsb.2019.08.006.

[122]

Liu YM, Liu W, Li J, et al. A polysaccharide extracted from Astragalus membranaceus residue improves cognitive dysfunction by altering gut microbiota in diabetic mice. Carbohyd Polym. 2019; 205:500-512. https://doi.org/10.1016/j.carbpol.2018.10.041.

[123]

Li SS, Zheng M, Zhang ZT, et al. Galli gigeriae endothelium corneum: its intestinal barrier protective activity in vitro and chemical composition. Chin Med-Uk. 2021; 16:1-11. https://doi.org/10.1186/s13020-021-00432-3.

[124]

Yan Y, Ren FL, Wang PC, et al. Synthesis and evaluation of a prodrug of 5-aminosalicylic acid for the treatment of ulcerative colitis. Iran J Basic Med Sci. 2019; 22:1452-1461. https://doi.org/10.22038/IJBMS.2019.13991.

[125]

Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004; 4:478-485. https://doi.org/10.1038/nri1373.

[126]

Sebastián-Domingo JJ, Sánchez-Sánchez C. From the intestinal flora to the microbiome. Rev Esp Enferm Dig. 2018; 110:51-56. https://doi.org/10.17235/reed.2017.4947/2017.

[127]

Li JN, Lu Y, Wang DW, et al. Schisandrin B prevents ulcerative colitis and colitis-associated-cancer by activating focal adhesion kinase and influence on gut microbiota in an in vivo and in vitro model. Eur J Pharmacol. 2019; 854:9-21. https://doi.org/10.1016/j.ejphar.2019.03.059.

[128]

Pham TA, Hu XL, Huang XJ, et al. Phloroglucinols with immunosuppressive activities from the fruits of Eucalyptus globulus. J Nat Prod. 2019; 82:859-869. https://doi.org/10.1021/acs.jnatprod.8b00920.

[129]

Cao F, Liu J, Sha BX, et al. Natural products: experimental efficient agents for inflammatory Bowel disease therapy. Curr Pharm Design. 2019; 25:4893-4913. https://doi.org/10.2174/1381612825666191216154224.

[130]

Wang Y, Fei YQ, Liu LR, et al. Polygonatum odoratum polysaccharides modulate gut microbiota and mitigate experimentally induced obesity in rats. Int J Mol Sci. 2018;19:3587. https://doi.org/10.3390/ijms19113587.

[131]

Cai Y, Liu W, Lin YX, et al. Compound polysaccharides ameliorate experimental colitis by modulating gut microbiota composition and function. J Gastroen Hepatol. 2019; 34(9):1554-1562. https://doi.org/10.1111/jgh.14583.

[132]

Ballesteros-Pomar MD, Arnaiz EG. Role of prebiotics and probiotics in the functionality of the microbiota in the patients receiving enteral nutrition. Nutr Hosp. 2018; 35:18-26. https://doi.org/10.20960/nh.1956.

[133]

Larsen N, De Souza CB, Krych L, et al. Effect of potato fiber on survival of Lactobacillus species at simulated gastric conditions and composition of the gut microbiota in vitro. Food Res Int. 2019;125:108644. https://doi.org/10.1016/j.foodres.2019.108644.

[134]

Bergstrom K, Fu J, Johansson MEV, et al. Core 1-and 3-derived -glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol. 2017; 10:91-103. https://doi.org/10.1038/mi.2016.45.

[135]

Tan H, O'toole P. Impact of diet on the human intestinal microbiota. Curr Opin Food Sci. 2015; 2:71-77. https://doi.org/10.1016/j.cofs.2015.01.005.

[136]

Zhou J, An RF, Huang XF. Genus Lilium: a review on traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2021;270:113852. https://doi.org/10.1016/j.jep.2021.113852.

[137]

Qiu Y, Song WB, Yang Y, et al.Isolation, structural and bioactivities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl.: a review. Int J Biol Macromol. 2023;236:123883. https://doi.org/10.1016/j.ijbiomac.2023.123883.

[138]

Zhang J, Hu KL, Di LQ, et al. Traditional herbal medicine and nanomedicine: converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliver Rev. 2021;178:113964. https://doi.org/10.1016/j.addr.2021.113964.

PDF (2362KB)

220

Accesses

0

Citation

Detail

Sections
Recommended

/