Neuroprotective and antidiabetic lanostane-type triterpenoids from the fruiting bodies of Ganoderma theaecolum

Jiaocen Guo , Li Yang , Luting Dai , Qingyun Ma , Jiaoyang Yan , Qingyi Xie , Yougen Wu , Haofu Dai , Youxing Zhao

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) : 245 -256.

PDF (2245KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) :245 -256. DOI: 10.1016/S1875-5364(25)60828-4
Original article
research-article

Neuroprotective and antidiabetic lanostane-type triterpenoids from the fruiting bodies of Ganoderma theaecolum

Author information +
History +
PDF (2245KB)

Abstract

Eight previously undescribed lanostane triterpenoids, including five nortriterpenoids with 26 carbons, ganothenoids A−E (1−5), and three lanostanoids, ganothenoids F−H (6−8), along with 24 known ones (9−32), were isolated from the fruiting bodies of Ganodrma theaecolum. The structures of the novel compounds were elucidated using comprehensive spectroscopic methods, including electronic circular dichroism (ECD) and nuclear magnetic resonance (NMR) calculations. Compounds 1−32 were assessed for their neuroprotective effects against H2O2-induced damage in human neuroblastoma SH-SY5Y cells, as well as their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. Compound 4 demonstrated the most potent neuroprotective activity against H2O2-induced oxidative stress by suppressing G0/G1 phase cell cycle arrest, reducing reactive oxygen species (ROS) levels, and inhibiting cell apoptosis through modulation of B-cell lymphoma 2 protein (Bcl-2) and Bcl-2 associated X-protein (Bax) protein expression. Compounds 26, 12, and 28 exhibited PTP1B inhibitory activities with IC50 values ranging from 13.92 to 56.94 μmol·L−1, while compound 12 alone displayed significant inhibitory effects on α-glucosidase with an IC50 value of 43.56 μmol·L−1. Additionally, enzyme kinetic analyses and molecular docking simulations were conducted for compounds 26 and 12 with PTP1B and α-glucosidase, respectively.

Keywords

Ganoderma theaecolum / Lanostane nortriterpenoids / Neuroprotective effects / PTP1B / α-Glucosidase

Cite this article

Download citation ▾
Jiaocen Guo, Li Yang, Luting Dai, Qingyun Ma, Jiaoyang Yan, Qingyi Xie, Yougen Wu, Haofu Dai, Youxing Zhao. Neuroprotective and antidiabetic lanostane-type triterpenoids from the fruiting bodies of Ganoderma theaecolum. Chinese Journal of Natural Medicines, 2025, 23(2): 245-256 DOI:10.1016/S1875-5364(25)60828-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ren L, Zhang J, Zhang T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021; 340(15):127933. https://doi.org/10.1016/j.foodchem.2020.127933.

[2]

Liang C, Tian D, Liu Y, et al. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: ganoderic acids A, C2, D, F, DM, X and Y. Eur J Med Chem. 2019; 174(15):130-141. https://doi.org/10.1016/j.ejmech.2019.04.039.

[3]

Yang L, Kong D, Xiao N, et al. Antidiabetic lanostane triterpenoids from the fruiting bodies of Ganoderma weberianum. Bioorg Chem. 2022;127:106025. https://doi.org/10.1016/j.bioorg.2022.106025.

[4]

Luo Q, Cao W, Cheng Y. Alkaloids, sesquiterpenoids and hybrids of terpenoid with p-hydroxycinnamic acid from Ganoderma sinensis and their biological evaluation. Phytochem. 2022;203:113379. https://doi.org/10.1016/j.phytochem.2022.113379.

[5]

Liu X, Yang L, Li G, et al. A novel promising neuroprotective agent: Ganoderma lucidum polysaccharide. Int J Biol Macromol. 2023; 229(28):168-180. https://doi.org/10.1016/j.ijbiomac.2022.12.276.

[6]

Xu J, Xiao C, Xu H, et al. Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p 38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem Toxicol. 2021;150:112073. https://doi.org/10.1016/j.fct.2021.112073.

[7]

Lin Z, Zhang H. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Act Pharmacol Sin. 2004;25:1387-1395.

[8]

Ren F, Meng C, Chen W, et al. Ganoderma amboinense polysaccharide prevents obesity by regulating gut microbiota in high-fat-diet mice. Food Biosci. 2021;42:101107. https://doi.org/10.1016/j.fbio.2021.101107.

[9]

Zhang Y, Wang X, Yang X, et al. Ganoderic acid A to alleviate neuroinflammation of Alzheimer’s disease in mice by regulating the imbalance of the Th17/Tregs axis. J Agric Food Chem. 2021; 69(47):14204-14214. https://doi.org/10.1021/acs.jafc.1c06304.

[10]

Kou R, Xia B, Wang Z, et al. Triterpenoids and meroterpenoids from the edible Ganoderma resinaceum and their potential anti-inflammatory, antioxidant and anti-apoptosis activities. Bioorg Chem. 2022;121:105689. https://doi.org/10.1016/j.bioorg.2022.105689.

[11]

Zhao C, Fan J, Liu Y, et al. Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis. Food Chem. 2019; 271(15):148-156. https://doi.org/10.1016/j.foodchem.2018.07.115.

[12]

Isaka M, Chinthanom P, Sappan M, et al. Antitubercular activity of mycelium-associated Ganoderma lanostanoids. J Nat Prod. 2017; 80(5):1361-1369. https://doi.org/10.1021/acs.jnatprod.6b00973.

[13]

Guo C, Guo D, Fang L, et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon. Carbohydr Polym. 2021;267:118231. https://doi.org/10.1016/j.carbpol.2021.118231.

[14]

Liu L, Chen H, Liu C, et al. Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities. Fitoterapia. 2014; 98:254-259. https://doi.org/10.1016/j.fitote.2014.08.004.

[15]

Luo Q, Yang Z, Yan Y, et al. Ganotheaecolin A, a neurotrophic conjugated ergosterol with a naphtho[1,8-ef]azulene scaffold from Ganoderma theaecolum. Org Lett. 2017;19:718e721. https://doi.org/10.1021/acs.orglett.7b00012.

[16]

Luo Q, Li M, Luo J, et al. COX-2 and JAK 3 inhibitory meroterpenoids from the mushroom Ganoderma theaecolum. Tetrahedron. 2018; 74(31):4259-4265. https://doi.org/10.1016/j.tet.2018.06.053.

[17]

Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano. 2014; 8(3):1958-1965. https://doi.org/10.1021/nn501292z.

[18]

Moreno R, Recio J, Barber S, et al. The emerging role of mixed lineage kinase 3 (MLK3) and its potential as a target for neurodegenerative diseases therapies. Eur J Med Chem. 2023;257:115511. https://doi.org/10.1016/j.ejmech.2023.115511.

[19]

Nieoullon A. Neurodegenerative diseases and neuroprotection: current views and prospects. J Appl Biomed. 2011; 9(4):173-183. https://doi.org/10.2478/v10136-011-0013-4.

[20]

Hwang S, Wang Z, Lim S. Chemo-enzymatic synthesis of vinyl and L-ascorbyl phenolates and their inhibitory effects on advanced glycation end products. Food Chem. 2017; 214:726-735. https://doi.org/10.1016/j.foodchem.2016.07.118.

[21]

Hakamata W, Kurihara M, Okuda H, et al. Design and screening strategies for α-glucosidase inhibitors based on enzymological information. Curr Top Med Chem. 2009; 9(1):3-12. https://doi.org/10.2174/156802609787354306.

[22]

Zeng L, Ding H, Hua X, et al. Galangin inhibits α-glucosidase activity and formation of nonenzymatic glycation products. Food Chem. 2019; 271(15):70-79. https://doi.org/10.1016/j.foodchem.2018.07.148.

[23]

Zhang S, Zhang Z. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today. 2007; 12:373-381. https://doi.org/10.1016/j.drudis.2007.03.011.

[24]

Goldstein B, Bittner-Kowalczyk A, White M, et al. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B: possible facilitation by the formation of a ternary complex with the GRB2 adaptor protein. J Biol Chem. 2000; 275:4283-4289. https://doi.org/10.1074/jbc.275.6.4283.

[25]

Liu G, Zhang K.Mechanisms of the anticancer action of Ganoderma lucidum (Leyss. ex. Fr. ) Karst. : a new understanding. J Integr Plant Biol. 2005; 47(2):129-135. https://doi.org/10.1111/j.1744-7909.2005.00037.x.

[26]

Zhao X, Huo X, Dong P, et al. Inhibitory effects of highly oxygenated lanostane derivatives from the fungus Ganoderma lucidum on P-glycoprotein and α-glucosidase. J Nat Prod. 2015; 78(8):1868-1876. https://doi.org/10.1021/acs.jnatprod.5b00132.

[27]

Ye XL. Stereochemistry. Beijing: Beijing University Press, 1999:257-258.

[28]

Li X, Liu F, Su H, et al. Twelve undescribed derivatives of ganoderic acid isolated from Ganoderma luteomarginatum and their cytotoxicity against three human cancer cell lines. Phytochem. 2021;183:112617. https://doi.org/10.1016/j.phytochem.2020.112617.

[29]

Su H, Wang Q, Zhou L, et al. Functional triterpenoids from medicinal fungi Ganoderma applanatum: a continuous search for antiadipogenic agents. Bioor Chem. 2021;112:104977. https://doi.org/10.1016/j.bioorg.2021.104977.

[30]

Chen X, Lin L, Zhao J, et al. Isolation, structural elucidation, and α-glucosidase inhibitory activities of triterpenoid lactones and their relevant biogenetic constituents from Ganoderma resinaceum. Molecules. 2018;23:1391. https://doi.org/10.3390/molecules23061391.

[31]

Chen H, Zhang J, Ren J, et al. Triterpenes and meroterpenes with neuroprotective effects from Ganoderma leucocontextum. Chem Biodivers. 2018; 15(5):e1700567. https://doi.org/10.1002/cbdv.201700567.

[32]

Guo J, Yang L, Ma Q, et al. Triterpenoids and meroterpenoids with α-glucosidase inhibitory activities from the fruiting bodies of Ganoderma austral. Bioorg Chem. 2021;117:1105448. https://doi.org/10.1016/j.bioorg.2021.105448.

[33]

Zhang S, Wang Y, Ma Q, et al. Three new lanostanoids from the mushroom Ganoderma tropicum. Molecules. 2015; 20:3281-3289. https://doi.org/10.3390/molecules20023281.

[34]

Hu L, Ma Q, Huang S, et al. Three new lanostanoid triterpenes from the fruiting bodies of Ganoderma tropicum. J Asian Nat Prod Res. 2013; 15:357-362. https://doi.org/10.1080/10286020.2013.764869.

[35]

Zhang S, Ma Q, Huang S, et al. Lanostanoids with acetylcholinesterase inhibitory activity from the mushroom Haddowia longipes. Phytochem. 2015; 110:133-139. https://doi.org/10.1016/j.phytochem.2014.12.012.

[36]

Kikuchi T, Kanomi S, Kadota S, et al. Constituents of the fungus Ganoderma lucidum (FR.) KARST. II.: structures of ganoderic acids F, G, and H, lucidenic acids D2 and E2, and related compounds. Chem Pharm Bull. 1986; 34(10):4018-4029. https://doi.org/10.1248/cpb.34.4018.

[37]

Guo P, Wang X, Cheng Y. Three new triterpenoids from Ganoderma petchii. Nat Prod Res Dev. 2016; 28(1):1-4. https://doi.org/10.16333/j.1001-6880.2016.1.001.

[38]

Li W, Lou L, Zhu J, et al. New lanostane-type triterpenoids from the fruiting body of Ganoderma hainanense. Fitoterapia. 2016; 115:24-30. https://doi.org/10.1016/j.fitote.2016.09.010.

[39]

Nishitoba T, Sato H, Sakamura S. New terpenoids from Ganoderma lucidum and their bitterness. Agric Biol Chem. 1985; 49:1549-1985. https://doi.org/10.1080/00021369.1985.10866944.

[40]

Peng X, Liu J, Han Z, et al. Protective effects of triterpenoids from Ganoderma resinaceum on H2O2-induced toxicity in HepG2 cells. Food Chem. 2013; 141:920-926. https://doi.org/10.1016/j.foodchem.2013.03.071.

[41]

Komoda Y, Nakamura H, Ishihara S, et al. Structures of new terpenoid constituents of Ganoderma lucidum (Fr.) KARST (Polyporaceae). Chem Pharm Bull. 2008; 33(11):4829-4835. https://doi.org/10.1248/cpb.33.4829.

[42]

Nishitoba T, Goto S, Sato H, et al. Bitter triterpenoids from the fungus Ganoderma applanatum. Phytochem. 1989; 28:193-197. https://doi.org/10.1016/0031-9422(89)85036-8.

[43]

Hu L, Ma Q, Huang S, et al. Study on the chemical constituents from Ganoderma tropicum. Chin J Med Chem. 2013; 23(2):115-119. https://doi.org/10.14142/j.cnki.cn21-1313/r.2013.02.003.

[44]

Min B, Nakamura N, Miyashiro H, et al. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull. 1998; 46(10):1607-1612. https://doi.org/10.1248/cpb.46.1607.

[45]

Chen X, Zhao J, Chen L, et al. Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase. Phytochem. 2018; 149:103-115. https://doi.org/10.1016/j.phytochem.2018.01.007.

[46]

Su H, Zhou Q, Guo L, et al. Lanostane triterpenoids from Ganoderma luteomarginatum and their cytotoxicity against four human cancer cell lines. Phytochem. 2018; 156:89-95. https://doi.org/10.1016/j.phytochem.2018.09.003.

[47]

Huang Y, Li X, Peng X, et al. NMR-based structural classification, identification, and quantification of triterpenoids from edible mushroom Ganoderma resinaceum. J Agric Food Chem. 2020; 68(9):2816-2825. https://doi.org/10.1021/acs.jafc.9b07791.

[48]

Guan S, Yang M, Wang X, et al. Structure elucidation and complete NMR spectral assignments of three new lanostanoid triterpenes with unprecedented Δ16,17 double bond from Ganoderma lucidum. Magn Reson Chem. 2007; 45:789-791. https://doi.org/10.1002/mrc.2046.

[49]

Hossain S, Lash E, Veri A, et al. Functional connections between cell cycle and proteostasis in the regulation of Candida albicans morphogenesis. Cell Rep. 2021;34:108781. https://doi.org/10.1016/j.celrep.2021.108781.

[50]

Galasko D, Montin T. Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark Med. 2010; 4:27-36. https://doi.org/10.2217/bmm.09.89.

[51]

Hu X, Jiao R, Li H, et al. Antiproliferative hydrogen sulfide releasing evodiamine derivatives and their apoptosis inducing properties. Eur J Med Chem. 2018;151:376e388. https://doi.org/10.1016/j.ejmech.2018.04.009.

[52]

Wang J, Pu J, Zhang Z, et al. Triterpenoids of Ganoderma lucidum inhibited S 180 sarcoma and H22 hepatoma in mice by regulating gut microbiota. Heliyon. 2023;9:e16682. https://doi.org/10.1016/j.heliyon.2023.e16682.

[53]

Wang L, Wang Y, Gao S, et al. Phenolic amides with anti-Parkinson’s disease (PD) effects from Nicandra physaloides. J Funct Foods. 2017; 31:229-236. https://doi.org/10.1016/j.jff.2017.01.045.

[54]

Guo J, Kong F, Ma Q, et al. Meroterpenoids with protein tyrosine phosphatase 1B inhibitory activities from the fruiting bodies of Ganoderma ahmadii. Front Chem. 2020;8:279. https://doi.org/10.3389/fchem.2020.00279.

PDF (2245KB)

103

Accesses

0

Citation

Detail

Sections
Recommended

/