Ent-pimarane and ent-kaurane diterpenoids from Siegesbeckia pubescens and their anti-endothelial damage effect in diabetic retinopathy

Mengjia Liu , Tingting Luo , Rongxian Li , Wenying Yin , Fengying Yang , Di Ge , Na Liu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) : 234 -144.

PDF (3151KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) :234 -144. DOI: 10.1016/S1875-5364(25)60827-2
Original article
research-article

Ent-pimarane and ent-kaurane diterpenoids from Siegesbeckia pubescens and their anti-endothelial damage effect in diabetic retinopathy

Author information +
History +
PDF (3151KB)

Abstract

Diabetic retinopathy, a prevalent and vision-threatening microvascular complication of diabetes mellitus, is the leading cause of blindness among middle-aged and elderly individuals. Natural diterpenoids isolated from Siegesbeckia pubescens demonstrate potent anti-inflammatory properties. This study aimed to identify novel bioactive diterpenoids from S. pubescens and investigate their effects on oxidative stress and inflammatory responses in diabetic retinopathy, both in vitro and in vivo. Three new ent-pimarane-type diterpenoids (1-3) and six known compounds (4-9) were isolated from the aerial parts of S. pubescens. Their structures were elucidated through spectroscopic data interpretation, and absolute configurations were determined by comparing calculated and experimental electronic circular dichroism (ECD) spectra. Among these compounds, 14β,16-epoxy-ent-3β,15α,19-trihydroxypimar-7-ene (5) exhibited the most potent protective effect against high glucose and interleukin-1β (IL-1β)-stimulated human retinal endothelial cells. Mechanistically, compound 5 promoted endothelial cell survival while ameliorating oxidative stress and inflammatory response in diabetic retinopathy, both in vivo and in vitro. These findings not only suggest that diterpenoids such as compound 5 are important anti-inflammatory constituents in S. pubescens, but also indicate that compound 5 may serve as a lead compound for preventing or treating vascular complications associated with diabetic retinopathy.

Keywords

Siegesbeckia pubescens / Natural diterpenoid / Diabetic retinopathy / Oxidative stress / Inflammatory response

Cite this article

Download citation ▾
Mengjia Liu, Tingting Luo, Rongxian Li, Wenying Yin, Fengying Yang, Di Ge, Na Liu. Ent-pimarane and ent-kaurane diterpenoids from Siegesbeckia pubescens and their anti-endothelial damage effect in diabetic retinopathy. Chinese Journal of Natural Medicines, 2025, 23(2): 234-144 DOI:10.1016/S1875-5364(25)60827-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cecilia OM, Jose-Alberto CG, Jose NP, et al. Oxidative stress as the main target in diabetic retinopathy pathophysiology. J Diabetes Res. 2019;14:8562408. https://doi.org/10.1155/2019/8562408.

[2]

Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37:101799. https://doi.org/10.1016/j.redox.2020.101799.

[3]

Imamura M, Takahashi A, Matsunami M, et al. Genome-wide association studies identify two novel loci conferring susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. Hum Mol Genet. 2021; 30(8):716-726. https://doi.org/10.1093/hmg/ddab044.

[4]

Nawaz IM, Rezzola S, Cancarini A, et al. Human vitreous in proliferative diabetic retinopathy: characterization and translational implications. Prog Retin Eye Res. 2019;72:100756. https://doi.org/10.1016/j.preteyeres.2019.03.002.

[5]

Moon CH, Lee AJ, Jeon HY, et al. Therapeutic effect of ultra-long-lasting human C-peptide delivery against hyperglycemia-induced neovascularization in diabetic retinopathy. Theranostics. 2023; 13(8):2424-2438. https://doi.org/10.7150/thno.81714.

[6]

Wang M, Sheng K, Fang J, et al. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem. 2022; 15(244):114829. https://doi.org/10.1016/j.ejmech.2022.114829.

[7]

National Pharmacopoeia Committee. Pharmacopoeia of China. China Med Sci Technol Press, 2015:368.

[8]

Sun Z, Zhang Y, Zhou H, et al. Diverse diterpenoids and sesquiterpenoids from Siegesbeckia pubescens and their activity against RANKL-induced osteoclastogenesis. Bioorg Chem. 2021;107:104537. https://doi.org/10.1016/j.bioorg.2020.104537.

[9]

Wang Z, Zhu S, Wu Z, et al. Kirenol upregulates nuclear annexin-1 which interacts with NF-κB to attenuate synovial inflammation of collagen-induced arthritis in rats. J Ethnopharmacol. 2011; 137(1):774-782. https://doi.org/10.1016/j.jep.2011.06.037.

[10]

Wang J, Zhou Y, Ye, X, et al. Topical anti-inflammatory and analgesic activity of kirenol isolated from Siegesbeckia orientalis. J Ethnopharmacol. 2011; 137(3):1089-1094. https://doi.org/10.1016/j.jep.2011.07.016.

[11]

Wu B, Huang X, Li L, et al. Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model. J Cell Mol Med. 2019; 23(11):7651-7663. https://doi.org/10.1111/jcmm.14638.

[12]

Pracht P, Bohle F, Grimme S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys Chem Chem Phys. 2020; 22(14):7169-7192. https://doi.org/10.1039/C9CP06869D.

[13]

Wang R, Chen W, Shi Y. Ent-kaurane and ent-pimarane diterpenoids from Siegesbeckia pubescens. J Nat Prod. 2010; 73(1):17-21. https://doi.org/10.1021/np9005579.

[14]

Wang F, Cheng X, Li Y, et al. Ent-pimarane diterpenoids from Siegesbeckia orientalis and structure revision of a related compound. J Nat Prod. 2009; 72(11):2005-2008. https://doi.org/10.1021/np900449r.

[15]

Chen H, Zhao Z, Cheng G, et al.Immunosuppressive nor-isopimarane diterpenes from cultures of the fungicolous fungus Xylaria longipes HFG1018. J Nat Prod. 2020; 83(2):401-412. https://doi.org/10.1021/acs.jnatprod.9b00889.

[16]

Zhao Q, Tian J, Yue J, et al.Diterpenoids from isodon flavidus. Phytochemistry. 1998; 48(6):1025-1029. https://doi.org/10.1016/S0031-9422(97)00608-0.

[17]

Wang J, Duan H, Wang Y, et al. Ent-strobane and ent-pimarane diterpenoids from Siegesbeckia pubescens. J Nat Prod. 2017; 80(1):19-29. https://doi.org/10.1021/acs.jnatprod.6b00150.

[18]

Tan R, Hu Y, Liu Z, et al. New kaurane diterpenoids from Aster tongolensis. J Nat Prod. 1993; 56(11):1917-1922. https://doi.org/10.1021/np50101a008.

[19]

Xiong J, Ma Y, Xu Y. Diterpenoids from Siegesbeckia pubescens. Phytochemistry. 1992; 31(3):917-921. https://doi.org/10.1016/0031-9422(92)80039-H.

[20]

Yang Y, Chang F, Wu C, et al. New ent-kaurane diterpenoids with anti-platelet aggregation activity from Annona squamosa. J Nat Prod. 2002; 65(10):1462-1467. https://doi.org/10.1021/np020191e.

[21]

Li Y, Ge JP, Ma K, et al. The combination of EGCG with warfarin reduces deep vein thrombosis in rabbits through modulating HIF-1α and VEGF via the PI3K/AKT and ERK1/2 signaling pathways. Chin J Nat Med. 2022; 20(9):679-690. https://doi.org/10.1016/s1875-5364(22)60172-9.

[22]

Wang P, Huang Y, Ren J, et al. Large-leaf yellow tea attenuates high glucose-induced vascular endothelial cell injury by up-regulating autophagy and down-regulating oxidative stress. Food Funct. 2022; 13(4):1890-1905. https://doi.org/10.1039/D1FO03405G.

[23]

Wang D, Wang Q, Yan G, et al.High glucose and interleukin 1β-induced apoptosis in human umbilical vein endothelial cells involves in down-regulation of monocarboxylate transporter 4. Biochem Biophys Res Commun. 2015; 466(4):607-614. https://doi.org/10.1016/j.bbrc.2015.09.016.

[24]

Sorrentino FS, Matteini S, Bonifazzi C, et al. Diabetic retinopathy and endothelin system: microangiopathy versus endothelial dysfunction. Eye (Lond). 2018; 32(7):1157-1163. https://doi.org/10.1038/s41433-018-0032-4.

[25]

Wang M, Hsiao G, Al-Shabrawey M. Eicosanoids and oxidative stress in diabetic retinopathy. Antioxidants (Basel). 2020; 9(6):520. https://doi.org/10.3390/antiox9060520.

[26]

Kanwar M, Chan P, Kern T, et al. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci. 2007; 48(8):3805-3811. https://doi.org/10.1167/iovs.06-1280.

[27]

Kowluru R, Zhong Q, Santos J.Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert Opin Investig Drugs. 2012; 21(6):797-805. https://doi.org/10.1517/13543784.2012.681043.

[28]

Reckamp KL, Gardner BK, Figlin RA, et al. Tumor response to combination celecoxib and erlotinib therapy in non-small cell lung cancer is associated with a low baseline matrix metalloproteinase-9 and a decline in serum-soluble E-cadherin. J Thorac Oncol. 2008; 3(2):117-124. https://doi.org/10.1097/JTO.0b013e3181622bef.

[29]

Li C, Miao X, Li F, et al. Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy. Oxid Med Cell Longev. 2017;2017:9702820. https://doi.org/10.1155/2017/9702820.

[30]

Kowluru RA. Cross talks between oxidative stress, inflammation and epigenetics in diabetic retinopathy. Cells. 2023; 12(2):300. https://doi.org/10.3390/cells12020300.

[31]

Liu Y, Wu H, Wang T, et al. Paeonol reduces microbial metabolite α-hydroxyisobutyric acid to alleviate the ROS/TXNIP/NLRP3 pathway-mediated endothelial inflammation in atherosclerosis mice. Chin J Nat Med. 2023; 21(10):759-774. https://doi.org/10.1016/s1875-5364(23)60506-0.

[32]

Zheng L, Howell SJ, Hatala DA, et al. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy. Diabetes. 2007; 56(2):337-345. https://doi.org/10.2337/db06-0789.

[33]

Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004; 18(12):1450-1452. https://doi.org/10.1096/fj.03-1476fje.

[34]

Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy. Int J Mol Sci. 2022; 19(4):942. https://doi.org/10.3390/ijms19040942.

[35]

Shan P, Wang C, Chen H, et al. Inonotsutriol E from inonotus obliquus exhibits promising anti breast cancer activity via regulating the JAK2/STAT3 signaling pathway. Bioorg Chem. 2023;139:106741. https://doi.org/10.1016/j.bioorg.2023.106741.

PDF (3151KB)

88

Accesses

0

Citation

Detail

Sections
Recommended

/