Xanthones from Garcinia pedunculata and Garcinia nujiangensis and their anti-inflammatory activity

Xiaojie Fan , Yufeng Jia , Jiaxin Guo , Jinyuan Yang , Dahong Li , Huiming Hua

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) : 225 -233.

PDF (1543KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) :225 -233. DOI: 10.1016/S1875-5364(25)60826-0
Original article
research-article

Xanthones from Garcinia pedunculata and Garcinia nujiangensis and their anti-inflammatory activity

Author information +
History +
PDF (1543KB)

Abstract

Ten novel xanthones, garpedunxanthones A−G (1−5, 6a/6b, 7a/7b) and nujiangxanthone Q (8), along with sixteen known analogs (9−24), were isolated from Garcinia pedunculata and G. nujiangensis. Their structures were elucidated through high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) data, comprehensive nuclear magnetic resonance (NMR) spectroscopic analyses, and electronic circular dichroism (ECD) calculations. All compounds without cytotoxicity were assessed for anti-inflammatory properties by measuring the inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 cells. Structure-activity relationships are also discussed. Compounds 7b, 19, and 21 exhibited significant anti-inflammatory activity with IC50 values of 16.44 ± 0.69, 14.28 ± 0.78, and 10.67 ± 3.28 μmol·L−1, respectively. Enzyme-linked immunosorbent assay (ELISA) demonstrated that compounds 7b, 19, and 21 inhibited the expression of pro-inflammatory cytokines TNF-α and IL-6 in a dose-dependent manner. The inhibitory effect of compound 21 on IL-6 at 20 μmol·L−1 was comparable to that of the positive control. In network pharmacology studies, potential targets of compounds and inflammation were identified from PharmMapper and GeneCards databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the overlapped targets were intricately associated with major pathogenic processes linked to inflammation, including positive regulation of mitogen-activated protein kinase (MAPK) cascade, protein kinase activity, NO synthase regulator activity, MAPK signaling pathway, and EGFR tyrosine kinase inhibitor resistance.

Keywords

Garcinia pedunculata / Garcinia nujiangensis / Xanthones / Network pharmacology / Anti-inflammation

Cite this article

Download citation ▾
Xiaojie Fan, Yufeng Jia, Jiaxin Guo, Jinyuan Yang, Dahong Li, Huiming Hua. Xanthones from Garcinia pedunculata and Garcinia nujiangensis and their anti-inflammatory activity. Chinese Journal of Natural Medicines, 2025, 23(2): 225-233 DOI:10.1016/S1875-5364(25)60826-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010; 140(6):771-776. https://doi.org/10.1016/j.cell.2010.03.006.

[2]

Das D, Sarkar S, Wann SB, et al. Current perspectives on the anti-inflammatory potential of fermented soy foods. Food Res Int. 2022;152:110922. https://doi.org/10.1016/j.foodres.2021.110922.

[3]

Zhang XY, Lian XY, Li HL, et al. Taxifolin attenuates inflammation via suppressing MAPK signal pathway in vitro and in silico analysis. Chin Herb Med. 2022; 14(4):554-562. https://doi.org/10.1016/j.chmed.2021.03.002.

[4]

Guha S, Majumder K. Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. J Food Biochem. 2019; 43(1):e12531. https://doi.org/10.1111/jfbc.12531.

[5]

Zhu Y, Zhu M, Lance P. INOS signaling interacts with COX-2 pathway in colonic fibroblasts. Exp Cell Res. 2012; 318:2116-2127. https://doi.org/10.1016/j.yexcr.2012.05.027.

[6]

Zou DL, Liu FS; Liu L, et al. Cytotoxic xanthones from Garcinia pedunculata fruits. Phytochemistry. 2024;217:113898. https://doi.org/10.1016/j.phytochem.2023.113898.

[7]

Nhan NT, Nguyen PH, Tran MH, et al. Anti-inflammatory xanthone derivatives from Garcinia delpyana. J Asian Nat Prod Res. 2021; 23:414-422. https://doi.org/10.1080/10286020.2020.1767079.

[8]

Maharana L, Sethi MK, Dash RN, et al. Evaluation of antidiabetic and antihyperlipidemic effect of Vernonia divergens in streptozotocin-induced diabetic rats. Asian J Pharm Clin Res. 2019; 12(5):104-110. https://doi.org/10.22159/ajpcr.2019.v12i5.32301.

[9]

Bhattacharjee S, Devi R. A comprehensive review of Garcinia pedunculata Roxb. and its therapeutic potential. Mini-Rev Med Chem. 2021; 21:3113-3143. https://doi.org/10.2174/1389557521666210217094152.

[10]

Sukandar ER, Kaennakam S, Raab P, et al. Cytotoxic and anti-inflammatory activities of dihydroisocoumarin and xanthone derivatives from Garcinia picrorhiza. Molecules. 2021;26:6626. https://doi.org/10.3390/molecules26216626.

[11]

Afzai M, Al-Hassan IM, Al-Masad N. New linear pyhanoxantiionoss from Calophyllum apetalum. Heterocycles. 1979;12:269. https://doi.org/10.3987/R-1979-02-0269.

[12]

Kwon J, Hiep NT, Kim D, et al. Neuroprotective xanthones from the root bark of Cudrania tricuspidate. J Nat Prod. 2014; 77:1893-1901. https://doi.org/10.1021/np500364x.

[13]

Liang X, Hu Y, Li J, et al. Identification and pharmacokinetics of quinone reductase 2 inhibitors after oral administration of Garcinia mangostana L. extract in rat by LC-MS/MS. J Agric Food Chem. 2020; 68:11975-11986. https://doi.org/10.1021/acs.jafc.0c04439.

[14]

Yang RY, Li P, Li NN, et al. Xanthones from the pericarp of Garcinia mangostana. Molecules. 2017;22:683. https://doi.org/10.3390/molecules22050683.

[15]

Zhou XJ, Huang RM, Hao J, et al. Two new prenylated xanthones from the pericarp of Garcinia mangostana. Helv Chim Acta. 2011; 94:2092-2098. https://doi.org/10.1002/hlca.201100157.

[16]

Liu QY, Li D, Wang AQ, et al. Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry. 2016; 131:115-123. https://doi.org/10.1016/j.phytochem.2016.08.007.

[17]

Mkounga P, Fomum ZT, Michèle Meyer, et al. Globulixanthone F, a new polyoxygenated xanthone with an isoprenoid group and two antimicrobial biflavonoidsfrom the stem bark of Symphonia globulifera. Nat Prod Commun. 2009; 4:803-808. https://doi.org/10.1007/s00044-008-9136-x.

[18]

Cheng HC, Wang LT, Khalil AT, et al. Pyranoxanthones from Calophyllum inophyllum. J Chin Chem Soc. 2004; 51:431-435. https://doi.org/10.1002/jccs.200400066.

[19]

Panthong K, Pongcharoen W, Phongpaichit S, et al. Tetraoxygenated xanthones from the fruits of Garcinia cowa. Phytochemistry. 2006; 67:999-1004. https://doi.org/10.1016/j.phytochem.2006.02.027.

[20]

Sen AK, Sarkar KK, Mazumder PC, et al. The structures of garcinones A, B and C: three new xanthones from Garcinia mangostana. Phytochemistry. 1982; 21(7):1747-1750. https://doi.org/10.1016/S0031-9422(82)85052-8.

[21]

Cortez DAG, Young MCM, Marston A, et al. Xanthones, triterpenes and a biphenyl from Kielmeyeera coriacea. Phytochemistry. 1998; 47(7):1367-1374. https://doi.org/10.1016/S0031-9422(97)00731-0.

[22]

Sordat DI, Marston A, Hamburger M, et al. Prenylated xanthones from Garcinia livingstonei. Planta Med. 1989; 55:584-584. https://doi.org/10.1016/0031-9422(91)83061-O.

[23]

Zhang ZZ, ElSohly HN, Jacob MR, et al. Natural products inhibiting candida Albicans secreted aspartic proteases from Tovomita krukovii. Planta Med. 2002; 68:49-54. https://doi.org/10.1055/s-2002-20049.

[24]

Ito C, Miyamoto Y, Nakayama M, et al. A novel depsidone and some new xanthones from Garcinia species. Chem Pharm Bull. 1997; 45(9):1403-1413. https://doi.org/10.1248/cpb.45.1403.

[25]

Liu XJ, Hu X, Peng XH, et al. Polyprenylated xanthones from the twigs and leaves of Garcinia nujiangensis and their cytotoxic evaluation. Bioorg Chem. 2020;94:103370. https://doi.org/10.1016/j.bioorg.2019.103370.

[26]

Frahm AW, Chaudhuri RK. 13C NMR spectroscopy of substituted xanthones-Ⅱ: 13C NMR spectral study of polyhydroxy xanthones. Tetrahedron. 1979; 35(17):2035-2038. https://doi.org/10.1016/S0040-4020(01)88974-2.

[27]

Na Z, Xu YK. Chemical constituents from twigs of Garcinia xipshuanbannaensis. Chin J Chin Mater Med. 2009; 34(18):2338-2342.

[28]

Sabphon C. Cholinesterase inhibitory activities of xanthones from anaxagorea luzonensis A. gray. J Med Plant Res. 2012; 6(21):3781-3785. https://doi.org/10.5897/JMPR12.346.

[29]

Ghosal S, Chaudhuri RK, Nath A. Chemical constituents of gentianaceae IV: new xanthones of Canscora decussata. J Pharm Sci. 1973; 62:137-139. https://doi.org/10.1002/jps.2600620128.

[30]

Terreaux C, Maillard M, Gupta MP, et al. Xanthones from Schultesia lisianthoides. Phytochemistry. 1995; 40:1791-1795. https://doi.org/10.1016/0031-9422(95)00483-N.

[31]

Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification via pharmacophore mapping approach. Nucleic Acids Res. 2010; 38:609-614. https://doi.org/10.1093/nar/gkq300.

[32]

Wang X, Pan C, Gong J, et al. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J Chem Inf Model. 2016; 56:1175-1183. https://doi.org/10.1021/acs.jcim.5b00690.

[33]

Wang X, Shen Y, Wang S, et al.PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017; 45:356-360. https://doi.org/10.1093/nar/gkx374.

[34]

Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016; 54:1.30.1-1.30.33. https://doi.org/10.1002/cpbi.5.

[35]

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc. 2009; 4:44-57. https://doi.org/10.1038/nprot.2008.211.

PDF (1543KB)

99

Accesses

0

Citation

Detail

Sections
Recommended

/