A quinolinyl analog of resveratrol improves neuronal damage after ischemic stroke by promoting Parkin-mediated mitophagy

Qingqi Meng , Yan Mi , Libin Xu , Yeshu Liu , Dong Liang , Yongping Wang , Yan Wang , Yueyang Liu , Guoliang Chen , Yue Hou

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) : 214 -224.

PDF (6678KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) :214 -224. DOI: 10.1016/S1875-5364(25)60825-9
Original article
research-article

A quinolinyl analog of resveratrol improves neuronal damage after ischemic stroke by promoting Parkin-mediated mitophagy

Author information +
History +
PDF (6678KB)

Abstract

Ischemic stroke (IS) is a prevalent neurological disorder often resulting in significant disability or mortality. Resveratrol, extracted from Polygonum cuspidatum Sieb. et Zucc. (commonly known as Japanese knotweed), has been recognized for its potent neuroprotective properties. However, the neuroprotective efficacy of its derivative, (E)-4-(3,5-dimethoxystyryl) quinoline (RV02), against ischemic stroke remains inadequately explored. This study aimed to evaluate the protective effects of RV02 on neuronal ischemia-reperfusion injury both in vitro and in vivo. The research utilized an animal model of middle cerebral artery occlusion/reperfusion and SH-SY5Y cells subjected to oxygen-glucose deprivation and reperfusion to simulate ischemic conditions. The findings demonstrate that RV02 attenuates neuronal mitochondrial damage and scavenges reactive oxygen species (ROS) through mitophagy activation. Furthermore, Parkin knockdown was found to abolish RV02’s ability to activate mitophagy and neuroprotection in vitro. These results suggest that RV02 shows promise as a neuroprotective agent, with the activation of Parkin-mediated mitophagy potentially serving as the primary mechanism underlying its neuroprotective effects.

Keywords

(E)-4-(3,5-dimethoxystyryl) quinoline / Resveratrol / Ischemic stroke / Mitophagy / Parkin

Cite this article

Download citation ▾
Qingqi Meng, Yan Mi, Libin Xu, Yeshu Liu, Dong Liang, Yongping Wang, Yan Wang, Yueyang Liu, Guoliang Chen, Yue Hou. A quinolinyl analog of resveratrol improves neuronal damage after ischemic stroke by promoting Parkin-mediated mitophagy. Chinese Journal of Natural Medicines, 2025, 23(2): 214-224 DOI:10.1016/S1875-5364(25)60825-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Campbell BCV, Khatri P. Stroke. Lancet. 2020; 396(10244):129-142. https://doi.org/10.1016/S0140-6736(20)31179-X.

[2]

Hankey GJ. Stroke. Lancet. 2017; 389(10069):641-654. https://doi.org/10.1016/S0140-6736(16)30962-X.

[3]

Wu S, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 2019; 18(4):394-405. https://doi.org/10.1016/S1474-4422(18)30500-3.

[4]

Zhao W, Zhang J, Sadowsky MG, et al. Remote ischaemic conditioning for preventing and treating ischaemic stroke. Cochrane Database Syst Rev. 2018; 7(7):CD012503. https://doi.org/10.1002/14651858.CD012503.pub2.

[5]

Pirinen J, Järvinen V, Martinez-Majander N, et al. Left atrial dynamics is altered in young adults with cryptogenic ischemic stroke: a case-control study utilizing advanced echocardiography. J Am Heart Assoc. 2020; 9(7):e014578. https://doi.org/10.1161/JAHA.119.014578.

[6]

Chen HS, Cui Y, Li XQ, et al. Effect of remote ischemic conditioning vs usual care on neurologic function in patients with acute moderate ischemic stroke: the RICAMIS randomized clinical trial. JAMA. 2022; 328(7):627-636. https://doi.org/10.1001/jama.2022.13123.

[7]

Cai Y, Yang E, Yao X, et al. FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biol. 2021;38:101792. https://doi.org/10.1016/j.redox.2020.101792.

[8]

Shi K, Zou M, Jia DM, et al. tPA mobilizes immune cells that exacerbate hemorrhagic transformation in stroke. Circ Res. 2021; 128(1):62-75. https://doi.org/10.1161/CIRCRESAHA.120.317596.

[9]

Savitz SI, Baron JC, Yenari MA, et al. Reconsidering neuroprotection in the reperfusion Era. Stroke. 2017; 48(12):3413-3419. https://doi.org/10.1161/STROKEAHA.117.017283.

[10]

Tao T, Liu M, Chen M, et al. Natural medicine in neuroprotection for ischemic stroke: challenges and prospective. Pharmacol Ther. 2020;216:107695. https://doi.org/10.1016/j.pharmthera.2020.107695.

[11]

Lai Y, Lin P, Chen M, et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. Redox Biol. 2020;34:101503. https://doi.org/10.1016/j.redox.2020.101503.

[12]

Intihar TA, Martinez EA, Gomez-Pastor R. Mitochondrial dysfunction in Huntington’s disease; interplay between HSF1, p53 and PGC-1α transcription factors. Front Cell Neurosci. 2019;13:103. https://doi.org/10.3389/fncel.2019.00103.

[13]

Guan R, Zou W, Dai X, et al. Mitophagy, a potential therapeutic target for stroke. J Biomed Sci. 2018; 25(1):87. https://doi.org/10.1186/s12929-018-0487-4.

[14]

Teixeira J, Basit F, Swarts HG, et al. Extracellular acidification induces ROS- and mPTP-mediated death in HEK293 cells. Redox Biol. 2018; 15:394-404. https://doi.org/10.1016/j.redox.2017.12.018.

[15]

Seidlmayer LK, Juettner VV, Kettlewell S, et al. Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovasc Res. 2015; 106(2):237-248. https://doi.org/10.1093/cvr/cvv097.

[16]

Song X, Zhang L, Hui X, et al. Selenium-containing protein from selenium-enriched Spirulina platensis antagonizes oxygen glucose deprivation-induced neurotoxicity by inhibiting ROS-mediated oxidative damage through regulating MPTP opening. Pharm Biol. 2021; 59(1):629-638. https://doi.org/10.1080/13880209.2021.1928715.

[17]

Zhang L, Dong Y, Wang W, et al. Ethionine suppresses mitochondria autophagy and induces apoptosis via activation of reactive oxygen species in neural tube defects. Front Neurol. 2020;11:242. https://doi.org/10.3389/fneur.2020.00242.

[18]

Thangaraj A, Periyasamy P, Guo ML, et al. Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy. 2020; 16(2):289-312. https://doi.org/10.1080/15548627.2019.1607686.

[19]

Durcan TM, Fon EA. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 2015; 29(10):989-999. https://doi.org/10.1101/gad.262758.115.

[20]

Yu W, Sun Y, Guo S, et al. The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet. 2011; 20(16):3227-3240. https://doi.org/10.1093/hmg/ddr235.

[21]

Helton TD, Otsuka T, Lee MC, et al. Pruning and loss of excitatory synapses by the parkin ubiquitin ligase. Proc Natl Acad Sci U S A. 2008; 105(49):19492-19497. https://doi.org/10.1073/pnas.0802280105.

[22]

Breuss JM, Atanasov AG, Uhrin P. Resveratrol and its effects on the vascular system. Int J Mol Sci. 2019; 20(7):1523. https://doi.org/10.3390/ijms20071523.

[23]

Rauf A, Imran M, Butt MS, et al. Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr. 2018; 58(9):1428-1447. https://doi.org/10.1080/10408398.2016.1263597.

[24]

Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, et al. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: from antioxidant to epigenetic therapy. Ageing Res Rev. 2021;67:101271. https://doi.org/10.1016/j.arr.2021.101271.

[25]

Walle T.Bioavailability of resveratrol. Ann N Y Acad Sci. 2011; 1215:9-15. https://doi.org/10.1111/j.1749-6632.2010.05842.x.

[26]

Lin HS, Ho PC. A rapid HPLC method for the quantification of 3,5,4'-trimethoxy-trans-stilbene (TMS) in rat plasma and its application in pharmacokinetic study. J Pharm Biomed Ana. 2009; 49(2):387-392. https://doi.org/10.1016/j.jpba.2008.10.042.

[27]

Chiang YC, Wu YS, Kang YF, et al. 3,5,2',4'-Tetramethoxystilbene, a fully methylated resveratrol analog, prevents platelet aggregation and thrombus formation by targeting the protease-activated receptor 4 pathway. Chem Biol Interact. 2022;357:109889. https://doi.org/10.1016/j.cbi.2022.109889.

[28]

Yan Y, Yang J, Chen G, et al. Protection of resveratrol and its analogues against ethanol-induced oxidative DNA damage in human peripheral lymphocytes. Mutat Res. 2011; 721(2):171-177. https://doi.org/10.1016/j.mrgentox.2011.01.012.

[29]

Chen H, He Y, Chen S, et al. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: applications for natural product efficacy with omics and systemic biology. Pharmacol Res. 2020;158:104877. https://doi.org/10.1016/j.phrs.2020.104877.

[30]

Xu L, Mi Y, Meng Q, et al. Anti-inflammatory effects of quinolinyl analog of resveratrol targeting TLR4 in MCAO/R ischemic stroke rat model. Phytomedicine. 2024;128:155344. https://doi.org/10.1016/j.phymed.2024.155344.

[31]

Chen G, Shan W, Wu Y, et al. Synthesis and anti-inflammatory activity of resveratrol analogs. Chem Pharm Bull (Tokyo). 2005; 53(12):1587-1590. https://doi.org/10.1248/cpb.53.1587.

[32]

Meng XL, Yang JY, Chen GL, et al. Effects of resveratrol and its derivatives on lipopolysaccharide-induced microglial activation and their structure-activity relationships. Chem Biol Interact. 2008; 174(1):51-59. https://doi.org/10.1016/j.cbi.2008.04.015.

[33]

Mi Y, Jiao K, Xu JK, et al. Kellerin from Ferula sinkiangensis exerts neuroprotective effects after focal cerebral ischemia in rats by inhibiting microglia-mediated inflammatory responses. J Ethnopharmacol. 2021;269:113718. https://doi.org/10.1016/j.jep.2020.113718.

[34]

Hao T, Yang Y, Li N, et al. Inflammatory mechanism of cerebral ischemia-reperfusion injury with treatment of stepharine in rats. Phytomedicine. 2020;79:153353. https://doi.org/10.1016/j.phymed.2020.153353.

[35]

Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20(1):84-91. https://doi.org/10.1161/01.STR.20.1.84.

[36]

Zou W, Song Y, Li Y, et al. The role of autophagy in the correlation between neuron damage and cognitive impairment in rat chronic cerebral hypoperfusion. Mol Neurobiol. 2018; 55(1):776-791. https://doi.org/10.1007/s12035-016-0351-z.

[37]

Xu B, Qin Y, Li D, et al. Inhibition of PDE 4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway. Redox Biol. 2020;28:101342. https://doi.org/10.1016/j.redox.2019.101342.

[38]

Xu P, Liu Q, Xie Y, et al. Breast cancer susceptibility protein 1 (BRCA1) rescues neurons from cerebral ischemia/reperfusion injury through NRF2-mediated antioxidant pathway. Redox Biol. 2018; 18:158-172. https://doi.org/10.1016/j.redox.2018.06.012.

[39]

Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron. 2022; 110(12):1899-1923. https://doi.org/10.1016/j.neuron.2022.03.015.

[40]

Lou G, Palikaras K, Lautrup S, et al.Mitophagy and neuroprotection. Trends Mol Med. 2020; 26(1):8-20. https://doi.org/10.1016/j.molmed.2019.07.002.

[41]

Song X, Gong Z, Liu K, et al. Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol. 2020;34:101559. https://doi.org/10.1016/j.redox.2020.101559.

[42]

Fricker M, Tolkovsky AM, Borutaite V, et al. Neuronal cell death. Physiol Rev. 2018; 98(2):813-880. https://doi.org/10.1152/physrev.00011.2017.

[43]

Yao Y, Zhou R, Bai R, et al. Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia. Front Med. 2021; 15(3):472-485. https://doi.org/10.1007/s11684-021-0832-y.

[44]

Xie YK, Zhou X, Yuan HT, et al. Resveratrol reduces brain injury after subarachnoid hemorrhage by inhibiting oxidative stress and endoplasmic reticulum stress. Neural Regen Res. 2019; 14(10):1734-1742. https://doi.org/10.4103/1673-5374.257529.

[45]

Huang Y, Zhu X, Chen K, et al. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY). 2019; 11(8):2217-2240. https://doi.org/10.18632/aging.101910.

[46]

Shen Z, Zheng Y, Wu J, et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy. 2017; 13(3):473-485. https://doi.org/10.1080/15548627.2016.1274596.

[47]

Mao Z, Tian L, Liu J, et al. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy. Phytomedicine. 2022;101:154111. https://doi.org/10.1016/j.phymed.2022.154111.

[48]

Li J, Yang D, Li Z, et al. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev. 2023;84:101817. https://doi.org/10.1016/j.arr.2022.101817.

[49]

Zhang T, Xue L, Li L, et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem. 2016; 291(41):21616-21629. https://doi.org/10.1074/jbc.M116.733410.

[50]

Gao F, Chen D, Si J, et al. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet. 2015; 24(9):2528-2538. https://doi.org/10.1093/hmg/ddv017.

[51]

Ding WX, Ni HM, Li M, et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem. 2010; 285(36):27879-27890. https://doi.org/10.1074/jbc.M110.119537.

[52]

Yuan Y, Zheng Y, Zhang X, et al.BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy. 2017; 13(10):1754-1766. https://doi.org/10.1080/15548627.2017.1357792.

[53]

Chung E, Choi Y, Park J, et al. Intracellular delivery of Parkin rescues neurons from accumulation of damaged mitochondria and pathological α-synuclein. Sci Adv. 2020; 6(18):eaba1193. https://doi.org/10.1126/sciadv.aba1193.

[54]

Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell. 2011; 144(5):689-702. https://doi.org/10.1016/j.cell.2011.02.010.

[55]

Lee Y, Stevens DA, Kang SU, et al. PINK1 primes Parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival. Cell Rep. 2017; 18(4):918-932. https://doi.org/10.1016/j.celrep.2016.12.090.

[56]

Jo A, Lee Y, Kam TI, et al. PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease. Sci Transl Med. 2021; 13(604):eaax8891. https://doi.org/10.1126/scitranslmed.aax8891.

[57]

Park MH, Lee HJ, Lee HL, et al.Parkin knockout inhibits neuronal development via regulation of proteasomal degradation of p21. Theranostics. 2017; 7(7):2033-2045. https://doi.org/10.7150/thno.19824.

[58]

Ye M, Wu H, Li S. Resveratrol alleviates oxygen/glucose deprivation/reoxygenation-induced neuronal damage through induction of mitophagy. Mol Med Rep. 2021; 23(1):73. https://doi.org/10.3892/mmr.2020.11711.

PDF (6678KB)

82

Accesses

0

Citation

Detail

Sections
Recommended

/