Nigella sativa L. seed extract alleviates oxidative stress-induced cellular senescence and dysfunction in melanocytes

Ben Niu , Xiaohong An , Yongmei Chen , Ting He , Xiao Zhan , Xiuqi Zhu , Fengfeng Ping , Wei Zhang , Jia Zhou

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) : 203 -213.

PDF (5887KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) :203 -213. DOI: 10.1016/S1875-5364(25)60824-7
Original article
research-article

Nigella sativa L. seed extract alleviates oxidative stress-induced cellular senescence and dysfunction in melanocytes

Author information +
History +
PDF (5887KB)

Abstract

Nigella sativa L. seeds have been traditionally utilized in Chinese folk medicine for centuries to treat vitiligo. This study revealed that the ethanolic extract of Nigella sativa L. (HZC) enhances melanogenesis and mitigates oxidative stress-induced cellular senescence and dysfunction in melanocytes. In accordance with established protocols, the ethanol fraction from Nigella sativa L. seeds was extracted, concentrated, and lyophilized to evaluate its herbal effects via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, tyrosinase activity evaluation, measurement of cellular melanin contents, scratch assays, senescence-associated β-galactosidase (SA-β-gal) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis for expression profiling of experimentally relevant proteins. The results indicated that HZC significantly enhanced tyrosinase activity and melanin content while notably increasing the protein expression levels of Tyr, Mitf, and gp100 in B16F10 cells. Furthermore, HZC effectively mitigated oxidative stress-induced cellular senescence, improved melanocyte condition, and rectified various functional impairments associated with melanocyte dysfunction. These findings suggest that HZC increases melanin synthesis in melanocytes through the activation of the MAPK, PKA, and Wnt signaling pathways. In addition, HZC attenuates oxidative damage induced by H2O2 therapy by activating the nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway and enhancing the activity of downstream antioxidant enzymes, thus preventing premature senescence and dysfunction in melanocytes.

Keywords

Nigella sativa L. seed extract (HZC) / Melanin / ROS / Vitiligo / Cellular senescence

Cite this article

Download citation ▾
Ben Niu, Xiaohong An, Yongmei Chen, Ting He, Xiao Zhan, Xiuqi Zhu, Fengfeng Ping, Wei Zhang, Jia Zhou. Nigella sativa L. seed extract alleviates oxidative stress-induced cellular senescence and dysfunction in melanocytes. Chinese Journal of Natural Medicines, 2025, 23(2): 203-213 DOI:10.1016/S1875-5364(25)60824-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ezzedine K, Eleftheriadou V, Whitton M, et al. Vitiligo. Lancet. 2015; 386(9988):74-84. https://doi.org/10.1016/S0140-6736(14)60763-7.

[2]

Frisoli ML, Harris JE. Vitiligo: mechanistic insights lead to novel treatments. J Allergy Clin Immunol. 2017; 140(3):654-662. https://doi.org/10.1016/j.jaci.2017.07.011.

[3]

Sastry KS, Naeem H, Mokrab Y, et al. RNA-seq reveals dysregulation of novel melanocyte genes upon oxidative stress: implications in vitiligo pathogenesis. Oxid Med Cell Longev. 2019;2019:2841814. https://doi.org/10.1155/2019/2841814.

[4]

Hearing VJ.Determination of melanin synthetic pathways. J Invest Dermatol. 2011; 131(E1):E8-E11. https://doi.org/10.1038/skinbio.2011.4.

[5]

Zhou S, Zeng H, Huang J, et al.Epigenetic regulation of melanogenesis. Ageing Res Rev. 2021;69:101349. https://doi.org/10.1016/j.arr.2021.101349.

[6]

Boo YC. Human skin lightening efficacy of resveratrol and its analogs: from in vitro studies to cosmetic applications. Antioxidants (Basel). 2019; 8(9):332. https://doi.org/10.3390/antiox8090332.

[7]

Lee BW, Schwartz RA, Hercogova J, et al. Vitiligo road map. Dermatol Ther. 2012; 25(Suppl 1):S44-S56. https://doi.org/10.1111/dth.12006.

[8]

Picardo M, Dell'Anna ML, Ezzedine K, et al. Vitiligo. Nat Rev Dis Primers. 2015;1:15011. https://doi.org/10.1038/nrdp.2015.11.

[9]

Hara M, Yaar M, Tang A, et al. Role of integrins in melanocyte attachment and dendricity. J Cell Sci. 1994; 107(Pt 10):2739-2748. https://doi.org/10.1242/jcs.107.10.2739.

[10]

Gauthier Y, Cario AM, Lepreux S, et al. Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. Br J Dermatol. 2003; 148(1):95-101. https://doi.org/10.1046/j.1365-2133.2003.05024.x.

[11]

Kumar R, Parsad D, Kanwar AJ. Role of apoptosis and melanocytorrhagy: a comparative study of melanocyte adhesion in stable and unstable vitiligo. Br J Dermatol. 2011; 164(1):187-191. https://doi.org/10.1111/j.1365-2133.2010.10039.x.

[12]

Menzel N, Schneeberger D, Raabe T. The drosophila p21 activated kinase Mbt regulates the actin cytoskeleton and adherens junctions to control photoreceptor cell morphogenesis. Mech Dev. 2007; 124(1):78-90. https://doi.org/10.1016/j.mod.2006.09.007.

[13]

Wagner RY, Luciani F, Cario AM, et al. Altered E-cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo. J Invest Dermatol. 2015; 135(7):1810-1819. https://doi.org/10.1038/jid.2015.25.

[14]

Jian Z, Li K, Song P, et al. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo. J Invest Dermatol. 2014; 134(8):2221-2230. https://doi.org/10.1038/jid.2014.152.

[15]

Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009; 34(4):176-188. https://doi.org/10.1016/j.tibs.2008.12.008.

[16]

Lacher SE, Lee JS, Wang X, et al. Beyond antioxidant genes in the ancient Nrf2 regulatory network. Free Radic Biol Med. 2015; 88(Pt B):452-465. https://doi.org/10.1016/j.freeradbiomed.2015.06.044.

[17]

Kooti W, Hasanzadeh NZ, Sharafi AN, et al. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin J Nat Med. 2016; 14(10):732-745. https://doi.org/10.1016/S1875-5364(16)30088-7.

[18]

Sarac G, Kapicioglu Y, Sener S, et al. Effectiveness of topical Nigella sativa for vitiligo treatment. Dermatol Ther. 2019; 32(4):e12949. https://doi.org/10.1111/dth.12949.

[19]

Ghorbanibirgani A, Khalili A, Rokhafrooz D. Comparing Nigella sativa oil and fish oil in treatment of vitiligo. Iran Red Crescent Med J. 2014; 16(6):e4515. https://doi.org/10.5812/ircmj.4515.

[20]

An X, Lv J, Wang F. Pterostilbene inhibits melanogenesis, melanocyte dendricity and melanosome transport through cAMP/PKA/CREB pathway. Eur J Pharmacol. 2022;932:175231. https://doi.org/10.1016/j.ejphar.2022.175231.

[21]

Wang TJ, An J, Chen XH, et al. Assessment of Cuscuta chinensis seeds’ effect on melanogenesis: comparison of water and ethanol fractions in vitro and in vivo. J Ethnopharmacol. 2014; 154(1):240-248. https://doi.org/10.1016/j.jep.2014.04.016.

[22]

Wang HM, Chen CY, Wen ZH. Identifying melanogenesis inhibitors from Cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase. Exp Dermatol. 2011; 20(3):242-248. https://doi.org/10.1111/j.1600-0625.2010.01161.x.

[23]

Westerfield M. The Zebrafish Book, A Guide for The Laboratory Use of Zebrafish (Danio rerio). Inst of Neuro Science, 2000.

[24]

Tu M, Fan X, Shi J, et al. 2-Fluorofucose attenuates hydrogen peroxide-induced oxidative stress in HepG2 cells via Nrf2/keap1 and NF-kappaB signaling pathways. Life (Basel). 2022; 12(3):406. https://doi.org/10.3390/life12030406.

[25]

Chen XK, Kwan JS, Chang RC, et al. 1-Phenyl 2-thiourea (PTU) activates autophagy in zebrafish embryos. Autophagy. 2021; 17(5):1222-1231. https://doi.org/10.1080/15548627.2020.1755119.

[26]

Wang R, Chen T, Zhao B, et al. FGF21 regulates melanogenesis in alpaca melanocytes via ERK1/2-mediated MITF downregulation. Biochem Biophys Res Commun. 2017; 490(2):466-471. https://doi.org/10.1016/j.bbrc.2017.06.064.

[27]

Lee CS, Park M, Han J, et al. Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation. J Invest Dermatol. 2013; 133(4):1063-1071. https://doi.org/10.1038/jid.2012.409.

[28]

Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010; 1802(4):396-405. https://doi.org/10.1016/j.bbadis.2009.12.009.

[29]

Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998; 74:49-139. https://doi.org/10.1016/s0065-230x(08)60765-4.

[30]

Kim DS, Park SH, Kwon SB, et al. Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Res. 2006; 19(2):146-153. https://doi.org/10.1111/j.1600-0749.2005.00287.x.

[31]

Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000; 13(2):60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x.

[32]

Saha B, Singh SK, Sarkar C, et al. Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res. 2006; 19(6):595-605. https://doi.org/10.1111/j.1600-0749.2006.00348.x.

[33]

Amit S, Hatzubai A, Birman Y, et al. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 2002; 16(9):1066-1076. https://doi.org/10.1101/gad.230302.

[34]

Dorsky RI, Moon RT, Raible DW. Control of neural crest cell fate by the Wnt signalling pathway. Nature. 1998; 396(6709):370-373. https://doi.org/10.1038/24620.

[35]

Dunn KJ, Brady M, Ochsenbauer JC, et al. WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action. Pigment Cell Res. 2005; 18(3):167-180. https://doi.org/10.1111/j.1600-0749.2005.00226.x.

[36]

Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002; 108(6):837-847. https://doi.org/10.1016/S0092-8674(02)00685-2.

[37]

Yanagawa S, Matsuda Y, Lee JS, et al. Casein kinase I phosphorylates the armadillo protein and induces its degradation in Drosophila. EMBO J. 2002; 21(7):1733-1742. https://doi.org/10.1093/emboj/21.7.1733.

[38]

Steingrimsson E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 2004; 38:365-411. https://doi.org/10.1146/annurev.genet.38.072902.092717.

[39]

Takeda K, Yasumoto K, Takada R, et al. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem. 2000; 275(19):14013-14016. https://doi.org/10.1074/jbc.C000113200.

[40]

Zhang B, Ma S, Rachmin I, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020; 577(7792):676-681. https://doi.org/10.1038/s41586-020-1935-3.

[41]

Cui J, Shen LY, Wang GC. Role of hair follicles in the repigmentation of vitiligo. J Invest Dermatol. 1991; 97(3):410-416. https://doi.org/10.1111/1523-1747.ep12480997.

[42]

Morelli JG, Kincannon J, Yohn JJ, et al. Leukotriene C4 and TGF-alpha are stimulators of human melanocyte migration in vitro. J Invest Dermatol. 1992; 98(3):290-295. https://doi.org/10.1111/1523-1747.ep12497951.

[43]

Sekino Y, Kojima N, Shirao T. Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int. 2007; 51(2-4):92-104. https://doi.org/10.1016/j.neuint.2007.04.029.

[44]

Ning C, Yu P, Zhu Y, et al. Built-in microscale electrostatic fields induced by anatase-rutile-phase transition in selective areas promote osteogenesis. NPG Asia Mater. 2016;8:e243. https://doi.org/10.1038/am.2016.9.

[45]

Wennerberg K, Der CJ. Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci. 2004; 117(Pt 8):1301-1312. https://doi.org/10.1242/jcs.01118.

[46]

Impey S, Davare M, Lesiak A, et al. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci. 2010; 43(1):146-156. https://doi.org/10.1016/j.mcn.2009.10.005.

[47]

Scott EK, Reuter JE, Luo L. Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesis. J Neurosci. 2003; 23(8):3118-3123. https://doi.org/10.1523/JNEUROSCI.23-08-03118.2003.

[48]

Tang A, Eller MS, Hara M, et al. E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci. 1994; 107(Pt 4):983-992. https://doi.org/10.1242/jcs.107.4.983.

[49]

Niki E. Biomarkers of lipid peroxidation in clinical material. Biochim Biophys Acta. 2014; 1840(2):809-817. https://doi.org/10.1016/j.bbagen.2013.03.020.

[50]

Zhang J, Wang X, Vikash V, et al.ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965. https://doi.org/10.1155/2016/4350965.

[51]

Ardiana M, Pikir BS, Santoso A, et al. Effect of Nigella sativa supplementation on oxidative stress and antioxidant parameters: a meta-analysis of randomized controlled trials. Sci World J. 2020;2020:2390706. https://doi.org/10.1155/2020/2390706.

[52]

Dong J, Zhang X, Wang S, et al. Thymoquinone prevents dopaminergic neurodegeneration by attenuating oxidative stress via the Nrf2/ARE pathway. Front Pharmacol. 2020;11:615598. https://doi.org/10.3389/fphar.2020.615598.

[53]

Bono S, Feligioni M, Corbo M. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy. Mol Neurodegener. 2021; 16(1):71. https://doi.org/10.1186/s13024-021-00479-8.

[54]

Augustin RC, Delgoffe GM, Najjar YG. Characteristics of the tumor microenvironment that influence immune cell functions: hypoxia, oxidative stress, metabolic alterations. Cancers (Basel). 2020; 12(12):3802. https://doi.org/10.3390/cancers12123802.

[55]

Farias JG, Molina VM, Carrasco RA, et al. Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients. 2017; 9(9):966. https://doi.org/10.3390/nu9090966.

[56]

Tan BL, Norhaizan ME, Liew WP, et al. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol. 2018;9:1162. https://doi.org/10.3389/fphar.2018.01162.

[57]

Hassan W, Noreen H, Rehman S, et al. Association of oxidative stress with neurological disorders. Curr Neuropharmacol. 2022; 20(6):1046-1072. https://doi.org/10.2174/1570159X19666211111141246.

[58]

Xiao X, Tong Z, Zhang Y, et al.Novel prenylated indole alkaloids with neuroprotection on SH-SY5Y cells against oxidative stress targeting Keap1-Nrf2. Mar Drugs. 2022; 20(3):191. https://doi.org/10.3390/md20030191.

[59]

Lee JM, Johnson JA. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol. 2004; 37(2):139-143. https://doi.org/10.5483/bmbrep.2004.37.2.139.

[60]

Leonard MO, Kieran NE, Howell K, et al. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J. 2006; 20(14):2624-2626. https://doi.org/10.1096/fj.06-5097fje.

[61]

Ulasov AV, Rosenkranz AA, Georgiev GP, et al. Nrf2/Keap1/ARE signaling: towards specific regulation. Life Sci. 2022;291:120111. https://doi.org/10.1016/j.lfs.2021.120111.

[62]

Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 2018; 98(3):1169-1203. https://doi.org/10.1152/physrev.00023.2017.

[63]

Chen YM, Su WC, Li C, et al. Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish. Int J Biol Macromol. 2019; 123:723-731. https://doi.org/10.1016/j.ijbiomac.2018.11.031.

[64]

Sikora E, Arendt T, Bennett M, et al. Impact of cellular senescence signature on ageing research. Ageing Res Rev. 2011; 10(1):146-152. https://doi.org/10.1016/j.arr.2010.10.002.

[65]

Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997; 88(3):323-331. https://doi.org/10.1016/S0092-8674(00)81871-1.

[66]

Bellei B, Picardo M. Premature cell senescence in human skin: dual face in chronic acquired pigmentary disorders. Ageing Res Rev. 2020;57:100981. https://doi.org/10.1016/j.arr.2019.100981.

[67]

Mackenzie RA, Cook MG, Chong H, et al. Senescence evasion in melanoma progression: uncoupling of DNA-damage signaling from p53 activation and p21 expression. Pigment Cell Melanoma Res. 2013; 26(2):226-235. https://doi.org/10.1111/pcmr.12060.

[68]

Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018; 1865(5):721-733. https://doi.org/10.1016/j.bbamcr.2018.02.010.

[69]

Carpenter EL, Becker AL, Indra AK. NRF2 and key transcriptional targets in melanoma redox manipulation. Cancers (Basel). 2022; 14(6):1531. https://doi.org/10.3390/cancers14061531.

PDF (5887KB)

84

Accesses

0

Citation

Detail

Sections
Recommended

/