A comprehensive review on wedelolactone: natural sources, total synthesis, and pharmacological activities

Haiping Cai , Yue Wu , Xiaojin Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) : 169 -181.

PDF (4876KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) :169 -181. DOI: 10.1016/S1875-5364(25)60821-1
Review
research-article

A comprehensive review on wedelolactone: natural sources, total synthesis, and pharmacological activities

Author information +
History +
PDF (4876KB)

Abstract

Plant-derived natural products have long been a vital source for developing therapeutic drugs. Wedelolactone (WDL), a coumestan isolated from Eclipta prostrata, Wedelia calendulacea, Wedelia chinensis, and Sphagneticola trilobata, demonstrates a broad spectrum of therapeutic potential, including anticancer, anti-inflammatory, anti-obesity, anti-myotoxic, antimicrobial, anti-diabetic, and tissue-protective activities. This review synthesizes information on the isolation, total synthesis, pharmacological activity, underlying mechanisms, and pharmacokinetic properties of WDL. Additionally, it offers insights into potential clinical applications and future drug discovery avenues utilizing WDL or its derivatives, either independently or in combination with other pharmaceuticals.

Keywords

Natural product / Wedelolactone / Pharmacological activity / Synthesis / Mechanism

Cite this article

Download citation ▾
Haiping Cai, Yue Wu, Xiaojin Zhang. A comprehensive review on wedelolactone: natural sources, total synthesis, and pharmacological activities. Chinese Journal of Natural Medicines, 2025, 23(2): 169-181 DOI:10.1016/S1875-5364(25)60821-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davison EK, Brimble MA. Natural product derived privileged scaffolds in drug discovery. Curr Opin Chem Biol. 2019; 52:1-8. https://doi.org/10.1016/j.cbpa.2018.12.007.

[2]

Yao H, Liu J, Xu S, et al. The structural modification of natural products for novel drug discovery. Expert Opin Drug Discov. 2017; 12(2):121-140. https://doi.org/10.1080/17460441.2016.1272757.

[3]

Zhang NN, Jiang ZM, Li SZ, et al. Evolving interplay between natural products and gut microbiota. Eur J Pharmacol. 2023;949:175557. https://doi.org/10.1016/j.ejphar.2023.175557.

[4]

Luo Zw, Yin Fc, Wang Xb, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[5]

Nehybová T, Šmarda J, Beneš P. Plant coumestans: recent advances and future perspectives in cancer therapy. Anticancer Agents Med Chem. 2014; 14(10):1351-1362. https://doi.org/10.2174/1871520614666140713172949.

[6]

Soine TO. Naturally occurring coumarins and related physiological activities. J Pharm Sci. 1964; 53:231-264. https://doi.org/10.1002/jps.2600530302.

[7]

Bourgaud F. Chemicals from plants.Perspectives on plant secondary products. Plant Sci. 2001; 160(6):1249-1250. https://doi.org/10.1016/S0168-9452(01)00338-7.

[8]

Hwang KA, Choi KC. Anticarcinogenic effects of dietary phytoestrogens and their chemopreventive mechanisms. Nutr Cancer. 2015; 67(5):796-803. https://doi.org/10.1080/01635581.2015.1040516.

[9]

Vinyagam R, Kumar P, Lee KE, et al. Biological and functional properties of wedelolactone in human chronic diseases. Phyton-Int J Exp Bot. 2021; 90(1):1-15. https://doi.org/10.32604/phyton.2020.013388.

[10]

Tu Y, Yang Y, Li Y, et al. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res. 2021;169:105615. https://doi.org/10.1016/j.phrs.2021.105615.

[11]

Ha NM, Hop NQ, Son NT.Wedelolactone: a molecule of interests. Fitoterapia. 2023;164:105355. https://doi.org/10.1016/j.fitote.2022.105355.

[12]

Govindachari TR, Nagarajan K, Pai BR. Chemical examination of Wedelia calendulacea. Part I. Structure of wedelolactone. J Chem Soc. 1956(0):629-632. https://doi.org/10.1039/jr9560000629.

[13]

Kulkarni SR, Khatwani PF. Optimization of extraction conditions and development of a sensitive HPTLC method for estimation of wedelolactone in different extracts of Eclipta alba. Int J Pharm Sci Drug Res. 2011; 3(1):56-61. https://doi.org/10.25004/IJPSDR.2011.030114.

[14]

Unnikrishnan KP, Fathima A, Hashim KM, et al. Antioxidant studies and determination of wedelolactone in Eclipta alba. J Plant Sci. 2007; 2:459-464. https://doi.org/10.3923/jps.2007.459.464.

[15]

Jayathirtha MG, Mishra SH. Preliminary immunomodulatory activities of methanol extracts of Eclipta alba and Centella asiatica. Phytomedicine. 2004; 11(4):361-365. https://doi.org/10.1078/0944711041495236.

[16]

Diogo LC, Fernandes RS, Marcussi S, et al. Inhibition of snake venoms and phospholipases A2 by extracts from native and genetically modified Eclipta alba: isolation of active coumestans. Basic Clin Pharmacol Toxicol. 2009; 104(4):293-299. https://doi.org/10.1111/j.1742-7843.2008.00350.x.

[17]

Alaubydi M. The extraction and partial purification of wedelolactone from local Eclipta alba plant. Iraqi J Sci. 2013; 54(4):1084-1089.

[18]

Patil AA, Sachin BS, Wakte PS, et al. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design. J Adv Res. 2014; 5(6):629-635. https://doi.org/10.1016/j.jare.2013.09.002.

[19]

Fang X, Wang J, Wang Y, et al. Optimization of ultrasonic-assisted extraction of wedelolactone and antioxidant polyphenols from Eclipta prostrate L. using response surface methodology. Sep Purif Technol. 2014; 138:55-64. https://doi.org/10.1016/j.seppur.2014.10.007.

[20]

Shi D, Ding H, Xu S. Optimization of microwave-assisted extraction of wedelolactone from Eclipta alba using response surface methodology. Front Chem Sci Eng. 2014; 8(1):34-42. https://doi.org/10.1007/s11705-014-1401-6.

[21]

Zhao H, Cheng S, Zhang L, et al. Ultra‐high‐pressure‐assisted extraction of wedelolactone and isodemethylwedelolactone from Ecliptae herba and purification by high‐speed counter‐current chromatography. Biomed Chromatogr. 2019; 33(6):e4497. https://doi.org/10.1002/bmc.4497.

[22]

Gharat NN, Rathod VK. Response surface methodology for the extraction of wedelolactone from Eclipta alba using aqueous two-phase extraction. Prep Biochem Biotechnol. 2020; 50(8):827-833. https://doi.org/10.1080/10826068.2020.1753071.

[23]

Li CC, Xie ZX, Zhang YD, et al.Total synthesis of wedelolactone. J Org Chem. 2003; 68(22):8500-8504. https://doi.org/10.1021/jo030228f.

[24]

Chang CF, Yang LY, Chang SW, et al. Total synthesis of demethylwedelolactone and wedelolactone by Cu-mediated/Pd(0)-catalysis and oxidative-cyclization. Tetrahedron. 2008; 64(17):3661-3666. https://doi.org/10.1016/j.tet.2008.02.031.

[25]

Huang H, Chen J, Ren J, et al. Palladium(II)-catalyzed efficient synthesis of wedelolactone and evaluation as potential tyrosinase inhibitor. Molecules. 2019; 24(22):4130. https://doi.org/10.3390/molecules24224130.

[26]

Achari A, Chatterjee S, Dey S, et al. Catecholase-catalyzed synthesis of wedelolactone, a natural coumestan and its analogs. Org Biomol Chem. 2023; 21(1):89-92. https://doi.org/10.1039/D2OB02081E.

[27]

Gou H, Zhang J, Li P, et al. A practical total synthesis of wedelolactone. Synth Commun. 2023; 53(14):1126-1133. https://doi.org/10.1080/00397911.2023.2211772.

[28]

Benes P, Knopfova L, Trcka F, et al. Inhibition of topoisomerase IIα: novel function of wedelolactone. Cancer Lett. 2011; 303(1):29-38. https://doi.org/10.1016/j.canlet.2011.01.002.

[29]

Lee YJ, Lin WL, Chen NF, et al. Demethylwedelolactone derivatives inhibit invasive growth in vitro and lung metastasis of MDA-MB-231 breast cancer cells in nude mice. Eur J Med Chem. 2012; 56:361-367. https://doi.org/10.1016/j.ejmech.2012.07.041.

[30]

Sarveswaran S, Gautam SC, Ghosh J. Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCε without inhibiting Akt. Int J Oncol. 2012; 41(6):2191-2199. https://doi.org/10.3892/ijo.2012.1664.

[31]

Nehybova T, Smarda J, Daniel L, et al. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling. J Steroid Biochem Mol Biol. 2015; 152:76-83. https://doi.org/10.1016/j.jsbmb.2015.04.019.

[32]

Sarveswaran S, Ghosh R, Parikh R, et al. Wedelolactone, an anti-inflammatory botanical, interrupts c-Myc oncogenic signaling and synergizes with enzalutamide to induce apoptosis in prostate cancer cells. Mol Cancer Ther. 2016; 15(11):2791-2801. https://doi.org/10.1158/1535-7163.MCT-15-0861.

[33]

Peng YG, Zhang L. Wedelolactone suppresses cell proliferation and migration through AKT and AMPK signaling in melanoma. J Dermatol Treat. 2018; 30(4):389-395. https://doi.org/10.1080/09546634.2018.1527996.

[34]

Chen Z, Sun X, Shen S, et al. Wedelolactone, a naturally occurring coumestan, enhances interferon-γ signaling through inhibiting STAT1 protein dephosphorylation. J Biol Chem. 2013; 288(20):14417-14427. https://doi.org/10.1074/jbc.M112.442970.

[35]

Chen H, Gao S, Li J, et al. Wedelolactone disrupts the interaction of EZH2-EED complex and inhibits PRC2-dependent cancer. Oncotarget. 2015; 6(15):13049-13059. https://doi.org/10.18632/oncotarget.3790.

[36]

Romanchikova N, Trapencieris P. Wedelolactone targets EZH2-mediated histone H3K27 methylation in mantle cell lymphoma. Anticancer Res. 2019; 39(8):4179-4184. https://doi.org/10.21873/anticanres.13577.

[37]

Kobori M, Yang Z, Gong D, et al. Wedelolactone suppresses LPS-induced caspase-11 expression by directly inhibiting the IKK complex. Cell Death Differ. 2004; 11(1):123-130. https://doi.org/10.1038/sj.cdd.4401325.

[38]

Yuan F, Chen J, Sun PP, et al. Wedelolactone inhibits LPS-induced pro-inflammation via NF-kappaB pathway in RAW 264.7 cells. J Biomed Sci. 2013; 20(1):84. https://doi.org/10.1186/1423-0127-20-84.

[39]

Wei W, Ding M, Zhou K, et al. Protective effects of wedelolactone on dextran sodium sulfate induced murine colitis partly through inhibiting the NLRP3 inflammasome activation via AMPK signaling. Biomed Pharmacother. 2017; 94:27-36. https://doi.org/10.1016/j.biopha.2017.06.071.

[40]

Cuong TT, Diem GH, Doan TT, et al. Wedelolactone from Vietnamese Eclipta prostrata (L) L. protected zymosan-induced shock in mice. Iran J Pharm Res. 2018; 17(2):653-660.

[41]

Pan H, Lin Y, Dou J, et al. Wedelolactone facilitates Ser/Thr phosphorylation of NLRP3 dependent on PKA signalling to block inflammasome activation and pyroptosis. Cell Prolif. 2020; 53(9):e12868. https://doi.org/10.1111/cpr.12868.

[42]

Tigari P, Janadri S, Madhu K, et al. Evaluation of anti-inflammatory effect of wedelolactone on indomethacin induced colitis in rats: involvement of IL-6/STAT3 pathway. Biointerface Res Appl Chem. 2021; 12(3):2813-2825. https://doi.org/10.33263/BRIAC123.28132825.

[43]

Prakash T, Janadri S. Anti-inflammatory effect of wedelolactone on DSS induced colitis in rats: IL-6/STAT3 signaling pathway. J Ayurveda Integr Med. 2023; 14(2):100544. https://doi.org/10.1016/j.jaim.2022.100544.

[44]

Zhang J, Zhang M, Huo XK, et al. Macrophage inactivation by small molecule wedelolactone via targeting sEH for the treatment of LPS-induced acute lung injury. ACS Cent Sci. 2023; 9(3):440-456. https://doi.org/10.1021/acscentsci.2c01424.

[45]

Lim S, Jang HJ, Park EH, et al. Wedelolactone inhibits adipogenesis through the ERK pathway in human adipose tissue‐derived mesenchymal stem cells. J Cell Biochem. 2012; 113(11):3436-3445. https://doi.org/10.1002/jcb.24220.

[46]

Zhang Y, Zhao Y, Peng L, et al. Wedelolactone regulates lipid metabolism and improves hepatic steatosis partly by AMPK activation and up-regulation of expression of PPARα/LPL and LDLR. PLoS One. 2015; 10(7):e0132720. https://doi.org/10.1371/journal.pone.0132720.

[47]

Yao E, Yang X, Huang X, et al. Phytochemical wedelolactone reverses obesity by prompting adipose browning through SIRT1/AMPK/PPARα pathway via targeting nicotinamide N-methyltransferase. Phytomedicine. 2022;94:153843. https://doi.org/10.1016/j.phymed.2021.153843.

[48]

Peng L, Huang X, Jin X, et al. Wedelolactone, a plant coumarin, prevents vascular smooth muscle cell proliferation and injury-induced neointimal hyperplasia through Akt and AMPK signaling. Exp Gerontol. 2017; 96:73-81. https://doi.org/10.1016/j.exger.2017.06.011.

[49]

Luo Q, Ding J, Zhu L, et al. Hepatoprotective effect of wedelolactone against concanavalin a-induced liver injury in mice. Am J Chin Med. 2018; 46(04):819-833. https://doi.org/10.1142/S0192415X1850043X.

[50]

Ai Y, Shi W, Zuo X, et al. The combination of schisandrol B and wedelolactone synergistically reverses hepatic fibrosis via modulating multiple signaling pathways in mice. Front Pharmacol. 2021;12:655531. https://doi.org/10.3389/fphar.2021.655531.

[51]

Wang MQ, Zhang KH, Liu FL, et al. Wedelolactone alleviates cholestatic liver injury by regulating FXR-bile acid-NF-κB/NRF2 axis to reduce bile acid accumulation and its subsequent inflammation and oxidative stress. Phytomedicine. 2024;122:155124. https://doi.org/10.1016/j.phymed.2023.155124.

[52]

Liu YQ, Han XF, Bo JX, et al. Wedelolactone enhances osteoblastogenesis but inhibits osteoclastogenesis through Sema3A/NRP1/PlexinA1 pathway. Front Pharmacol. 2016;7:375. https://doi.org/10.3389/fphar.2016.00375.

[53]

Liu YQ, Hong ZL, Zhan LB, et al. Wedelolactone enhances osteoblastogenesis by regulating Wnt/β-catenin signaling pathway but suppresses osteoclastogenesis by NF-κB/c-fos/NFATc1 pathway. Sci Rep. 2016; 6(1):32260. https://doi.org/10.1038/srep32260.

[54]

Deng X, Liang LN, Zhu D, et al. Wedelolactone inhibits osteoclastogenesis but enhances osteoblastogenesis through altering different semaphorins production. Int Immunopharmacol. 2018; 60:41-49. https://doi.org/10.1016/j.intimp.2018.04.037.

[55]

Zhu D, Deng X, Han XF, et al. Wedelolactone enhances osteoblastogenesis through ERK- and JNK-mediated BMP2 expression and Smad/1/5/8 phosphorylation. Molecules. 2018; 23(3):561. https://doi.org/10.3390/molecules23030561.

[56]

Shen P, Yang X, Jiang J, et al. Wedelolactone from Eclipta alba inhibits lipopolysaccharide-enhanced cell proliferation of human renal mesangial cells via NF-κB signaling pathway. Am J Transl Res. 2017; 9(5):2132-2142.

[57]

Zhu MM, Wang L, Yang D, et al. Wedelolactone alleviates doxorubicin-induced inflammation and oxidative stress damage of podocytes by IκK/IκB/NF-κB pathway. Biomed Pharmacother. 2019;117:109088. https://doi.org/10.1016/j.biopha.2019.109088.

[58]

Li C, Wang X, Bi Y, et al. Potent inhibitors of organic anion transporters 1 and 3 from natural compounds and their protective effect on aristolochic acid nephropathy. Toxicol Sci. 2020; 175(2):279-291. https://doi.org/10.1093/toxsci/kfaa033.

[59]

Wang G, Bi Y, Xiong H, et al.Wedelolactone protects against cisplatin-induced nephrotoxicity in mice via inhibition of organic cation transporter 2. Hum Exp Toxicol. 2021; 40(12_suppl):S447-S459. https://doi.org/10.1177/09603271211047915.

[60]

Yang JY, Tao LJ, Liu B, et al. Wedelolactone attenuates pulmonary fibrosis partly through activating AMPK and regulating Raf-MAPKs signaling pathway. Front Pharmacol. 2019;10:151. https://doi.org/10.3389/fphar.2019.00151.

[61]

Fan R, Sui J, Dong X, et al. Wedelolactone alleviates acute pancreatitis and associated lung injury via GPX4 mediated suppression of pyroptosis and ferroptosis. Free Radic Biol Med. 2021; 173:29-40. https://doi.org/10.1016/j.freeradbiomed.2021.07.009.

[62]

Harkin K, Augustine J, Stitt AW, et al. Wedelolactone attenuates N-methyl-N-nitrosourea-induced retinal neurodegeneration through suppression of the AIM2/CASP11 pathway. Biomedicines. 2022; 10(2):311. https://doi.org/10.3390/biomedicines10020311.

[63]

Xu S, Liu X, Liu X, et al. Wedelolactone ameliorates pseudomonas aeruginosa-induced inflammation and corneal injury by suppressing caspase-4/5/11/GSDMD-mediated non-canonical pyroptosis. Exp Eye Res. 2021;211:108750. https://doi.org/10.1016/j.exer.2021.108750.

[64]

Cheng M, Lin J, Li C, et al. Wedelolactone suppresses IL-1β maturation and neutrophil infiltration in aspergillus fumigatus keratitis. Int Immunopharmacol. 2019; 73:17-22. https://doi.org/10.1016/j.intimp.2019.04.050.

[65]

Svrlanska A, Ruhland A, Marschall M, et al. Wedelolactone inhibits human cytomegalovirus replication by targeting distinct steps of the viral replication cycle. Antiviral Res. 2020;174:104677. https://doi.org/10.1016/j.antiviral.2019.104677.

[66]

Sun L, Sun W, Liu M, et al. Wedelolactone induces natural killer cell activity and the improvement to bioavailability using polysaccharides from ligustri lucidi fructus. Int J Biol Macromol. 2023;244:125208. https://doi.org/10.1016/j.ijbiomac.2023.125208.

[67]

Zhang M, Qu J, Gao Z, et al. Timosaponin aiii induces G2/M arrest and apoptosis in breast cancer by activating the ATM/Chk2 and p38 MAPK signaling pathways. Front Pharmacol. 2021;11:601468. https://doi.org/10.3389/fphar.2020.601468.

[68]

Mi S, Liu X, Zhang L, et al. Chinese medicine formula 'Baipuhuang Keli' inhibits triple-negative breast cancer by hindering DNA damage repair via MAPK/ERK pathway. J Ethnopharmacol. 2023;304:116077. https://doi.org/10.1016/j.jep.2022.116077.

[69]

Dai Y, Zhou Q, Liu Y, et al. Ruscogenin alleviates deep venous thrombosis and pulmonary embolism induced by inferior vena cava stenosis inhibiting MEK/ERK/Egr-1/TF signaling pathway in mice. Curr Pharm Des. 2022; 28(24):2001-2009. https://doi.org/10.2174/1381612828666220526120515.

[70]

Yang X, Gao M, Miao M, et al. Combining combretastatin A4 phosphate with ginsenoside Rd synergistically inhibited hepatocellular carcinoma by reducing HIF-1α via PI3K/AKT/mTOR signalling pathway. J Pharm Pharmacol. 2021; 73(2):263-271. https://doi.org/10.1093/jpp/rgaa006.

[71]

Li Y, Hu Q, Li W, et al. Simultaneous blockage of contextual TGF-β by cyto-pharmaceuticals to suppress breast cancer metastasis. J Control Release. 2021; 336:40-53. https://doi.org/10.1016/j.jconrel.2021.06.012.

[72]

Nehybová T, Šmarda J, Daniel L, et al. Wedelolactone acts as proteasome inhibitor in breast cancer cells. Int J Mol Sci. 2017; 18(4):729. https://doi.org/10.3390/ijms18040729.

[73]

Yang Y, Zhou W, Xu X, et al. Aprepitant inhibits JNK and p38/MAPK to attenuate inflammation and suppresses inflammatory pain. Front Pharmacol. 2022;12:811584. https://doi.org/10.3389/fphar.2021.811584.

[74]

Xue C, Liu SX, Hu J, et al. Corydalis saxicola bunting total alkaloids attenuate paclitaxel-induced peripheral neuropathy through PKCε/p38 MAPK/TRPV1 signaling pathway. Chin Med. 2021; 16(1):58. https://doi.org/10.1186/s13020-021-00468-5.

[75]

Sarwar S, Alamro AA, Alghamdi AA, et al. Enhanced accumulation of cisplatin in ovarian cancer cells from combination with wedelolactone and resulting inhibition of multiple epigenetic drivers. Drug Des Devel Ther. 2021; 15:2211-2227. https://doi.org/10.2147/DDDT.S288707.

[76]

Zhang Y, Zhang M, Hu G, et al. Elevated system exposures of baicalin after combinatory oral administration of rhein and baicalin: mainly related to breast cancer resistance protein (ABCG2), not UDP-glucuronosyltransferases. J Ethnopharmacol. 2020;250:112528. https://doi.org/10.1016/j.jep.2019.112528.

[77]

Das S, Mukherjee P, Chatterjee R, et al. Enhancing chemosensitivity of breast cancer stem cells by downregulating SOX2 and ABCG2 using wedelolactone-encapsulated nanoparticles. Mol Cancer Ther. 2019; 18(3):680-692. https://doi.org/10.1158/1535-7163.MCT-18-0409.

[78]

Liu JQ, Zhao M, Zhang Z, et al. Rg1 improves LPS-induced parkinsonian symptoms in mice via inhibition of NF-κB signaling and modulation of M1/M2 polarization. Acta Pharmacol Sin. 2020; 41(4):523-534. https://doi.org/10.1038/s41401-020-0358-x.

[79]

Ou Y, Zhu L, Xu SY, et al. Activation of RAW264.7 macrophage by exopolysaccharide from aphanothece halaphytica (EPSAH) and the underlying mechanisms. Fundam Clin Pharmacol. 2020; 34(5):591-602. https://doi.org/10.1111/fcp.12550.

[80]

Wang K, Lv Q, Miao YM, et al. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an ahr/Nrf2/nqo1 pathway. Biochem Pharmacol. 2018; 155:494-509. https://doi.org/10.1016/j.bcp.2018.07.039.

[81]

Liang H, Cheng R, Wang J, et al. Mogrol, an aglycone of mogrosides, attenuates ulcerative colitis by promoting AMPK activation. Phytomedicine. 2021;81:153427. https://doi.org/10.1016/j.phymed.2020.153427.

[82]

Chai Y, Cai Y, Fu Y, et al. Salidroside ameliorates depression by suppressing NLRP3-mediated pyroptosis via P2X7/NF-κB/NLRP3 signaling pathway. Front Pharmacol. 2022;13:812362. https://doi.org/10.3389/fphar.2022.812362.

[83]

Wang R, Hu XL, Liu SM, et al. Kaempferol-3-O-sophoroside (PCS-1) contributes to modulation of depressive-like behaviour in C57BL/6J mice by activating AMPK. Br J Pharmacol. 2024; 181(8):1182-1202. https://doi.org/10.1111/bph.16283.

[84]

Shi L, Yuan Z, Liu J, et al. Modified simiaowan prevents articular cartilage injury in experimental gouty arthritis by negative regulation of STAT3 pathway. J Ethnopharmacol. 2021;270:113825. https://doi.org/10.1016/j.jep.2021.113825.

[85]

Zhang CYY, Zeng MJ, Zhou LP, et al. Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway in a rat model of depression. Int Immunopharmacol. 2018; 64:175-182. https://doi.org/10.1016/j.intimp.2018.09.001.

[86]

Li M, Yue GGL, Song LH, et al. Natural small molecule bigelovin suppresses orthotopic colorectal tumor growth and inhibits colorectal cancer metastasis via IL6/STAT3 pathway. Biochem Pharmacol. 2018; 150:189-199. https://doi.org/10.1016/j.bcp.2018.02.017.

[87]

Wu XY, Tian F, Su MH, et al. Bf211, a derivative of bufalin, enhances the cytocidal effects in multiple myeloma cells by inhibiting the IL-6/JAK2/STAT3 pathway. Int Immunopharmacol. 2018; 64:24-32. https://doi.org/10.1016/j.intimp.2018.08.016.

[88]

Chen XQ, Lv XY, Liu SJ. Baitouweng decoction alleviates dextran sulfate sodium-induced ulcerative colitis by regulating intestinal microbiota and the IL-6/STAT3 signaling pathway. J Ethnopharmacol. 2021;265:113357. https://doi.org/10.1016/j.jep.2020.113357.

[89]

Zhao Y, Luan H, Jiang H, et al. Gegen Qinlian Decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine. 2021;84:153519. https://doi.org/10.1016/j.phymed.2021.153519.

[90]

Tong Y, Xu S, Huang L, et al. Obesity and insulin resistance: pathophysiology and treatment. Drug Discov Today. 2022; 27(3):822-830. https://doi.org/10.1016/j.drudis.2021.11.001.

[91]

Wang Y, Xu Y, Zhang P, et al. Smiglaside a ameliorates LPS-induced acute lung injury by modulating macrophage polarization via AMPK-PPARγ pathway. Biochem Pharmacol. 2018; 156:385-395. https://doi.org/10.1016/j.bcp.2018.09.002.

[92]

Xiao PT, Xie ZS, Kuang YJ, et al. Discovery of a potent FKBP38 agonist that ameliorates HFD-induced hyperlipidemia via mTOR/P70S6K/SREBPs pathway. Acta Pharm Sin B. 2021; 11(11):3542-3552. https://doi.org/10.1016/j.apsb.2021.03.031.

[93]

Feng X, Yu W, Li X, et al. Apigenin, a modulator of PPARγ attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol. 2017; 136:136-149. https://doi.org/10.1016/j.bcp.2017.04.014.

[94]

Wang T, Huang X, Zhai K, et al. Integrating metabolomics and network pharmacology to investigate Panax japonicus prevents kidney injury in HFD/STZ-induced diabetic mice. J Ethnopharmacol. 2023;303:115893. https://doi.org/10.1016/j.jep.2022.115893.

[95]

Pôças ESC, Lopes DVS, da Silva AJM, et al. Structure-activity relationship of wedelolactone analogues: structural requirements for inhibition of Na+, K+-ATPase and binding to the central benzodiazepine receptor. Biorg Med Chem. 2006; 14(23):7962-7966. https://doi.org/10.1016/j.bmc.2006.07.053.

[96]

Chen L, Jiang P, Li JS, et al. Periplocin promotes wound healing through the activation of Src/ERK and PI3K/Akt pathways mediated by Na/K-ATPase. Phytomedicine. 2019; 57:72-83. https://doi.org/10.1016/j.phymed.2018.12.015.

[97]

Xu Y, Marck P, Huang M, et al. Biased effect of cardiotonic steroids on Na/K-ATPase-mediated signal transduction. Mol Pharmacol. 2021; 99(3):217-225. https://doi.org/10.1124/molpharm.120.000101.

[98]

Pithayanukul P, Lapett B, Bavovada R, et al. Inhibition of proteolytic and hemorrhagic activities by ethyl acetate extract of Eclipta prostrata. Against Malayan pit viper venom. Pharm Biol. 2008; 45(4):282-288. https://doi.org/10.1080/13880200701214805.

[99]

Wang Y, Xu Y, Xu X, et al. Ginkgo biloba extract ameliorates atherosclerosis via rebalancing gut flora and microbial metabolism. Phytother Res. 2022; 36(6):2463-2480. https://doi.org/10.1002/ptr.7439.

[100]

Vinayagam R, Lee K, David E, et al. Facile green preparation of PLGA nanoparticles using wedelolactone: its cytotoxicity and antimicrobial activities. Inorg Chem Commun. 2021;129:108583. https://doi.org/10.1016/j.inoche.2021.108583.

[101]

Liu R, Liu XY, Li M, et al. Eurobusones A-D, four antibacterial formyl phloroglucinol meoterpenoids from Eucalyptus robusta. Fitoterapia. 2022;157:105131. https://doi.org/10.1016/j.fitote.2022.105131.

[102]

Kumar V, Sharma K, Ahmed B, et al. Deconvoluting the dual hypoglycemic effect of wedelolactone isolated from Wedelia calendulacea: investigation via experimental validation and molecular docking. RSC Advances. 2018; 8(32):18180-18196. https://doi.org/10.1039/C7RA12568B.

[103]

Ding X, Zhao H, Qiao C. Icariin protects podocytes from NLRP3 activation by Sesn2-induced mitophagy through the Keap1-Nrf2/HO-1 axis in diabetic nephropathy. Phytomedicine. 2022;99:154005. https://doi.org/10.1016/j.phymed.2022.154005.

[104]

He H, Halseth TA, Mei L, et al. Nanodisc delivery of liver X receptor agonist for the treatment of diabetic nephropathy. J Control Release. 2022; 348:1016-1027. https://doi.org/10.1016/j.jconrel.2022.06.029.

[105]

Su K, Yi B, Yao BQ, et al. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis. Pharmacol Res. 2020;156:104778. https://doi.org/10.1016/j.phrs.2020.104778.

[106]

Ramachandran V, Arokia VAM, David E, et al. Antidiabetic activity of gold nanoparticles synthesized using wedelolactone in RIN-5F cell line. Antioxidants. 2019; 9(1):8. https://doi.org/10.3390/antiox9010008.

[107]

Chang S, Ruan WC, Xu YZ, et al. The natural product 4, 10-aromadendranediol induces neuritogenesis in neuronal cells in vitro through activation of the ERK pathway. Acta Pharmacol Sin. 2017; 38(1):29-40. https://doi.org/10.1038/aps.2016.115.

[108]

Wu X, Li C, Chen L, et al. Protective effects of tauroursodeoxycholic acid on lipopolysaccharide-induced cognitive impairment and neurotoxicity in mice. Int Immunopharmacol. 2019; 72:166-175. https://doi.org/10.1016/j.intimp.2019.03.065.

[109]

Wang L, Zhang S, Han J, et al. Activation of sting pathway contributed to cisplatin-induced cardiac dysfunction via promoting the activation of TNF-α-AP-1 signal pathway. Front Pharmacol. 2021;12:711238. https://doi.org/10.3389/fphar.2021.711238.

[110]

Maya S, Prakash T, Goli D. Effect of wedelolactone and gallic acid on quinolinic acid-induced neurotoxicity and impaired motor function: significance to sporadic amyotrophic lateral sclerosis. Neurotoxicology. 2018; 68:1-12. https://doi.org/10.1016/j.neuro.2018.06.015.

[111]

Maya S, Prakash T, Goli D. Evaluation of neuroprotective effects of wedelolactone and gallic acid on aluminium-induced neurodegeneration: relevance to sporadic amyotrophic lateral sclerosis. Eur J Pharmacol. 2018; 835:41-51. https://doi.org/10.1016/j.ejphar.2018.07.058.

[112]

Sharma S, Trivedi S, Pandey T, et al.Wedelolactone mitigates parkinsonism via alleviating oxidative stress and mitochondrial dysfunction through NRF2/skn-1. Mol Neurobiol. 2020; 58(1):65-77. https://doi.org/10.1007/s12035-020-02080-4.

[113]

Hu J, Zhang L, Fu F, et al. Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy. J Ginseng Res. 2022; 46(2):255-265. https://doi.org/10.1016/j.jgr.2021.06.011.

[114]

Taleb A, Ahmad KA, Ihsan AU, et al. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed Pharmacother. 2018; 102:689-698. https://doi.org/10.1016/j.biopha.2018.03.140.

[115]

Wang A, Cai D, Zhang H, et al. Using herbal medicine to target the “microbiota-metabolism-immunity” axis as possible therapy for cardiovascular disease. Pharmacol Res. 2019; 142:205-222. https://doi.org/10.1016/j.phrs.2019.02.018.

[116]

Sun J, Chen L, Jiang P, et al. Phenylethanoid glycosides of callicarpa kwangtungensis chun exert cardioprotective effect by weakening Na+-K+-ATPase/Src/erk1/2 pathway and inhibiting apoptosis mediated by oxidative stress and inflammation. J Ethnopharmacol. 2020;258:112881. https://doi.org/10.1016/j.jep.2020.112881.

[117]

Zhang XY, Lin W, Lei SY, et al.The anti-hyperlipidemic effects of Poria cocos (Schw.) Wolf extract: modulating cholesterol homeostasis in hepatocytes via PPARα pathway. J Ethnopharmacol. 2024;321:117532. https://doi.org/10.1016/j.jep.2023.117532.

[118]

Xia Y, Chen J, Cao Y, et al.Wedelolactone exhibits anti-fibrotic effects on human hepatic stellate cell line LX-2. Eur J Pharmacol. 2013; 714(1-3):105-111. https://doi.org/10.1016/j.ejphar.2013.06.012.

[119]

Zeng GZ, Wang Z, Zhao LM, et al.NF-κB and JNK mediated apoptosis and G0/G1 arrest of HeLa cells induced by rubiarbonol G, an arborinane-type triterpenoid from Rubia yunnanensis. J Ethnopharmacol. 2018; 220:220-227. https://doi.org/10.1016/j.jep.2017.10.026.

[120]

Zhang Q, Hu X, Hui F, et al.Ethanol extract and its dichloromethane fraction of Alpinia oxyphylla Miquel exhibited hepatoprotective effects against CCl4-induced oxidative damage in vitro and in vivo with the involvement of Nrf2. Biomed Pharmacother. 2017; 91:812-822. https://doi.org/10.1016/j.biopha.2017.04.131.

[121]

Lu Y, Ma J, Li P, et al. Ilexgenin A restrains CRTC2 in the cytoplasm to prevent srebp1 maturation via AMP kinase activation in the liver. Br J Pharmacol. 2022; 179(5):958-978. https://doi.org/10.1111/bph.15369.

[122]

Honda S, Fukami T, Hirosawa K, et al. Differences in hydrolase activities in the liver and small intestine between marmosets and humans. Drug Metab Dispos. 2021; 49(9):718-728. https://doi.org/10.1124/dmd.121.000513.

[123]

Lu Y, Hu D, Ma S, et al. Protective effect of wedelolactone against CCl4-induced acute liver injury in mice. Int Immunopharmacol. 2016; 34:44-52. https://doi.org/10.1016/j.intimp.2016.02.003.

[124]

Kang D, Shao Y, Zhu Z, et al. Systematically identifying the hepatoprotective ingredients of schisandra lignan extract from pharmacokinetic and pharmacodynamic perspectives. Phytomedicine. 2019; 53:182-192. https://doi.org/10.1016/j.phymed.2018.09.010.

[125]

Zhou ZT, Deng LM, Hu LJ, et al. Hepatoprotective effects of ZLY16, a dual peroxisome proliferator-activated receptor α/δ agonist, in rodent model of nonalcoholic steatohepatitis. Eur J Pharmacol. 2020;882:173300. https://doi.org/10.1016/j.ejphar.2020.173300.

[126]

Wu J, Chen P, Ju L, et al. Corydalis saxicola bunting total alkaloids ameliorate diet-induced non-alcoholic steatohepatitis by regulating hepatic PI3K/Akt and TLR4/NF-κB pathways in mice. Biomed Pharmacother. 2022;151:113132. https://doi.org/10.1016/j.biopha.2022.113132.

[127]

Chen R, Zhang Y, Patel N, et al. CARD9 mediated MAPK/NF-κB signal pathway participates in the pathophysiological process of septic hepatitis: the role of tiliroside. Int Immunopharmacol. 2023;124:110275. https://doi.org/10.1016/j.intimp.2023.110275.

[128]

Li YQ, Chen Y, Fang JY, et al. Integrated network pharmacology and zebrafish model to investigate dual-effects components of cistanche tubulosa for treating both osteoporosis and alzheimer’s disease. J Ethnopharmacol. 2020;254:112764. https://doi.org/10.1016/j.jep.2020.112764.

[129]

Dong P, Zhu D, Deng X, et al. Effect of hydroxyapatite nanoparticles and wedelolactone on osteoblastogenesis from bone marrow mesenchymal stem cells. J Biomed Mater Res A. 2018; 107(1):145-153. https://doi.org/10.1002/jbm.a.36541.

[130]

Deng X, Tan S, Zhu D, et al. The combined effect of oleonuezhenide and wedelolactone on proliferation and osteoblastogenesis of bone marrow mesenchymal stem cells. Phytomedicine. 2019;65:153103. https://doi.org/10.1016/j.phymed.2019.153103.

[131]

Zheng ZG, Zhang X, Zhou YP, et al. Anhydroicaritin, a SREBPs inhibitor, inhibits RANKL-induced osteoclastic differentiation and improves diabetic osteoporosis in STZ-induced mice. Eur J Pharmacol. 2017; 809:156-162. https://doi.org/10.1016/j.ejphar.2017.05.017.

[132]

Ju L, Hu P, Chen P, et al. Huoxuezhitong capsule ameliorates MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway. Biomed Pharmacother. 2020;129:110471. https://doi.org/10.1016/j.biopha.2020.110471.

[133]

Ju LJ, Hu PP, Chen P, et al. Corydalis saxicola bunting total alkaloids attenuate walker 256-induced bone pain and osteoclastogenesis by suppressing RANKL-induced NF-κB and c-fos/NFATc1 pathways in rats. Front Pharmacol. 2021;11:609119. https://doi.org/10.3389/fphar.2020.609119.

[134]

Chen L, Li JS, Ke X, et al. The therapeutic effects of Periploca forrestii Schltr. stem extracts on collagen-induced arthritis by inhibiting the activation of Src/NF-κB signaling pathway in rats. J Ethnopharmacol. 2017; 202:12-19. https://doi.org/10.1016/j.jep.2017.03.005.

[135]

Jiang J, Xiao SC, Xu XM, et al. Isomeric flavonoid aglycones derived from Epimedii Folium exerted different intensities in anti-osteoporosis through OPG/RANKL protein targets. Int Immunopharmacol. 2018; 62:277-286. https://doi.org/10.1016/j.intimp.2018.07.017.

[136]

Wang C, Song Y, Gu Z, et al. Wedelolactone enhances odontoblast differentiation by promoting Wnt/β-catenin signaling pathway and suppressing NF-κB signaling pathway. Cell Reprogram. 2018; 20(4):236-244. https://doi.org/10.1089/cell.2018.0004.

[137]

Zhi H, Dai YD, Su L, et al. Thioacetamide-induced acute liver injury increases metformin plasma exposure by downregulating renal OCT2 and MATE1 expression and function. Biomedicines. 2023; 11(12):3314. https://doi.org/10.3390/biomedicines11123314.

[138]

Liao XY, Deng QQ, Han L, et al.Leflunomide increased the renal exposure of acyclovir by inhibiting OAT1/3 and MRP2. Acta Pharmacol Sin. 2020; 41(1):129-137. https://doi.org/10.1038/s41401-019-0283-z.

[139]

Yang Y, Zhang Z, Li P, et al. A whole-body physiologically based pharmacokinetic model characterizing interplay of octs and mates in intestine, liver and kidney to predict drug-drug interactions of metformin with perpetrators. Pharmaceutics. 2021; 13(5):698. https://doi.org/10.3390/pharmaceutics13050698.

[140]

Vaziri ND. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens. 2004; 13(1):93-99. https://doi.org/10.1097/00041552-200401000-00013.

[141]

Tian F, Wang Z, He J, et al. 4-Octyl itaconate protects against renal fibrosis via inhibiting TGF-β/Smad pathway, autophagy and reducing generation of reactive oxygen species. Eur J Pharmacol. 2020;873:172989. https://doi.org/10.1016/j.ejphar.2020.172989.

[142]

Li W, He W, Xia P, et al. Total extracts of Abelmoschus manihot L. attenuates adriamycin-induced renal tubule injury via suppression of ROS-ERK1/2-mediated NLRP3 inflammasome activation. Front Pharmacol. 2019;10:567. https://doi.org/10.3389/fphar.2019.00567.

[143]

Zhi D, Zhang M, Lin J, et al.Wedelolactone improves the renal injury induced by lipopolysaccharide in HK-2 cells by upregulation of protein tyrosine phosphatase non-receptor type 2. J Int Med Res. 2021; 49(5):3000605211012665. https://doi.org/10.1177/03000605211012665.

[144]

Wu X, Bian D, Dou Y, et al. Asiaticoside hinders the invasive growth of keloid fibroblasts through inhibition of the GDF-9/MAPK/Smad pathway. J Biochem Mol Toxicol. 2017; 31(8):e21922. https://doi.org/10.1002/jbt.21922.

[145]

Shi W, Hao J, Wu Y, et al. Protective effects of heterophyllin B against bleomycin-induced pulmonary fibrosis in mice via AMPK activation. Eur J Pharmacol. 2022;921:174825. https://doi.org/10.1016/j.ejphar.2022.174825.

[146]

Tao L, Cao F, Xu G, et al. Mogroside IIIE attenuates LPS-induced acute lung injury in mice partly through regulation of the TLR4/MAPK/NF-κB axis via AMPK activation. Phytother Res. 2017; 31(7):1097-1106. https://doi.org/10.1002/ptr.5833.

[147]

Yang T, Liu XL, Zhou Y, et al. Sanpian decoction ameliorates cerebral ischemia-reperfusion injury by regulating SIRT1/ERK/HIF-1α pathway through in silico analysis and experimental validation. J Ethnopharmacol. 2024;318:116898. https://doi.org/10.1016/j.jep.2023.116898.

[148]

Khan GJ, Gao Y, Gu M, et al. TGF-β1 causes EMT by regulating N-Acetyl glucosaminyl transferases via downregulation of non muscle myosin II-A through JNK/P38/PI3K pathway in lung cancer. Curr Cancer Drug Targets. 2018; 18(2):209-219. https://doi.org/10.2174/1568009617666170807120304.

[149]

Guo JS, Fang YS, Jiang FX, et al. Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice. Eur J Pharmacol. 2019;864:172712. https://doi.org/10.1016/j.ejphar.2019.172712.

[150]

Guan C, Qiao S, Lv Q, et al. Orally administered berberine ameliorates bleomycin-induced pulmonary fibrosis in mice through promoting activation of PPAR-γ and subsequent expression of HGF in colons. Toxicol Appl Pharmacol. 2018; 343:1-15. https://doi.org/10.1016/j.taap.2018.02.001.

[151]

Li XY, Ding Z, Wu ZX, et al.Targeting the TGF-β signaling pathway for fibrosis therapy: a patent review (2015-2020). Expert Opin Ther Pat. 2021; 31(8):723-743. https://doi.org/10.1080/13543776.2021.1896705.

[152]

Yu HL, Li JY, Hu XL, et al. Protective effects of cynaroside on oxidative stress in retinal pigment epithelial cells. J Biochem Mol Toxicol. 2019; 33(8):e22352. https://doi.org/10.1002/jbt.22352.

[153]

Xu J, Zhang M, Zhang X, et al. Contribution of hepatic retinaldehyde dehydrogenase induction to impairment of glucose metabolism by high-fat-diet feeding in C57BL/6J mice. Basic Clin Pharmacol Toxicol. 2018; 123(5):539-548. https://doi.org/10.1111/bcpt.13039.

[154]

He T, Shang J, Gao C, et al. A novel SIRT6 activator ameliorates neuroinflammation and ischemic brain injury via EZH2/FOXC1 axis. Acta Pharm Sin B. 2021; 11(3):708-726. https://doi.org/10.1016/j.apsb.2020.11.002.

[155]

Li X, Wang T, Liu J, et al. Effect and mechanism of wedelolactone as antioxidant-coumestan on OH-treated mesenchymal stem cells. Arabian J Chem. 2020; 13(1):184-192. https://doi.org/10.1016/j.arabjc.2017.03.008.

[156]

Xin P, Xu X, Deng C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210. https://doi.org/10.1016/j.intimp.2020.106210.

[157]

Zhao Q, Liu YC, Wang T, et al. MiR-375 inhibits the sternness of breast cancer cells by blocking the JAK2/STAT3 signaling. Eur J Pharmacol. 2020;884:173359. https://doi.org/10.1016/j.ejphar.2020.173359.

[158]

Wang R, Hu X, Wang J, et al. Proanthocyanidin A 1 promotes the production of platelets to ameliorate chemotherapy-induced thrombocytopenia through activating JAK2/STAT3 pathway. Phytomedicine. 2022;95:153880. https://doi.org/10.1016/j.phymed.2021.153880.

[159]

Zhao L, Han S, Chai C. Huangkui Capsule alleviates doxorubicin-induced proteinuria via protecting against podocyte damage and inhibiting JAK/STAT signaling. J Ethnopharmacol. 2023;306:116150. https://doi.org/10.1016/j.jep.2023.116150.

[160]

Upadhyay K, Gupta NK, Dixit VK. Development and characterization of phyto-vesicles of wedelolactone for hepatoprotective activity. Drug Dev Ind Pharm. 2012; 38(9):1152-1158. https://doi.org/10.3109/03639045.2011.643892.

[161]

Du G, Fu L, Jia J, et al. Validated UPLC-MS/MS method for quantification of seven compounds in rat plasma and tissues: application to pharmacokinetic and tissue distribution studies in rats after oral administration of extract of Eclipta prostrata L. Biomed Chromatogr. 2018; 32(6):e4191. https://doi.org/10.1002/bmc.4191.

[162]

Jiang S, Zhong YL, Qiao HW, et al. UPLC-MS/MS method for the simultaneous quantification of caffeine and illicit psychoactive drugs in hair using a single-step high-speed grinding extraction: insights into a cut-off value for caffeine abuse. J Pharmaceut Biomed. 2022;209:114489. https://doi.org/10.1016/j.jpba.2021.114489.

[163]

Wang Y, Li Q, Dai Y, et al. Development of a LC-MS/MS method to investigate the interference of pharmacokinetics of the main constituents in Saxifraga stolonifera: involvement of drug metabolism enzymes. J Pharm Biomed Anal. 2018; 148:128-135. https://doi.org/10.1016/j.jpba.2017.08.019.

[164]

Yang W, Sabi-Mouka EMB, Wang L, et al. Determination of tranilast in bio-samples by LC-MS/MS: application to a pharmacokinetic and brain tissue distribution study in rats. J Pharm Biomed Anal. 2018; 147:479-484. https://doi.org/10.1016/j.jpba.2017.06.047.

[165]

Yang Y, Lian Y, Zhong P, et al. Characterization and quantitative analysis of related substances in coenzyme A by HPLC and LC-MS/MS. J Pharm Biomed Anal. 2018; 150:220-232. https://doi.org/10.1016/j.jpba.2017.11.051.

[166]

Wang Y, Liu YH, Sha YT, et al. Development and validation of a chiral UPLC-MS/MS method for quantifying S-oxiracetam and R-oxiracetam in human plasma, urine and feces: application to a phase-I clinical pharmacokinetic study. J Pharm Biomed Anal. 2024;239:115881. https://doi.org/10.1016/j.jpba.2023.115881.

[167]

Wang WQ, Chen C, Luo J, et al. Metabolism investigation of the peptide-drug conjugate LN005 in rats using UHPLC-HRMS. J Pharm Biomed Anal. 2024;238:115860. https://doi.org/10.1016/j.jpba.2023.115860.

[168]

Yang J, Lin J, Wang A, et al. Study on the effect of calibration standards prepared with different matrix on the accuracy of bile acid quantification using LC-MS/MS. J Pharm Biomed Anal. 2024;237:115785. https://doi.org/10.1016/j.jpba.2023.115785.

[169]

Cheruvu HS, Yadav NK, Valicherla GR, et al. LC-MS/MS method for the simultaneous quantification of luteolin, wedelolactone and apigenin in mice plasma using hansen solubility parameters for liquid-liquid extraction: application to pharmacokinetics of Eclipta alba chloroform fraction. J Chromatogr B. 2018;1081-1082:76-86. https://doi.org/10.1016/j.jchromb.2018.01.035.

[170]

Chen Q, Wu X, Gao X, et al. Development and validation of an ultra-performance liquid chromatography method for the determination of wedelolactone in rat plasma and its application in a pharmacokinetic study. Molecules. 2019; 24(4):762. https://doi.org/10.3390/molecules24040762.

[171]

Alolga RN, Chavez MASC, Muyaba M. Untargeted UPLC-Q/TOF-MS-based metabolomics and inductively coupled plasma optical emission spectroscopic analysis reveal differences in the quality of ginger from two provinces in Zambia. J Pharm Pharmacol. 2018; 70(9):1262-1271. https://doi.org/10.1111/jphp.12959.

[172]

Zhu BJ, Cao HT, Sun LM, et al. Metabolomics-based mechanisms exploration of Huang-Lian Jie-Du Decoction on cerebral ischemia via UPLC-Q-TOF/MS analysis on rat serum. J Ethnopharmacol. 2018; 216:147-156. https://doi.org/10.1016/j.jep.2018.01.015.

[173]

Xu ZL, Wang BE, Zhang LT, et al. UPLC-MS/MS assay for quantification of wedelolactone and demethylwedelolactone in rat plasma and the application to a preclinical pharmacokinetic study. Comb Chem High Throughput Screen. 2022; 25(8):1271-1277. https://doi.org/10.2174/1386207324666210520093517.

[174]

Li L, Huang XJ, Peng JL, et al. Wedelolactone metabolism in rats through regioselective glucuronidation catalyzed by uridine diphosphate-glucuronosyltransferases 1As (UGT1As). Phytomedicine. 2016; 23(4):340-349. https://doi.org/10.1016/j.phymed.2016.01.007.

[175]

Feng L, Li ZY, Wang L, et al. Wedelolactone-loaded micelles ameliorate doxorubicin-induced oxidative injury in podocytes by improving permeability and bioavailability. Front Bioeng Biotechnol. 2019;7:333. https://doi.org/10.3389/fbioe.2019.00333.

[176]

Zhang X, Li N, Liu Y, et al. On-demand drug release of ICG-liposomal wedelolactone combined photothermal therapy for tumor. Nanomedicine. 2016; 12(7):2019-2029. https://doi.org/10.1016/j.nano.2016.05.013.

[177]

Zhang X, Liu Y, Luo L, et al. A chemo-photothermal synergetic antitumor drug delivery system: gold nanoshell coated wedelolactone liposome. Mater Sci Eng C Mater Biol Appl. 2019; 101:505-512. https://doi.org/10.1016/j.msec.2019.04.006.

PDF (4876KB)

100

Accesses

0

Citation

Detail

Sections
Recommended

/