Research progress in methods of acquisition, structure elucidation, and quality control of Chinese herbal polysaccharides

Tingting Wang , Baojie Zhu , Jing Zhao , Shaoping Li

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) : 143 -157.

PDF (4604KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (2) :143 -157. DOI: 10.1016/S1875-5364(25)60819-3
Review
research-article

Research progress in methods of acquisition, structure elucidation, and quality control of Chinese herbal polysaccharides

Author information +
History +
PDF (4604KB)

Abstract

The therapeutic efficacy of traditional Chinese medicine has been widely acknowledged due to its extensive history of clinical effectiveness. However, the precise active components underlying each prescription remain incompletely understood. Polysaccharides, as a major constituent of water decoctions—the most common preparation method for Chinese medicinals—may provide a crucial avenue for deepening our understanding of the efficacy principles of Chinese medicine and establishing a framework for its modern development. The structural complexity and diversity of Chinese herbal polysaccharides present significant challenges in their separation and analysis compared to small molecules. This paper aims to explore the potential of Chinese herbal polysaccharides efficiently by briefly summarizing recent advancements in polysaccharide chemical research, focusing on methods of acquisition, structure elucidation, and quality control.

Keywords

Chinese medicine / Polysaccharide / Extraction and purification / Structural analysis / Quality control

Cite this article

Download citation ▾
Tingting Wang, Baojie Zhu, Jing Zhao, Shaoping Li. Research progress in methods of acquisition, structure elucidation, and quality control of Chinese herbal polysaccharides. Chinese Journal of Natural Medicines, 2025, 23(2): 143-157 DOI:10.1016/S1875-5364(25)60819-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yao CL, Zhang JQ, Li JY, et al. Traditional Chinese medicine (TCM) as a source of new anticancer drugs. Nat Prod Rep. 2021; 38(9):1618-1633. https://doi.org/10.1039/d0np00057d.

[2]

Lyu M, Fan GW, Xiao GX, et al.Traditional Chinese medicine in COVID-19. Acta Pharm Sin B 2021; 11(11): 3337-3363. https://doi.org/10.1016/j.apsb.2021.09.008.

[3]

Wang MN, Liu L, Zhang CS, et al. Mechanism of traditional Chinese medicine in treating knee osteoarthritis. J Pain Res.. 2020; 13:1421-1429. https://doi.org/10.2147/jpr.S247827.

[4]

Jakobsson PJ, Robertson L, Welzel J, et al. Where traditional Chinese medicine meets Western medicine in the prevention of rheumatoid arthritis. J Intern. Med.. 2022; 292(5):745-763. https://doi.org/10.1111/joim.13537.

[5]

Cao X, Du XJ, Jiao H, et al.Carbohydrate-based drugs launched during 2000-2021. Acta Pharm Sin B..2022; 12(10):3783-3821. https://doi.org/10.1016/j.apsb.2022.05.020.

[6]

Leibbrandt A, Meier C, König-Schuster M, et al. Iota-carrageenan is a potent inhibitor of influenza A virus infection. PLoS One.. 2010; 5(12):1-11. https://doi.org/10.1371/journal.pone.0014320.

[7]

Gayet R, Bioley G, Rochereau N, et al. Vaccination against infection: the mucosal way. Microbiol Mol Biol Rev.. 2017; 81(3):7-17. https://doi.org/10.1128/MMBR.00007-17.

[8]

Rao ZL, Dong YT, Zheng XJ, et al. Extraction, purification, bioactivities and prospect of lentinan: a review. Biocatal Agric Biotechnol.. 2021; 37:1-13. https://doi.org/10.1016/j.bcab.2021.102163.

[9]

Xie MT, Tao WL, Wu FJ, et al. Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: a review. Int J Biol Macromol.. 2021; 185:917-934. https://doi.org/10.1016/j.ijbiomac.2021.07.008.

[10]

Tao H, Chen X, Du ZY, et al. Corn silk crude polysaccharide exerts anti-pancreatic cancer activity by blocking the EGFR/PI3K/AKT/CREB signaling pathway. Food Funct.. 2020; 11(8):6961-6970. https://doi.org/10.1039/d0fo00403k.

[11]

Cen LF, Yi T, Hao YZ, et al. Houttuynia cordata polysaccharides alleviate ulcerative colitis by restoring intestinal homeostasis. Chin J Nat Med.. 2022; 20(12):914-924. https://doi.org/10.1016/s1875-5364(22)60220-6.

[12]

Yue H, Zeng H, Ding K. A review of isolation methods, structure features and bioactivities of polysaccharides from Dendrobium species. Chin J Nat Med.. 2020; 18(1):1-27. https://doi.org/10.1016/s1875-5364(20)30001-7.

[13]

Zhang WJ, Wang S, Kang CZ, et al. Pharmacodynamic material basis of traditional Chinese medicine based on biomacromolecules: a review. Plant Methods. 2020; 16(1):1-28. https://doi.org/10.1186/s13007-020-00571-y.

[14]

Li LF, Zhang QW, Han QB. Recent advances in qualitative and quantitative analysis of polysaccharides in natural medicines: a critical review. J Pharm Biomed Anal.. 2022; 220:1-18. https://doi.org/10.1016/j.jpba.2022.115016.

[15]

Wang B, Yan LL, Guo SC, et al. Structural elucidation, modification, and structure-activity relationship of polysaccharides in Chinese herbs: a review. Front Nutr. 2022;9:1-11. https://doi.org/10.3389/fnut.2022.908175.

[16]

Chen P, Liu HP, Ji HH, et al. A cold-water soluble polysaccharide isolated from Grifola frondosa induces the apoptosis of HepG2 cells through mitochondrial passway. Int J Biol Macromol.. 2019; 125:1232-1241. https://doi.org/10.1016/j.ijbiomac.2018.09.098.

[17]

Zhao JL, Zhang MP, Zhou HL. Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng. Molecules 2019; 24(8):1-18. https://doi.org/10.3390/molecules24081605.

[18]

Wei EW, Yang R, Zhao HP, et al.Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. Int J Biol Macromol.. 2019; 123:280-290. https://doi.org/10.1016/j.ijbiomac.2018.11.074.

[19]

Han Z, Li Y, Luo DH, et al. Structural variations of rice starch affected by constant power microwave treatment. Food Chem.. 2021; 359:1-8. https://doi.org/10.1016/j.foodchem.2021.129887.

[20]

Chen X, Zhang HB, Du WQ, et al. Comparison of different extraction methods for polysaccharides from Crataegus pinnatifida Bunge. Int J Biol Macromol.. 2020; 150:1011-1019. https://doi.org/10.1016/j.ijbiomac.2019.11.056.

[21]

Carreira CA, Otero P, Garcia PP, et al. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. Int J Environ Res Public Health.. 2021; 18(17):1-25. https://doi.org/10.3390/ijerph18179153.

[22]

Xiao JR, Chen X, Zhan QP, et al. Effects of ultrasound on the degradation kinetics, physicochemical properties and prebiotic activity of Flammulina velutipes polysaccharide. Ultrason Sonochem.. 2022; 82:1-14. https://doi.org/10.1016/j.ultsonch.2021.105901.

[23]

Wang HS, Chen JR, Ren PF, et al. Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide. Ultrason Sonochem.. 2021; 70:1-11. https://doi.org/10.1016/j.ultsonch.2020.105355.

[24]

Hu DJ, Han BX, Chen CW, et al. Determination of seven oligosaccharides and sucrose in Pseudostellaria heterophylla by pressurized liquid extraction and ultra-high performance liquid chromatography with charged aerosol detector and tandem mass spectrometry. J Chromatogr A.. 2020; 1609:1-8. https://doi.org/10.1016/j.chroma.2019.460441.

[25]

Perez-Vazquez A, Carpena M, Barciela P, et al. Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: a review. Antioxidants. 2023; 12(3):1-27. https://doi.org/10.3390/antiox12030612.

[26]

Dobrincic A, Balbino S, Zoric Z, et al. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar Drugs.. 2020; 18(3):1-29. https://doi.org/10.3390/md18030168.

[27]

Ho TC, Kiddane AT, Sivagnanam SP, et al. Green extraction of polyphenolic-polysaccharide conjugates from Pseuderanthemum palatiferum (Nees) Radlk.: chemical profile and anticoagulant activity. Int J Biol Macromol.. 2020; 157:484-493. https://doi.org/10.1016/j.ijbiomac.2020.04.113.

[28]

Plaza M, Marina ML. Pressurized hot water extraction of bioactives. Trends Analyt Chem.. 2023; 166:1-16. https://doi.org/10.1016/j.trac.2023.117201.

[29]

Leong YK, Yang FC, Chang JS. Extraction of polysaccharides from edible mushrooms: emerging technologies and recent advances. Carbohydr Polym.. 2021; 251:1-16. https://doi.org/10.1016/j.carbpol.2020.117006.

[30]

Morales D, Smiderle FR, Villalva M, et al. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes. J Funct Foods. 2019; 60:1-11. https://doi.org/10.1016/j.jff.2019.103446.

[31]

Zhang JX, Wen CT, Chen M, et al. Antioxidant activities of Sagittaria sagittifolia L. polysaccharides with subcritical water extraction. Int J Biol Macromol.. 2019; 134:172-179. https://doi.org/10.1016/j.ijbiomac.2019.05.047.

[32]

Ti YR, Wang WZ, Wang XX, et al. Pumpkin polysaccharide extracted by subcritical water: physicochemical characterization and anti-diabetic effects in T2DM rats. Mol Nutr Food Res.. 2022; 66(24):1-13. https://doi.org/10.1002/mnfr.202200160.

[33]

Dobrincic A, Pedisic S, Zoric Z, et al. Microwave assisted extraction and pressurized liquid extraction of sulfated polysaccharides from Fucus virsoides and Cystoseira barbata. Foods. 2021; 10(7):1481. https://doi.org/10.3390/foods10071481.

[34]

Zhang JX, Wen CT, Gu JY, et al. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes. Int J Biol Macromol. 2019; 123:1002-1011. https://doi.org/10.1016/j.ijbiomac.2018.11.194.

[35]

Fan R, Wang L, Fan JF, et al. The pulsed electric field assisted-extraction enhanced the yield and the physicochemical properties of soluble dietary fiber From orange peel. Front Nutr.. 2022; 9:1-16. https://doi.org/10.3389/fnut.2022.925642.

[36]

Wang J, Zhang M, Fang ZX. Recent development in efficient processing technology for edible algae: a review. Trends Food Sci Technol.. 2019; 88:251-259. https://doi.org/10.1016/j.jpgs.2019.03.032.

[37]

Nadar SS, Rao P, Rathod VK. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: a review. Food Res Int.. 2018; 108:309-330. https://doi.org/10.1016/j.foodres.2018.03.006.

[38]

Li XY, Zhu JS, Wang TY, et al. Antidiabetic activity of Armillaria mellea polysaccharides: joint ultrasonic and enzyme assisted extraction. Ultrason Sonochem.. 2023; 95:1-11. https://doi.org/10.1016/j.ultsonch.2023.106370.

[39]

Lin YY, Pi JJ, Jin PY, et al. Enzyme and microwave co-assisted extraction, structural characterization and antioxidant activity of polysaccharides from purple heart radish. Food Chem.. 2022; 372:1-12. https://doi.org/10.1016/j.foodchem.2021.131274.

[40]

Dias ALB, de Aguiar AC, Rostagno MA. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: current status and trends. Ultrason Sonochem.. 2021; 74:1-20. https://doi.org/10.1016/j.ultsonch.2021.105584.

[41]

Singh S, Verma DK, Thakur M, et al. Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Res Int.. 2021; 150:1-29. https://doi.org/10.1016/j.foodres.2021.110746.

[42]

Zhao HK, Wei XY, Xie YM.Supercritical CO2 extraction, structural analysis and bioactivity of polysaccharide from Grifola frondosa. J Food Compost Anal. 2021; 102:1-12. https://doi.org/10.1016/j.jfca.2021.104067.

[43]

Wandee Y, Uttapap D, Mischnick P. Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocoll.. 2019; 87:237-244. https://doi.org/10.1016/j.foodhyd.2018.08.017.

[44]

Li J, Cai C, Zheng MM, et al. Alkaline extraction, structural characterization, and bioactivities of (16) -D-glucan from Lentinus edodes. Molecules. 2019; 24(8):1-14. https://doi.org/10.3390/molecules24081610.

[45]

Sun YJ, Wang F, Liu Y, et al. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo. Food Funct.. 2022; 13(2):806-824. https://doi.org/10.1039/d1fo02944d.

[46]

Bai LL, Zhu PL, Wang WB, et al. The influence of extraction pH on the chemical compositions, macromolecular characteristics, and rheological properties of polysaccharide: the case of okra polysaccharide. Food Hydrocoll.. 2020; 102:1-10. https://doi.org/10.1016/j.foodhyd.2019.105586.

[47]

Chen S, Qin L, Xie LM, et al. Physicochemical characterization, rheological and antioxidant properties of three alkali-extracted polysaccharides from mung bean skin. Food Hydrocoll.. 2022; 132:1-10. https://doi.org/10.1016/j.foodhyd.2022.107867.

[48]

Chao YC, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev.. 2020; 49(1):114-142. https://doi.org/10.1039/c9cs00466a.

[49]

Zhu LN, Lu Y, Sun Z, et al. The application of an aqueous two-phase system combined with ultrasonic cell disruption extraction and HPLC in the simultaneous separation and analysis of solanine and Solanum nigrum polysaccharide from Solanum nigrum unripe fruit. Food Chem.. 2020; 304:1-9. https://doi.org/10.1016/j.foodchem.2019.125383.

[50]

Hu JX, Liu JF, Huang XY, et al. Efficient extraction of polysaccharides from Lycium barbarum L. by aqueous two-phase system combined with tissue-smashing extraction. Ind Crops Prod.. 2022; 184:1-11. https://doi.org/10.1016/j.indcrop.2022.115036.

[51]

Lin YY, Zeng HY, Wang K, et al. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: process optimization, structure characterization and antioxidant activity. Int J Biol Macromol.. 2019; 136:305-315. https://doi.org/10.1016/j.ijbiomac.2019.06.064.

[52]

Fang CC, Chen GJ, Kan JQ. Comparison on characterization and biological activities of Mentha haplocalyx polysaccharides at different solvent extractions. Int J Biol Macromol.. 2020; 154:916-928. https://doi.org/10.1016/j.ijbiomac.2020.03.169.

[53]

Hao W, Wang SF, Zhao J, et al. Effects of extraction methods on immunology activity and chemical profiles of Lycium barbarum polysaccharides. J Pharm Biomed Anal.. 2020; 185:1-6. https://doi.org/10.1016/j.jpba.2020.113219.

[54]

Zhou SY, Rahman A, Li JH, et al. Extraction methods affect the structure of Goji (Lycium barbarum) polysaccharides. Molecules.. 2020; 25(4):1-15. https://doi.org/10.3390/molecules25040936.

[55]

Tang W, Liu D, Yin JY, et al. Consecutive and progressive purification of food-derived natural polysaccharide: based on material, extraction process and crude polysaccharide. Trends Food Sci Technol.. 2020; 99:76-87. https://doi.org/10.1016/j.jpgs.2020.02.015.

[56]

Zhong WT, Yang CM, Zhang YZ, et al. Effects of different deproteinization methods on the antioxidant activity of polysaccharides from Flos Sophorae Immaturus obtained by ultrasonic microwave synergistic extraction. Agronomy.. 2022; 12(11):1-19. https://doi.org/10.3390/agronomy12112740.

[57]

Huang GL, Chen F, Yang WJ, et al. Preparation, deproteinization and comparison of bioactive polysaccharides. Trends Food Sci Technol.. 2021; 109:564-568. https://doi.org/10.1016/j.jpgs.2021.01.038.

[58]

Chen L, Huang GL, Hu JC. Preparation, deproteinization, characterisation, and antioxidant activity of polysaccharide from cucumber (Cucumis saticus L.). Int J Biol Macromol.. 2018; 108:408-411. https://doi.org/10.1016/j.ijbiomac.2017.12.034.

[59]

Zeng XT, Li PY, Chen X, et al. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides. Int J Biol Macromol.. 2019; 126:867-876. https://doi.org/10.1016/j.ijbiomac.2018.12.222.

[60]

Xiong QP, Huang S, Chen JH, et al. A novel green method for deproteinization of polysaccharide from Cipangopaludina chinensis by freeze-thaw treatment. J Clean Prod.. 2017; 142:3409-3418. https://doi.org/10.1016/j.jclepro.2016.10.125.

[61]

Gu JY, Zhang HH, Zhang JX, et al. Preparation, characterization and bioactivity of polysaccharide fractions from Sagittaria sagittifolia L. Carbohydr Polym.. 2020; 229:1-11. https://doi.org/10.1016/j.carbpol.2019.115355.

[62]

Hu YN, Sung TJ, Chou CH, et al. Characterization and antioxidant activities of yellow strain Flammulina velutipes (Jinhua Mushroom) polysaccharides and their effects on ROS content in L929 cell. Antioxidants.. 2019; 8(8):1-15. https://doi.org/10.3390/antiox8080298.

[63]

Ren Y, Bai YP, Zhang Z, et al. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: a review of recent development. Molecules.. 2019; 24(17):1-26. https://doi.org/10.3390/molecules24173122.

[64]

Zhang WJ, Huang J, Wang W, et al. Extraction, purification, characterization and antioxidant activities of polysaccharides from Cistanche tubulosa. Int J Biol Macromol. 2016; 93:448-458. https://doi.org/10.1016/j.ijbiomac.2016.08.079.

[65]

Zheng Y, Yan JY, Cao CY, et al. Application of chromatography in purification and structural analysis of natural polysaccharides: a review. J Sep Sci.. 2023; 46(18):1-18. https://doi.org/10.1002/jssc.202300368.

[66]

Yarley OPN, Kojo AB, Gedel AM, et al. Capacity of ethanol adjunct-treated interface of ionic liquid aqueous two phase system in simultaneous extraction and purification of sorghum leaf sheath polysaccharides. Sep Sci Technol.. 2021; 56(16):2750-2765. https://doi.org/10.1080/01496395.2020.1844237.

[67]

Li ZX, Chen JY, Wu Y, et al. Effect of downstream processing on the structure and rheological properties of xanthan gum generated by fermentation of Melaleuca alternifolia residue hydrolysate. Food Hydrocoll. 2022; 132:1-11. https://doi.org/10.1016/j.foodhyd.2022.107838.

[68]

Guo YX, Ye H, Wang HJ, et al. Asymmetrical flow field-flow fractionation combined with ultrafiltration: a novel and high-efficiency approach for separation, purification, and characterization of Ganoderma lucidum polysaccharides. Talanta.. 2023; 253:1-7. https://doi.org/10.1016/j.talanta.2022.124053.

[69]

Feng SM, Luan D, Ning K, et al. Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi. Int J Biol Macromol. 2019; 135:141-151. https://doi.org/10.1016/j.ijbiomac.2019.05.129.

[70]

Tang W, Liu CC, Liu JJ, et al. Purification of polysaccharide from Lentinus edodes water extract by membrane separation and its chemical composition and structure characterization. Food Hydrocoll.. 2020; 105:1-10. https://doi.org/10.1016/j.foodhyd.2020.105851.

[71]

Wu Y, Zhou H, Wei KH, et al. Structure of a new Glycyrrhiza polysaccharide and its immunomodulatory activity. Front Immunol.. 2022; 13:1-16. https://doi.org/10.3389/fimmu.2022.1007186.

[72]

Zhang SH, He F, Chen X, et al. Isolation and structural characterization of a pectin from Lycium ruthenicum Murr and its anti-pancreatic ductal adenocarcinoma cell activity. Carbohydr Polym.. 2019; 223:1-10. https://doi.org/10.1016/j.carbpol.2019.115104.

[73]

Lin HC, Lin JY. Characterization of guava (Psidium guajava Linn) seed polysaccharides with an immunomodulatory activity. Int J Biol Macromol.. 2020; 154:511-520. https://doi.org/10.1016/j.ijbiomac.2020.03.137.

[74]

Du BX, Fu YP, Wang X, et al. Isolation, purification, structural analysis and biological activities of water-soluble polysaccharide from Glehniae radix. Int J Biol Macromol. 2019; 128:724-731. https://doi.org/10.1016/j.ijbiomac.2019.01.159.

[75]

Meng X, Che CC, Zhang JM, et al. Structural characterization and immunomodulating activities of polysaccharides from a newly collected wild Morchella sextelata. Int J Biol Macromol. 2019; 129:608-614. https://doi.org/10.1016/j.ijbiomac.2019.01.226.

[76]

Jiang XL, Ma GF, Zhao BB, et al. Structural characterization and immunomodulatory activity of a novel polysaccharide from Panax notoginseng. Front Pharmacol. 2023; 14:1-12. https://doi.org/10.3389/fphar.2023.1190233.

[77]

Jiang Y, Shang ZP, Lv XY, et al. Structure elucidation and antitumor activity of a water soluble polysaccharide from Hemicentrotus pulcherrimus. Carbohydr Polym. 2022; 292:1-11. https://doi.org/10.1016/j.carbpol.2022.119718.

[78]

Barnes WJ, Koj S, Black IM, et al. Protocols for isolating and characterizing polysaccharides from plant cell walls: a case study using rhamnogalacturonan-II. Biotechnol Biofuels.. 2021; 14(1):1-20. https://doi.org/10.1186/s13068-021-01992-0.

[79]

Wang QC, Zhao X, Pu JH, et al. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides. Carbohydr Polym.. 2016; 143:296-300. https://doi.org/10.1016/j.carbpol.2016.02.023.

[80]

Deveci E, Çayan F, Tel-Çayan G, et al. Structural characterization and determination of biological activities for different polysaccharides extracted from tree mushroom species. J Food Biochem.. 2019; 43(9):1-13. https://doi.org/10.1111/jfbc.12965.

[81]

Li Y, Liang J, Gao JN, et al. A novel LC-MS/MS method for complete composition analysis of polysaccharides by aldononitrile acetate and multiple reaction monitoring. Carbohydr Polym.. 2021; 272:1-15. https://doi.org/10.1016/j.carbpol.2021.118478.

[82]

Malyar YN, Sudakova IG, Borovkova VS, et al. Microfibrillated cellulose with a lower degree of polymerization; synthesis via sulfuric acid hydrolysis under ultrasonic treatment. Polymers.. 2023; 15(4):1-14. https://doi.org/10.3390/polym15040904.

[83]

Dean GH, Sola K, Unda F, et al. Analysis of monosaccharides from arabidopsis seed mucilage and whole seeds using HPAEC-PAD. Bio-Protocol.. 2019; 9(24):1-22. https://doi.org/10.21769/BioProtoc.3464.

[84]

Silva VG, Aguilar MSC, Ascanio G, et al. Acid hydrolysis of pectin and mucilage from cactus (Opuntia ficus) for identification and quantification of monosaccharides. Molecules.. 2022; 27(18):1-12. https://doi.org/10.3390/molecules27185830.

[85]

Hu JY, Cheng H, Xu J, et al. Determination and analysis of monosaccharides in Polygonatum cyrtonema Hua polysaccharides from different areas by ultra-high-performance liquid chromatography quadrupole trap tandem mass spectrometry. J Sep Sci.. 2021; 44(18):3506-3515. https://doi.org/10.1002/jssc.202100263.

[86]

Liu D, Tang W, Yin JY, et al. Monosaccharide composition analysis of polysaccharides from natural sources: hydrolysis condition and detection method development. Food Hydrocoll. 2021; 116:1-21. https://doi.org/10.1016/j.foodhyd.2021.106641.

[87]

Shi HF, Wan YJ, Li OY, et al. Two-step hydrolysis method for monosaccharide composition analysis of natural polysaccharides rich in uronic acids. Food Hydrocoll.. 2020; 101:1-9. https://doi.org/10.1016/j.foodhyd.2019.105524.

[88]

He YL, Zhang M, Shan M, et al. Optimizing microwave-assisted hydrolysis conditions for monosaccharide composition analyses of different polysaccharides. Int J Biol Macromol.. 2018; 118:327-332. https://doi.org/10.1016/j.ijbiomac.2018.06.077.

[89]

Ying WJ, Xu Y, Zhang JH. Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar. Bioresour Technol.. 2021; 321:1-9. https://doi.org/10.1016/j.biortech.2020.124472.

[90]

El-Dein AN, El-Deen AMN, El-Shatoury EH, et al. Assessment of exopolysaccharides, bacteriocins and in vitro and in vivo hypocholesterolemic potential of some Egyptian Lactobacillus spp. Int J Biol Macromol.. 2021; 173:66-78. https://doi.org/10.1016/j.ijbiomac.2021.01.107.

[91]

Andrasi M, Gyemant G, Sajtos Z, et al. Analysis of sugars in honey samples by capillary zone electrophoresis using fluorescence detection. Separations.. 2023; 10(3):1-10. https://doi.org/10.3390/separations10030150.

[92]

Kurzyna-Szklarek M, Cybulska J, Zdunek A. Analysis of the chemical composition of natural carbohydrates: an overview of methods. Food Chem.. 2022; 394:1-13. https://doi.org/10.1016/j.foodchem.2022.133466.

[93]

Lv GP, Hu DJ, Zhao J, et al. Quality control of sweet medicines based on gas chromatography-mass spectrometry. Drug Discov Ther.. 2015; 9(2):94-106. https://doi.org/10.5582/ddt.2015.01020.

[94]

Black I, Heiss C, Azadi P. Comprehensive monosaccharide composition analysis of insoluble polysaccharides by permethylation to produce methyl alditol derivatives for gas chromatography/mass spectrometry. Anal Chem.. 2019; 91(21):13787-13793. https://doi.org/10.1021/acs.analchem.9b03239.

[95]

Guo N, Bai ZL, Jia WJ, et al. Quantitative analysis of polysaccharide composition in Polyporus umbellatus by HPLC-ESI-TOF-MS. Molecules.. 2019; 24(14):1-13. https://doi.org/10.3390/molecules24142526.

[96]

Xu S, Bi JL, Jin WF, et al. Determination of polysaccharides composition in Polygonatum sibiricum and Polygonatum odoratum by HPLC-FLD with pre-column derivatization. Heliyon.. 2022; 8(5):1-8. https://doi.org/10.1016/j.heliyon.2022.e09363.

[97]

Cheng Q, Peng SH, Li FY, et al. Quality distinguish of red ginseng from different origins by HPLC-ELSD/PDA combined with HPSEC-MALLS-RID, focus on the sugar-markers. Separations.. 2021; 8(11):1-11. https://doi.org/10.3390/separations8110198.

[98]

Ghosh R, Kline P. HPLC with charged aerosol detector (CAD) as a quality control platform for analysis of carbohydrate polymer. BMC Res Notes.. 2019; 12:1-7. https://doi.org/10.1186/s13104-019-4296-y.

[99]

Feriani A, Tir M, Hamed M, et al. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. Int J Biol Macromol.. 2020; 165:2576-2587. https://doi.org/10.1016/j.ijbiomac.2020.10.123.

[100]

Fernando IPS, Dias M, Madusanka DMD, et al. Step gradient alcohol precipitation for the purification of low molecular weight fucoidan from Sargassum siliquastrum and its UVB protective effects. Int J Biol Macromol.. 2020; 163:26-35. https://doi.org/10.1016/j.ijbiomac.2020.06.232.

[101]

Uhliariková I, Matulová M, Capek P.Optimizing acid hydrolysis for monosaccharide compositional analysis of Nostoc cf. linckia acidic exopolysaccharide. Carbohydr Res.. 2021; 508:1-9. https://doi.org/10.1016/j.carres.2021.108400.

[102]

Jie L, Yuan Z, Yu Z, et al. Progress in the pretreatment and analysis of carbohydrates in food: an update since 2013. J Chromatogr A.. 2021; 1655:1-16. https://doi.org/10.1016/j.chroma.2021.462496.

[103]

Gao JN, Li X, Liang J, et al. An alternative strategy based on ultra-high-performance supercritical fluid chromatography for full monosaccharide compositional analysis of polysaccharides in Schisandra chinensis fruits. J Sep Sci.. 2023; 46(8):1-12. https://doi.org/10.1002/jssc.202200797.

[104]

Beltrame G, Trygg J, Rahkila J, et al. Structural investigation of cell wall polysaccharides extracted from wild Finnish mushroom Craterellus tubaeformis (Funnel Chanterelle). Food Chem.. 2019; 301:1-8. https://doi.org/10.1016/j.foodchem.2019.125255.

[105]

Bak J, Miyazaki Y, Nakano H, et al. Profiling sulfate content of polysaccharides in seaweed species using a ligand-assisted 1H-NMR assay. Food Sci Technol Res.. 2021; 27(3):505-510. https://doi.org/10.3136/fstr.27.505.

[106]

Yu G, Zhang QZ, Wang YB, et al. Sulfated polysaccharides from red seaweed Gelidium amansii: structural characteristics, anti-oxidant and anti-glycation properties, and development of bioactive films. Food Hydrocoll.. 2021; 119:1-13. https://doi.org/10.1016/j.foodhyd.2021.106820.

[107]

Anwar M, McConnell M, Bekhit AE. New freeze-thaw method for improved extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta): optimization and comprehensive characterization of physico-chemical and structural properties. Food Chem.. 2021; 349:1-9. https://doi.org/10.1016/j.foodchem.2021.129210.

[108]

Shi XD, Li OY, Yin JY, et al. Structure identification of α-glucans from Dictyophora echinovolvata by methylation and 1D/2D NMR spectroscopy. Food Chem.. 2019; 271:338-344. https://doi.org/10.1016/j.foodchem.2018.07.160.

[109]

Zhou SY, Huang GL, Chen GY. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam. Food Chem.. 2021; 361:1-14. https://doi.org/10.1016/j.foodchem.2021.130089.

[110]

Yao HYY, Wang JQ, Yin JY, et al. A review of NMR analysis in polysaccharide structure and conformation: progress, challenge and perspective. Food Res Int.. 2021; 143:1-19. https://doi.org/10.1016/j.foodres.2021.110290.

[111]

Fontana C, Widmalm G. Primary structure of glycans by NMR spectroscopy. Chem Rev.. 2023; 123(3):1040-1102. https://doi.org/10.1021/acs.chemrev.2c00580.

[112]

Sims IM, Carnachan SM, Bell TJ, et al. Methylation analysis of polysaccharides: technical advice. Carbohydr Polym.. 2018; 188:1-7. https://doi.org/10.1016/j.carbpol.2017.12.075.

[113]

Black IM, Ndukwe IE, Vlach J, et al. Acetylation in ionic liquids dramatically increases yield in the glycosyl composition and linkage analysis of insoluble and acidic polysaccharides. Anal Chem.. 2023; 95(34):12851-12858. https://doi.org/10.1021/acs.analchem.3c02056.

[114]

Yuan SW, Wang JH, Li X, et al. Study on the structure, antioxidant activity and degradation pattern of polysaccharides isolated from lotus seedpod. Carbohydr Polym.. 2023; 316:1-13. https://doi.org/10.1016/j.carbpol.2023.121065.

[115]

Hadidi M, Amoli PI, Jelyani AZ, et al. Polysaccharides from pineapple core as a canning by-product: extraction optimization, chemical structure, antioxidant and functional properties. Int J Biol Macromol.. 2020; 163:2357-2364. https://doi.org/10.1016/j.ijbiomac.2020.09.092.

[116]

Niu JF, Wang SP, Wang BL, et al. Structure and anti-tumor activity of a polysaccharide from Bletilla ochracea Schltr. Int J Biol Macromol. 2020; 154:1548-1555. https://doi.org/10.1016/j.ijbiomac.2019.11.039.

[117]

Wang JQ, Zhao J, Nie SP, et al. Mass spectrometry for structural elucidation and sequencing of carbohydrates. Trends Analyt Chem.. 2021; 144:1-16. https://doi.org/10.1016/j.trac.2021.116436.

[118]

Galermo AG, Nandita E, Barboza M, et al. Liquid chromatography-tandem mass spectrometry approach for determining glycosidic linkages. Anal Chem.. 2018; 90(21):13073-13080. https://doi.org/10.1021/acs.analchem.8b04124.

[119]

Tsai ST, Hsu HC, Ni CK. A simple tandem mass spectrometry method for structural identification of pentose oligosaccharides. Analyst.. 2023; 148(8):1712-1731. https://doi.org/10.1039/d3an00068k.

[120]

Wang JQ, Zhao J, Nie SP, et al. Matrix assisted laser desorption ionization-tandem time-of-flight-mass spectrometry (MALDI-TOF/TOF-MS) characterization of oligosaccharides: structural identification and differentiation. Anal Lett.. 2023; 56(13):2152-2171. https://doi.org/10.1080/00032719.2022.2157421.

[121]

Wang JQ, Zhao J, Nie SP, et al. Rapid profiling strategy for oligosaccharides and polysaccharides by MALDI TOF mass spectrometry. Food Hydrocoll.. 2022; 124:1-17. https://doi.org/10.1016/j.foodhyd.2021.107237.

[122]

Li XM, Sun HF, Ning ZM, et al. Mild acid hydrolysis on fucan sulfate from Stichopus herrmanni: structures, depolymerization mechanism and anticoagulant activity. Food Chem.. 2022; 395:1-9. https://doi.org/10.1016/j.foodchem.2022.133559.

[123]

Amicucci MJ, Nandita E, Galermo AG, et al. A nonenzymatic method for cleaving polysaccharides to yield oligosaccharides for structural analysis. Nat Commun.. 2020; 11(1):1-12. https://doi.org/10.1038/s41467-020-17778-1.

[124]

Castillo JJ, Galermo AG, Amicucci MJ, et al. A multidimensional mass spectrometry-based workflow for de novo structural elucidation of oligosaccharides from polysaccharides. J Am Soc Mass Spectrom.. 2021; 32(8):2175-2185. https://doi.org/10.1021/jasms.1c00133.

[125]

Amicucci MJ, Galermo AG, Guerrero A, et al. Strategy for structural elucidation of polysaccharides: elucidation of a maize mucilage that harbors diazotrophic bacteria. Anal Chem.. 2019; 91(11):7254-7265. https://doi.org/10.1021/acs.analchem.9b00789.

[126]

Meng Y, Lyu FZ, Xu XJ, et al. Recent advances in chain conformation and bioactivities of triple-helix polysaccharides. Biomacromolecules. 2020; 21(5):1653-1677. https://doi.org/10.1021/acs.biomac.9b01644.

[127]

Guo XY, Kang J, Xu ZY, et al. Triple-helix polysaccharides: formation mechanisms and analytical methods. Carbohydr Polym.. 2021; 262:1-12. https://doi.org/10.1016/j.carbpol.2021.117962.

[128]

Guo YM, Cong S, Zhao J, et al. The combination between cations and sulfated polysaccharide from abalone gonad (Haliotis discus hannai Ino). Carbohydr Polym.. 2018; 188:54-59. https://doi.org/10.1016/j.carbpol.2018.01.100.

[129]

Wang B, Huang B, Yang B, et al. Structural elucidation of a novel polysaccharide from Ophiopogonis Radix and its self-assembly mechanism in aqueous solution. Food Chem.. 2023; 402:1-9. https://doi.org/10.1016/j.foodchem.2022.134165.

[130]

Jiao LL, Li JM, Liu FR, et al. Characterisation, chain conformation and antifatigue effect of steamed Ginseng polysaccharides with different molecular weight. Front Pharmacol.. 2021; 12:1-12. https://doi.org/10.3389/fphar.2021.712836.

[131]

Phillips-Jones MK, Harding SE. Tapping into synchrotron and benchtop circular dichroism spectroscopy for expanding studies of complex polysaccharides and their interactions in anoxic archaeological wood. Heritage.. 2019; 2(1):121-134. https://doi.org/10.3390/heritage2010009.

[132]

Yin L, Fu SS, Wu RJ, et al. Chain conformation of an acidic polysaccharide from green tea and related mechanism of α-amylase inhibitory activity. Int J Biol Macromol.. 2020; 164:1124-1132. https://doi.org/10.1016/j.ijbiomac.2020.07.125.

[133]

Zhang H, Nie SP, Guo QB, et al. Conformational properties of a bioactive polysaccharide from Ganoderma atrum by light scattering and molecular modeling. Food Hydrocoll.. 2018; 84:16-25. https://doi.org/10.1016/j.foodhyd.2018.05.023.

[134]

Li F, Wang KH, Dong XB, et al. Structure, conformation and immunomodulatory activity of a polysaccharide from Morchella sextelata. Int J Food Sci. 2022; 57(7):4628-4637. https://doi.org/10.1111/ijfs.15801.

[135]

Wang JQ, Nie SP. Application of atomic force microscopy in microscopic analysis of polysaccharide. Trends Food Sci Technol.. 2019; 87:35-46. https://doi.org/10.1016/j.jpgs.2018.02.005.

[136]

Chen ZR, Zhu BJ, Chen ZX, et al. Effects of steam on polysaccharides from Polygonatum cyrtonema based on saccharide mapping analysis and pharmacological activity assays. Chin Med.. 2022; 17(1):1-13. https://doi.org/10.1186/s13020-022-00650-3.

[137]

Zhang X, Hong L, Zhu BJ, et al. Atomic force microscopy based conformation and immunological activity of Lentinan injections. Int J Biol Macromol.. 2023; 253:1-12. https://doi.org/10.1016/j.ijbiomac.2023.126901.

[138]

Ye JF, Hua X, Zhao QY, et al. Chain conformation and rheological properties of an acid-extracted polysaccharide from peanut sediment of aqueous extraction process. Carbohydr Polym.. 2020; 228:1-11. https://doi.org/10.1016/j.carbpol.2019.115410.

[139]

Feng YQ, Qiu YJ, Duan YQ, et al. Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides. Food Res Int.. 2022; 53:1-16. https://doi.org/10.1016/j.foodres.2021.110913.

[140]

Jia YN, Li NN, Wang QR, et al. Effect of FeIII, Zn(II), and Cr(III) complexation on the physicochemical properties and bioactivities of corn silk polysaccharide. Int J Biol Macromol.. 2021; 189:847-856. https://doi.org/10.1016/j.ijbiomac.2021.08.191.

[141]

Yoshiba K, Saheki T, Christensen BE, et al. Conformation and cooperative order-disorder transition in aqueous solutions of β-1,3-D-glucan with different degree of branching varied by the Smith degradation. Biopolymers.. 2019; 110(9):1-8. https://doi.org/10.1002/bip.23315.

[142]

Mansel BW, Ryan TM, Chen HL, et al. Polysaccharide conformations measured by solution state X-ray scattering. Chem Phys Lett.. 2020; 739:1-5. https://doi.org/10.1016/j.cplett.2019.136951.

[143]

Du B, Nie SP, Peng F, et al. A narrative review on conformational structure characterization of natural polysaccharides. Food Frontiers.. 2022; 3(4):631-640. https://doi.org/10.1002/fft2.150.

[144]

Zhao J, Ma SC, Li SP. Advanced strategies for quality control of Chinese medicines. J Pharm Biomed Anal.. 2018; 147:473-478. https://doi.org/10.1016/j.jpba.2017.06.048.

[145]

Zhao J, Deng Y, Li SP. Advanced analysis of polysaccharides, novel functional components in food and medicine dual purposes Chinese herbs. Trends Analyt Chem.. 2017; 96:138-150. https://doi.org/10.1016/j.trac.2017.06.006.

[146]

Dong YT, Pei F, Su AX, et al. Multiple fingerprint and fingerprint-activity relationship for quality assessment of polysaccharides from Flammulina velutipes. Food Chem Toxicol. 2020; 135:1-8. https://doi.org/10.1016/j.fct.2019.110944.

[147]

Guan J, Zhao J, Feng K, et al. Comparison and characterization of polysaccharides from natural and cultured Cordyceps using saccharide mapping. Anal Bioanal Chem.. 2011; 399(10):3465-3474. https://doi.org/10.1007/s00216-010-4396-y.

[148]

Guan J, Li SP. Discrimination of polysaccharides from traditional Chinese medicines using saccharide mapping-enzymatic digestion followed by chromatographic analysis. J Pharm Biomed Anal.. 2010; 51(3):590-598. https://doi.org/10.1016/j.jpba.2009.09.026.

[149]

Zhu BJ, Yan ZY, Hong L, et al. Quality evaluation of Salvia miltiorrhiza from different geographical origins in China based on qualitative and quantitative saccharide mapping and chemometrics. J Pharm Biomed Anal.. 2020; 191:1-8. https://doi.org/10.1016/j.jpba.2020.113583.

[150]

Cao W, Zhu BJ, Zhang X, et al. Characterization and immunological activity of polysaccharides from two types of Dendrobium devonianum with different appearance. J Pharm Biomed Anal.. 2023; 223:1-8. https://doi.org/10.1016/j.jpba.2022.115146.

[151]

Wu DT, Cheong KL, Deng Y, et al. Characterization and comparison of polysaccharides from Lycium barbarum in China using saccharide mapping based on PACE and HPTLC. Carbohydr Polym.. 2015; 134:12-19. https://doi.org/10.1016/j.carbpol.2015.07.052.

[152]

Wu DT, Cheong KL, Wang LY, et al. Characterization and discrimination of polysaccharides from different species of Cordyceps using saccharide mapping based on PACE and HPTLC. Carbohydr Polym.. 2014; 103:100-109. https://doi.org/10.1016/j.carbpol.2013.12.034.

[153]

Deng Y, Han BX, Hu DJ, et al. Qualitation and quantification of water soluble non-starch polysaccharides from Pseudostellaria heterophylla in China using saccharide mapping and multiple chromatographic methods. Carbohydr Polym.. 2018; 199:619-627. https://doi.org/10.1016/j.carbpol.2018.06.063.

[154]

Xie J, Wu DT, Li WZ, et al. Effects of polysaccharides in Lycium barbarum Berries from different regions of China on macrophages function and their correlationto the glycosidic linkages. J Food Sci.. 2017; 82(10):2411-2420. https://doi.org/10.1111/1750-3841.13813.

[155]

Deng Y, Chen LX, Zhu BJ, et al. A quantitative method for polysaccharides based on endo-enzymatic released specific oligosaccharides: a case of Lentinus edodes. Int J Biol Macromol. 2022; 205:15-22. https://doi.org/10.1016/j.ijbiomac.2022.02.048.

[156]

Deng Y, Zhao J, Li SP. Quantitative estimation of enzymatic released specific oligosaccharides from Hericium erinaceus polysaccharides using CE-LIF. J Pharm Anal.. 2023; 13(2):201-208. https://doi.org/10.1016/j.jpha.2022.11.004.

[157]

Zhu BJ, Zhang WX, Zhao J, et al. Characterization and comparison of bioactive polysaccharides from Grifola frondosa by HPSEC-MALLS-RID and saccharide mapping based on HPAEC-PAD. Polymers.. 2023; 15(1):1-17. https://doi.org/10.3390/polym15010208.

[158]

Deng Y, Chen CW, Chen LX, et al. Fast saccharide mapping method for quality consistency evaluation of commercial xylooligosaccharides collected in China. J Pharm Anal.. 2021; 11(3):284-291. https://doi.org/10.1016/j.jpha.2020.08.013.

[159]

Zhang WH, Wu J, Weng LY, et al. An improved phenol-sulfuric acid method for the determination of carbohydrates in the presence of persulfate. Carbohydr Polym.. 2020; 227:1-6. https://doi.org/10.1016/j.carbpol.2019.115332.

[160]

Zhou FY, Liang J, Lu YL, et al. A nondestructive solution to quantify monosaccharides by ATR-FTIR and multivariate regressions: a case study of Atractylodes polysaccharides. Spectrochim Acta A Mol Biomol Spectrosc.. 2022; 279:1-13. https://doi.org/10.1016/j.saa.2022.121411.

[161]

Cheng HY, Li LF, Wu WJ, et al. Qualitative and quantitative analysis of agar in edible bird’s nest and related products based on a daughter oligosaccharide-marker approach using LC-QTOF-MS. Food Control.. 2022; 132:1-9. https://doi.org/10.1016/j.foodcont.2021.108514.

[162]

Cheong KL, Wu DT, Zhao J, et al. A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J Chromatogr A. 2015;1400:98-106. https://doi.org/10.1016/j.chroma.2015.04.054.

[163]

Deng Y, Xie J, Luo Z, et al. Synergistic immunomodulatory effect of complex polysaccharides from seven herbs and their major active fractions. Int J Biol Macromol.. 2020; 165:530-541. https://doi.org/10.1016/j.ijbiomac.2020.09.199.

PDF (4604KB)

81

Accesses

0

Citation

Detail

Sections
Recommended

/