Comprehensive analysis of the antibacterial activity of 5,8-dihydroxy-1,4-naphthoquinone derivatives against methicillin-resistant Staphylococcus aureus

Qingqing Chen , Yuhang Ding , Zhongyi Li , Xingyu Chen , Aliya Fazal , Yahan Zhang , Yudi Ma , Changyi Wang , Liu Yang , Tongming Yin , Guihua Lu , Hongyan Lin , Wen Zhongling , Qi Jinliang , Han Hongwei , Yang Yonghua

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) : 604 -613.

PDF (8225KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) :604 -613. DOI: 10.1016/S1875-5364(25)60818-1
Original article
research-article

Comprehensive analysis of the antibacterial activity of 5,8-dihydroxy-1,4-naphthoquinone derivatives against methicillin-resistant Staphylococcus aureus

Author information +
History +
PDF (8225KB)

Abstract

Given the increasing concern regarding antibacterial resistance, the antimicrobial properties of naphthoquinones have recently attracted significant attention. While 1,4-naphthoquinone and its derivatives have been extensively studied, the antibacterial properties of 5,8-dihydroxy-1,4-naphthoquinone derivatives remain relatively unexplored. This study presents a comprehensive in vitro and in vivo analysis of the antibacterial activity of 35 naturally sourced and chemically synthesized derivatives of 5,8-dihydroxy-1,4-naphthoquinone. Kirby-Bauer antibiotic testing identified three compounds with activity against methicillin-resistant Staphylococcus aureus (MRSA), with one compound (PNP-02) demonstrating activity comparable to vancomycin in minimum inhibitory concentration, minimum bactericidal concentration (MBC), and time-kill assays. Microscopic and biochemical analyses revealed that PNP-02 adversely affects the cell wall and cell membrane of MRSA. Mechanistic investigations, including proteomic sequencing analyses, Western blotting, and RT-qPCR assays, indicated that PNP-02 compromises cell membrane integrity by inhibiting arginine biosynthesis and pyrimidine metabolism pathways, thereby increasing membrane permeability and inducing bacterial death. In an in vivo mouse model of skin wound healing, PNP-02 exhibited antibacterial efficacy similar to vancomycin. The compound demonstrated low toxicity to cultured human cells and in hemolysis assays and remained stable during serum incubation. These findings suggest that PNP-02 possesses promising bioactivity against MRSA and represents a potential novel antibacterial agent.

Keywords

5,8-Dihydroxy-1,4-naphthoquinone / Antibacterial activity / MRSA / Arginine biosynthesis / Pyrimidine metabolism

Cite this article

Download citation ▾
Qingqing Chen, Yuhang Ding, Zhongyi Li, Xingyu Chen, Aliya Fazal, Yahan Zhang, Yudi Ma, Changyi Wang, Liu Yang, Tongming Yin, Guihua Lu, Hongyan Lin, Wen Zhongling, Qi Jinliang, Han Hongwei, Yang Yonghua. Comprehensive analysis of the antibacterial activity of 5,8-dihydroxy-1,4-naphthoquinone derivatives against methicillin-resistant Staphylococcus aureus. Chinese Journal of Natural Medicines, 2025, 23(5): 604-613 DOI:10.1016/S1875-5364(25)60818-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Misic AM, Davis MF, Tyldsley AS, et al. The shared microbiota of humans and companion animals as evaluated from carriage sites. Microbiome. 2015;3:2. https://doi.org/10.1186/s40168-014-0052-7.

[2]

Murra M, Mortensen KL, Wang M. Livestock-associated methicillin-resistant (clonal complex 398) causing bacteremia and epidural abscess. Int J Infect Dis. 2019; 81:107-109. https://doi.org/10.1016/j.ijid.2019.01.012.

[3]

Service RF.Antibiotics that resist resistance. Science. 1995; 270(5237):724-727. https://doi.org/10.1126/science.270.5237.724.

[4]

Collin SM, Shetty N, Guy R, et al. Group B Streptococcus in surgical site and non-invasive bacterial infections worldwide: A systematic review and meta-analysis. Int J Infect Dis. 2019; 83:116-129. https://doi.org/10.1016/j.ijid.2019.04.017.

[5]

Huai W, Ma QB, Zheng JJ, et al. Distribution and drug resistance of pathogenic bacteria in emergency patients. World J Clin Cases. 2019; 7(20):3175-3184. https://doi.org/10.12998/wjcc.v7.i20.3175.

[6]

Chen CH, Chen L, Mao CY, et al.Natural extracts for antibacterial applications. Small. 2024; 20(9):e2306553. https://doi.org/10.1002/smll.202306553.

[7]

Cho SY, Chung DR. Infection prevention strategy in hospitals in the era of community-associated methicillin-resistant Staphylococcus Aureus in the Asia-Pacific region: a review. Clin infec dis. 2017; 64(suppl_2):S82-S90. https://doi.org/10.1093/cid/cix133.

[8]

Duvauchelle V, Majdi C, Benimelis D, et al. Synthesis, structure elucidation, antibacterial activities, and synergistic effects of novel Juglone and Naphthazarin derivatives against clinical methicillin-resistant Staphylococcus aureus strains. Front Chem. 2021;9:773981. https://doi.org/10.3389/fchem.2021.773981.

[9]

da Silva FD, Ferreira VF. Natural naphthoquinones with great importance in medicinal chemistry. Curr Org Synth. 2016; 13(3):334-371. https://doi.org/10.2174/1570179412666150817220343.

[10]

Aminin D, Polonik S. 1, 4-naphthoquinones: some biological properties and application. Chem Pharm Bull. 2020; 68(1):46-57. https://doi.org/10.1248/cpb.c19-00911.

[11]

Prati F, Bergamini C, Molina MT, et al. 2-Phenoxy-1, 4-naphthoquinones: from a multitarget antitrypanosomal to a potential antitumor profile. J Med Chem. 2015; 58(16):6422-6434. https://doi.org/10.1021/acs.jmedchem.5b00748.

[12]

Paul P, Chakraborty P, Chatterjee A, et al. 1, 4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat. Arch Microbiol. 2021; 203(3):1183-1193. https://doi.org/10.1007/s00203-020-02117-1.

[13]

Tomozane H, Takeuchi Y, Choshi T, et al. Syntheses and antifungal activities of dl-griseofulvin and its congeners. I. Chem Pharm Bull. 1990; 38(4):925-929. https://doi.org/10.1248/cpb.38.925.

[14]

Topçu S, Seker MG. In vitro antimicrobial effects and inactivation mechanisms of 5, 8-dihydroxy-1, 4-napthoquinone. Antibiotics-Basel. 2022; 11(11):1537. https://doi.org/10.3390/antibiotics11111537.

[15]

Meem MH, Yusuf SB, Al Abbad SS, et al. Exploring the anticancer and antibacterial potential of naphthoquinone derivatives: a comprehensive computational investigation. Front Chem. 2024;12:1351669. https://doi.org/10.3389/fchem.2024.1351669.

[16]

Auber RP, Suttiyut T, McCoy RM, et al. Hybrid de novo genome assembly of red gromwell (Lithospermum erythrorhizon) reveals evolutionary insight into shikonin biosynthesis. Hortic Res-England. 2020; 7(1):82. https://doi.org/10.1038/s41438-020-0301-9.

[17]

Li QQ, Chae HS, Kang OH, et al. Synergistic antibacterial activity with conventional antibiotics and mechanism of action of shikonin against methicillin-resistant Staphylococcus Aureus. Int J Mol Sci. 2022; 23(14):1551. https://doi.org/10.3390/ijms23147551.

[18]

Farzi S, Rezazadeh M, Mirhosseini A, et al. Genetic diversity of healthcare-associated methicillin-resistant Staphylococcus Aureus isolates from Southern Iran. Acta Microbiol Imm H. 2021; 68(2):121-127. https://doi.org/10.1556/030.2021.01365.

[19]

Pani A, Lucini V, Dugnani S, et al. Erdosteine enhances antibiotic activity against bacteria within biofilm. Int J Antimicrob Ag. 2022; 59(3):106529. https://doi.org/10.1016/j.ijantimicag.2022.106529.

[20]

Yuan Z, Wang J, Qu Q, et al. Celastrol combats methicillin-resistant Staphylococcus Aureus by targeting delta(1) -pyrroline-5-carboxylate dehydrogenase. Adv Sci. 2023; 10(25):e2302459. https://doi.org/10.1002/advs.202302459.

[21]

Dubee V, Chau F, Arthur M, et al. The in vitro contribution of autolysins to bacterial killing elicited by amoxicillin increases with inoculum size in Enterococcus faecalis. Antimicrob Agents Chemother. 2011; 55(2):910-912. https://doi.org/10.1128/AAC.01230-10.

[22]

Zhang S, Tang H, Wang Y, et al. Antibacterial and antibiofilm effects of flufenamic acid against methicillin-resistant Staphylococcus Aureus. Pharmacol Res. 2020;160:105067. https://doi.org/10.1016/j.phrs.2020.105067.

[23]

Yuan WQ, Yuk HG. Antimicrobial efficacy of plant extract against and methicillin-resistant and its application potential with cooked chicken. Food Microbiol. 2018; 72:176-184. https://doi.org/10.1016/j.fm.2017.12.002.

[24]

Liu B, Yang Y, Wu H, et al.Zeolitic imidazolate framework-8 triggers the inhibition of arginine biosynthesis to combat methicillin-resistant Staphylococcus Aureus. Small. 2023; 19(14):e2205682. https://doi.org/10.1002/smll.202205682.

[25]

Shu G, Xu D, Zhang W, et al. Preparation of shikonin liposome and evaluation of its in vitro antibacterial and in vivo infected wound healing activity. Phytomedicine. 2022;99:154035. https://doi.org/10.1016/j.phymed.2022.154035.

[26]

Duan JJ, Li ML, Hao ZH, et al. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus Aureus isolates by downregulating saeRS. Emerg Microbes Infec. 2018; 7(1):136. https://doi.org/10.1038/s41426-018-0142-x.

[27]

Xu T, Yan XT, Kang AY, et al.Development of membrane-targeting fluorescent 2-phenyl-1 H-phenanthro[9, 10-d]imidazole-antimicrobial peptide mimic conjugates against methicillin-resistant Staphylococcus aureus. J Med Chem. 2024; 67(11):9302-9317. https://doi.org/10.1021/acs.jmedchem.4c00436.

[28]

Liu W, Wang X, Liu Y, et al. Effects of early florfenicol exposure on glutathione signaling pathway and PPAR signaling pathway in chick liver. Ecotoxicol Environ Saf. 2022;237:113529. https://doi.org/10.1016/j.ecoenv.2022.113529.

[29]

Simitsopoulou M, Kadiltzoglou P, Antachopoulos C, et al. Daptomycin exerts differential immunomodulatory effects on host responses against methicillin-resistant biofilms. Int J Antimicrob Ag. 2022; 60(4):106666. https://doi.org/10.1016/j.ijantimicag.2022.106666.

[30]

O'Reilly EB, Johnson MD, Rohrich RJ. Comprehensive review of methicillin-resistant Staphylococcus Aureus: screening and preventive recommendations for plastic surgeons and other surgical health care providers. Plast Reconstr Surg. 2014; 134(5):1078-1089. https://doi.org/10.1097/PRS.0000000000000626.

[31]

Ma YD, Lai XH, Wen ZL, et al. Design, synthesis and biological evaluation of novel modified dual-target shikonin derivatives for colorectal cancer treatment. Bioorg Chem. 2023;139:106703. https://doi.org/10.1016/j.bioorg.2023.106703.

[32]

Zhang XM, Qin M, Xu MJ, et al. The fabrication of antibacterial hydrogels for wound healing. Eur Polym J. 2021;146:110268. https://doi.org/10.1016/j.eurpolymj.2021.110268.

[33]

Patra JK, Das G, Baek KH, et al. Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and Salmonella Typhimurium. Bot Stud. 2015; 56(1):13. https://doi.org/10.1186/s40529-015-0093-7.

[34]

Gangwar B, Kumar S, Darokar MP, et al. Glabridin averts biofilms formation in methicillin-resistant Staphylococcus Aureus by modulation of the surfaceome. Front Microbiol. 2020;11:1779. https://doi.org/10.3389/fmicb.2020.01779.

[35]

Zeng Q, Wang ZJ, Chen S, et al. Phytochemical and anti-MRSA constituents of Zanthoxylum nitidum. Biomed Pharmacother. 2022;148:112758. https://doi.org/10.1016/j.biopha.2022.112758.

[36]

Taraszkiewicz A, Fila G, Grinholc M, et al. Innovative strategies to overcome biofilm resistance. BioMed Res Int. 2013;2013:150653. https://doi.org/10.1155/2013/150653.

[37]

Zhang WP, Chen LH, Feng H, et al. Rifampicin-induced injury in HepG2 cells is alleviated by TUDCA via increasing bile acid transporters expression and enhancing the Nrf2-mediated adaptive response. Free Radical Biology and Medicine. 2017; 112: 24-35. https://doi.org/10.1016/j.freeradbiomed.2017.07.003.

[38]

Lin YL, Tang X, Xu LZ, et al. Antibacterial properties and possible action mechanism of chelating peptides-zinc nanocomposite against Escherichia coli. Food Control. 2019;106:106675. https://doi.org/10.1016/j.foodcont.2019.06.001.

[39]

DeJesus MA, Gerrick ER, Xu WZ, et al. Comprehensive essentiality analysis of the mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio. 2017; 8(1):e02133-16. https://doi.org/10.1128/mBio.02133-16.

[40]

Charlier D, Minh PNL, Roovers M. Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. Amino Acids. 2018; 50(12):1647-1661. https://doi.org/10.1007/s00726-018-2654-z.

[41]

Caldara M, Dupont G, Leroy F, et al. Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. J Biol Chem. 2008; 283(10):6347-6358. https://doi.org/10.1074/jbc.M705884200.

[42]

Garavaglia M, Rossi E, Landini P. The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coli. Plos One. 2012; 7(2):e31252. https://doi.org/10.1371/journal.pone.0031252.

[43]

Cheng F, Mo YA, Chen KY, et al. Integration of metabolomics and transcriptomics indicates changes in MRSA exposed to terpinen-4-ol. Bmc Microbiol. 2021; 21(1):305. https://doi.org/10.1186/s12866-021-02348-2.

[44]

Karaolis DKR, Rashid MH, Chythanya R, et al. c-di-GMP (3′-5′-cyclic diguanylic acid) inhibits cell-cell interactions and biofilm formation. Antimicrob Agents Ch. 2005; 49(3):1029-1038. https://doi.org/10.1128/AAC.49.3.1029-1038.2005.

PDF (8225KB)

95

Accesses

0

Citation

Detail

Sections
Recommended

/