Progress on the functions and mechanisms of natural products in anti-glioma therapy

Yanting Li , Shuhui Qu , Jiayi Zuo , Haoping Long , Feng Cao , Feng Jiang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) : 541 -559.

PDF (5833KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) :541 -559. DOI: 10.1016/S1875-5364(25)60815-6
Review
research-article

Progress on the functions and mechanisms of natural products in anti-glioma therapy

Author information +
History +
PDF (5833KB)

Abstract

Glioma, the most prevalent primary tumor of the central nervous system (CNS), is also the most lethal primary malignant tumor. Currently, there are limited chemotherapeutics available for glioma treatment, necessitating further research to identify and develop new chemotherapeutic agents. A significant approach to discovering anti-glioma drugs involves isolating antitumor active ingredients from natural products (NPs) and optimizing their structures. Additionally, targeted drug delivery systems (TDDSs) are employed to enhance drug solubility and stability and overcome the blood-brain barrier (BBB). TDDSs can penetrate deep into the brain, increase drug concentration and retention time in the CNS, and improve the targeting efficiency of NPs, thereby reducing adverse effects and enhancing anti-glioma efficacy. This paper reviews the research progress of anti-glioma activities of NPs, including alkaloids, polyphenols, flavonoids, terpenoids, saponins, quinones, and their synthetic derivatives over the past decade. The review also summarizes anti-glioma mechanisms, such as suppression of related protein expression, regulation of reactive oxygen species (ROS) levels, control of apoptosis signaling pathways, reduction of matrix metalloproteinases (MMPs) expression, blocking of vascular endothelial growth factor (VEGF), and reversal of immunosuppression. Furthermore, the functions and advantages of NP-based TDDSs in anti-glioma therapy are examined. The key information presented in this review will be valuable for the research and development of NP-based anti-glioma drugs and related TDDSs.

Keywords

Anti-glioma / Natural products / Synthetic derivatives / Mechanisms / Targeted drug delivery systems

Cite this article

Download citation ▾
Yanting Li, Shuhui Qu, Jiayi Zuo, Haoping Long, Feng Cao, Feng Jiang. Progress on the functions and mechanisms of natural products in anti-glioma therapy. Chinese Journal of Natural Medicines, 2025, 23(5): 541-559 DOI:10.1016/S1875-5364(25)60815-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weller M, Wen PY, Chang SM, et al. Glioma. Nat Rev Dis Primers. 2024; 10(1):33. https://doi.org/10.1038/s41572-024-00516-y.

[2]

Wu H, Zhou F, Gao WW, et al. Current status and research progress of minimally invasive treatment of glioma. Front Oncol. 2024;14:1383958. https://doi.org/10.3389/fonc.2024.1383958.

[3]

Zhang J F. G. Stevens M D. Bradshaw T. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol. 2012; 5(1):102-114. https://doi.org/10.2174/1874467211205010102.

[4]

Deng W, Chen F, Zhao Y, et al. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med. 2023; 21(11):803-811. https://doi.org/10.1016/S1875-5364(23)60505-9.

[5]

Mosca L, Ilari A, Fazi F, et al. Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Update. 2021;54:100742. https://doi.org/10.1016/j.drup.2020.100742.

[6]

Min L, Han JC, Zhang W, et al. Strategies and lessons learned from total synthesis of taxol. Chem Rev. 2023; 123(8):4934-4971. https://doi.org/10.1021/acs.chemrev.2c00763.

[7]

Saini N, Sirohi R, Anuradha, et al. Marine-derived natural products as anticancer agents. Med Chem. 2023; 19(6):538-555. https://doi.org/10.2174/1573406419666221202144044.

[8]

Xu F, Yang YH, Yang H, et al. Progress of studies on natural products for glioblastoma therapy. J Asian Nat Prod Res. 2024; 26(1):154-176. https://doi.org/10.1080/10286020.2023.2300367.

[9]

Huang L, Huang XH, Yang X, et al. Novel nano-drug delivery system for natural products and their application. Pharmacol Res. 2024;201:107100. https://doi.org/10.1016/j.phrs.2024.107100.

[10]

Zhou LN, Kodidela S, Godse S, et al. Targeted drug delivery to the central nervous system using extracellular vesicles. Pharmaceuticals. 2022; 15(3):358. https://doi.org/10.3390/ph15030358.

[11]

Zhao Y, Yue P, Peng Y, et al. Recent advances in drug delivery systems for targeting brain tumors. Drug Deliv. 2023; 30(1):1-18. https://doi.org/10.1080/10717544.2022.2154409.

[12]

Wang K, Zhao B, Ao Y, et al. Super-small zwitterionic micelles enable the improvement of blood-brain barrier crossing for efficient orthotopic glioblastoma combinational therapy. J Control Release. 2023; 364:261-271. https://doi.org/10.1016/j.jconrel.2023.10.019.

[13]

Wang M, Liu ZF, Tang H, et al. Application of alkaloids in reversing multidrug resistance in human cancers. Chin J Nat Med. 2018; 16(8):561-571. https://doi.org/10.1016/S1875-5364(18)30093-1.

[14]

Lu ZG, Li MH, Wang JS, et al. Developmental toxicity and neurotoxicity of two matrine-type alkaloids, matrine and sophocarpine, in zebrafish (Danio rerio) embryos/larvae. Reprod Toxicol. 2014; 47:33-41. https://doi.org/10.1016/j.reprotox.2014.05.015.

[15]

Chi G, Xu D, Zhang B, et al.Matrine induces apoptosis and autophagy of glioma cell line U251 by regulation of circRNA-104075/BCL-9. Chem Biol Interact. 2019; 308:198-205. https://doi.org/10.1016/j.cbi.2019.05.030.

[16]

Wang Z, Wu YI, Wang Y, et al. Matrine inhibits the invasive properties of human glioma cells by regulating epithelial-to-mesenchymal transition. Mol Med Report. 2015; 11(5):3682-3686. https://doi.org/10.3892/mmr.2015.3167.

[17]

Guo C, Zhang C, Li L, et al. Hypoglycemic and hypolipidemic effects of oxymatrine in high-fat diet and streptozotocin-induced diabetic rats. Phytomedicine. 2014; 21(6):807-814. https://doi.org/10.1016/j.phymed.2014.02.007.

[18]

Guo C, Han F, Zhang C, et al. Protective effects of oxymatrine on experimental diabetic nephropathy. Planta Med. 2014; 80(4):269-276. https://doi.org/10.1055/s-0033-1360369.

[19]

Dai ZB, Wang LG, Wang XX, et al.Oxymatrine induces cell cycle arrest and apoptosis and suppresses the invasion of human glioblastoma cells through the EGFR/PI3K/Akt/mTOR signaling pathway and STAT3. Oncol Rep. 2018; 40(2):867-876. https://doi.org/10.3892/or.2018.6512.

[20]

Ling Q, Fang J, Zhai C, et al. Berberine induces SOCS1 pathway to reprogram the M1 polarization of macrophages via miR-155-5p in colitis-associated colorectal cancer. Eur J Pharmacol. 2023;949:175724. https://doi.org/10.1016/j.ejphar.2023.175724.

[21]

Sun Y, Huang H, Zhan Z, et al. Berberine inhibits glioma cell migration and invasion by suppressing TGF-β1/COL11A1 pathway. Biochem Biophys Res Commun. 2022; 625:38-45. https://doi.org/10.1016/j.bbrc.2022.07.101.

[22]

Jin F, Xie T, Huang X, et al. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Pharm Biol. 2019; 56(1):665-671. https://doi.org/10.1080/13880209.2018.1548627.

[23]

Tong L, Xie C, Wei Y, et al. Antitumor effects of berberine on gliomas via inactivation of caspase-1-mediated IL-1β and IL-18 release. Front Oncol. 2019;9:364. https://doi.org/10.3389/fonc.2019.00364.

[24]

Asemi Z, Behnam M, Pourattar MA, et al. Therapeutic potential of berberine in the treatment of glioma: Insights into its regulatory mechanisms. Cell Mol Neurobiol. 2020; 41(6):1195-1201. https://doi.org/10.1007/s10571-020-00903-5.

[25]

Ding D, Guo YR, Wu RL, et al. Two new isoquinoline alkaloids from Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in human glioma cancer U87 cells. Fitoterapia. 2016; 110:103-109. https://doi.org/10.1016/j.fitote.2016.03.004.

[26]

Jin Q, Yang D, Dai Z, et al. Antitumor aporphine alkaloids from thalictrum wangii. Fitoterapia. 2018; 128:204-212. https://doi.org/10.1016/j.fitote.2018.05.012.

[27]

Teng SF, Li FR, Cui QM, et al. A review on the genus melodinus: traditional uses, phytochemical diversity and pharmacological activities of indole alkaloids. Phytochem Rev. 2023. https://doi.org/10.1007/s11101-023-09871-2.

[28]

Wang R, Deng D, Shao N, et al. Evodiamine activates cellular apoptosis through suppressing PI3K/AKT and activating MAPK in glioma. Onco Targets Ther. 2018; 11:1183-1192. https://doi.org/10.2147/OTT.S155275.

[29]

Khan M, Bi Y, Qazi JI, et al. Evodiamine sensitizes U87 glioblastoma cells to TRAIL via the death receptor pathway. Mol Med Report. 2015; 11(1):257-262. https://doi.org/10.3892/mmr.2014.2705.

[30]

Ruijun W, Wenbin M, Yumin W, et al. Inhibition of glioblastoma cell growth in vitro and in vivo by brucine, a component of Chinese medicine. Oncol Res. 2015; 22(5):275-281. https://doi.org/10.3727/096504015X14344177566282.

[31]

Lu S, Wang XZ, He C, et al. ATF3 contributes to brucine-triggered glioma cell ferroptosis via promotion of hydrogen peroxide and iron. Acta Pharmacol Sin. 2021; 42(10):1690-1702. https://doi.org/10.1038/s41401-021-00700-w.

[32]

Song QQ, Lin LP, Chen YL, et al. Characterization of LTr 1 derived from cruciferous vegetables as a novel anti-glioma agent via inhibiting TrkA/PI3K/AKT pathway. Acta Pharmacol Sin. 2023; 44(6):1262-1276. https://doi.org/10.1038/s41401-022-01033-y.

[33]

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:162750. https://doi.org/10.1155/2013/162750.

[34]

Huang P, Yan H, Wu H, et al. Application of curcumin as a co-former and an efflux inhibitor in paclitaxel co-amorphous mixture. J Drug Deliv Sci Technol. 2023;84:104513. https://doi.org/10.1016/j.jddst.2023.104513.

[35]

Trotta T, Panaro MA, Prifti E, et al. Modulation of biological activities in glioblastoma mediated by curcumin. Nutr Cancer. 2019; 71(8):1241-1253. https://doi.org/10.1080/01635581.2019.1604978.

[36]

Mohamadian M, Ahmadi SS, Bahrami A, et al. Review on the therapeutic potential of curcumin and its derivatives on glioma biology. Neurochem Res. 2022; 47(10):2936-2953. https://doi.org/10.1007/s11064-022-03666-1.

[37]

Cheng C, Jiao JT, Qian YU, et al. Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol Med Rep. 2016; 13(5):3763-3770. https://doi.org/10.3892/mmr.2016.5037.

[38]

Bi F, Wang J, Zheng X, et al. HSP60 participates in the anti-glioma effects of curcumin. Exp Ther Med. 2021; 21(3):204. https://doi.org/10.3892/etm.2021.9637.

[39]

Wang P, Hao XW, Li XH, et al. Curcumin inhibits adverse psychological stress-induced proliferation and invasion of glioma cells via down-regulating the ERK/MAPK pathway. J Cell Mol Med. 2021; 25(15):7190-7203. https://doi.org/10.1111/jcmm.16749.

[40]

Sun X, Zhou L, Wang Y, et al. Single-cell analyses reveal cannabidiol rewires tumor microenvironment via inhibiting alternative activation of macrophage and synergizes with anti-PD-1 in colon cancer. J Pharm Anal. 2023; 13(7):726-744. https://doi.org/10.1016/j.jpha.2023.04.013.

[41]

Velasco G, Solinas M, Massi P, et al. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS One. 2013; 8(10):e76918. https://doi.org/10.1371/journal.pone.0076918.

[42]

Volmar MNM, Cheng J, Alenezi H, et al. Cannabidiol converts NF-κB into a tumor suppressor in glioblastoma with defined antioxidative properties. Neuro Oncol. 2021; 23(11):1898-1910. https://doi.org/10.1093/neuonc/noab095.

[43]

Huang T, Xu T, Wang Y, et al.Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy. 2021; 17(11):3592-3606. https://doi.org/10.1080/15548627.2021.1885203.

[44]

Kenyon J, Liu W, Dalgleish A. Report of objective clinical responses of cancer patients to pharmaceutical-grade synthetic cannabidiol. Anticancer Res. 2018; 38(10):5831-5835. https://doi.org/10.21873/anticanres.12924.

[45]

Xue N, Zhou Q, Ji M, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep. 2017; 7(1):39011. https://doi.org/10.1038/srep39011.

[46]

Huang S, Wang LL, Xue NN, et al. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics. 2019; 9(23):6745-6763. https://doi.org/10.7150/thno.34674.

[47]

Zhou J, Zhang F, Chen J, et al. Chlorogenic acid inhibits human glioma U373 cell progression via regulating the SRC/MAPKs signal pathway: based on network pharmacology analysis. Drug Des Devel Ther. 2021; 15:1369-1383. https://doi.org/10.2147/DDDT.S296862.

[48]

Shi GJ, Li Y, Cao QH, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother. 2019; 109:1085-1099. https://doi.org/10.1016/j.biopha.2018.10.130.

[49]

Chen B, Li X, Wu L, et al. Quercetin suppresses human glioblastoma migration and invasion via GSK3β/β-catenin/ZEB1 signaling pathway. Front Pharmacol. 2022;13:963614. https://doi.org/10.3389/fphar.2022.963614.

[50]

Baba RA, Mir HA, Mokhdomi TA, et al. Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas. Front Pharmacol. 2024;15:1318797. https://doi.org/10.3389/fphar.2024.1318797.

[51]

Wu J, Lou YG, Yang XL, et al. Silybin regulates P450s activity by attenuating endoplasmic reticulum stress in mouse nonalcoholic fatty liver disease. Acta Pharmacol Sin. 2023; 44(1):133-144. https://doi.org/10.1038/s41401-022-00924-4.

[52]

Zhang M, Liu Y, Gao Y, et al. Silibinin-induced glioma cell apoptosis by PI3K-mediated but Akt-independent downregulation of FoxM1 expression. Eur J Pharmacol. 2015; 765:346-354. https://doi.org/10.1016/j.ejphar.2015.08.057.

[53]

Wang C, He C, Lu S, et al. Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF. Cell Death Dis. 2020; 11(8):630. https://doi.org/10.1038/s41419-020-02866-3.

[54]

Zhang YQ, Wu JB, Yin W, et al. Design, synthesis, and biological evaluation of ligustrazine/resveratrol hybrids as potential anti-ischemic stroke agents. Chin J Nat Med. 2020; 18(8):633-640. https://doi.org/10.1016/S1875-5364(20)30076-5.

[55]

Dadgostar E, Fallah M, Izadfar F, et al. Therapeutic potential of resveratrol in the treatment of glioma: insights into its regulatory mechanisms. Mini-Rev Med Chem. 2021; 21(18):2835-2847. https://doi.org/10.2174/1389557521666210406164758.

[56]

Ren YL, Kinghorn AD. Development of potential antitumor agents from the scaffolds of plant-derived terpenoid lactones. J Med Chem. 2020; 63(24):15410-15448. https://doi.org/10.1021/acs.jmedchem.0c01449.

[57]

Gong YQ, Jiang XY, Yang SB, et al. The biological activity of 3-O-acetyl-11-keto-β-boswellic acid in nervous system diseases. Neuromolecular Med. 2022; 24(4):374-384. https://doi.org/10.1007/s12017-022-08707-0.

[58]

Li W, Liu J, Fu W, et al. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. J Exp Clin Cancer Res. 2018; 37(1):1-15. https://doi.org/10.1186/s13046-017-0664-4.

[59]

Li W, Ren L, Zheng X, et al. 3-O-Acetyl-11-keto-β-boswellic acid ameliorated aberrant metabolic landscape and inhibited autophagy in glioblastoma. Acta Pharm Sin B. 2020; 10(2):301-312. https://doi.org/10.1016/j.apsb.2019.12.012.

[60]

Ranjbaran L, Masoudi R and Abtahi SL. Anticancer effects of AKBA on glioblastoma cancer cells through modulating TWIST1 and FOXM1 expression levels. Iran J Sc Technol A. 2020; 45(2):437-442. https://doi.org/10.1007/s40995-020-01026-8.

[61]

Peng X, Wang Y, Zhang S, et al. Stellettin B renders glioblastoma vulnerable to poly (ADP-ribose) polymerase inhibitors via suppressing homology-directed repair. Signal Transduct Target Ther. 2023; 8(1):119. https://doi.org/10.1038/s41392-023-01324-8.

[62]

Cheng SY, Chen NF, Lin PY, et al. Anti-invasion and antiangiogenic effects of stellettin B through inhibition of the Akt/Girdin signaling pathway and VEGF in glioblastoma cells. Cancers (Basel). 2019; 11(2):220. https://doi.org/10.3390/cancers11020220.

[63]

Zhang K, Fu G, Pan G, et al. Demethylzeylasteral inhibits glioma growth by regulating the miR-30e-5p/MYBL2 axis. Cell Death Dis. 2018; 9(10):1035. https://doi.org/10.1038/s41419-018-1086-8.

[64]

Liu X, Zhao P, Wang X, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019; 38(1):184. https://doi.org/10.1186/s13046-019-1173-4.

[65]

Cha Z, Cheng J, Xiang H, et al. Celastrol enhances TRAIL-induced apoptosis in human glioblastoma via the death receptor pathway. Cancer Chemother Pharmacol. 2019; 84(4):719-728. https://doi.org/10.1007/s00280-019-03900-8.

[66]

Li H, Xing X, Zhang X, et al. Effects of triptolide on the sphingosine kinase - sphingosine-1-phosphate signaling pathway in colitis-associated colon cancer. Int Immunopharmacol. 2020;88:106892. https://doi.org/10.1016/j.intimp.2020.106892.

[67]

Xu LY, Wu W, Cheng R, et al. Toxic effects of triptolide on adrenal steroidogenesis in H295R cells and female rats. J Biochem Mol Toxicol. 2019; 33(11):e22394. https://doi.org/10.1002/jbt.22394.

[68]

Liu XH, Zhao PY, Wang XJ, et al. Triptolide induces glioma cell autophagy and apoptosis via upregulating the ROS/JNK and downregulating the Akt/mTOR signaling pathways. Front Oncol. 2019;9:387. https://doi.org/10.3389/fonc.2019.00387.

[69]

Zhang L, Yu JS. Triptolide reverses helper T cell inhibition and down-regulates IFN-γ induced PD-L1 expression in glioma cell lines. J Neurooncol. 2019; 143(3):429-436. https://doi.org/10.1007/s11060-019-03193-0.

[70]

Lai MF, Liu LL, Zhu L, et al. Triptolide reverses epithelial-mesenchymal transition in glioma cells via inducing autophagy. Ann Transl Med. 2021; 9(16):1304. https://doi.org/10.21037/atm-21-2944.

[71]

Yuan C, Liao Y, Liao S, et al.Triptolide inhibits the progression of glioblastoma U251 cells via targeting PROX1. Front Oncol. 2023;13:1077640. https://doi.org/10.3389/fonc.2023.1077640.

[72]

Khan M, Zheng B, Yi F, et al. Pseudolaric acid B induces caspase-dependent and caspase-independent apoptosis in U87 glioblastoma cells. Evid Based Complement Alternat Med. 2012; 2012(1): 957568. https://doi.org/10.1155/2012/957568.

[73]

Ma YH, Zhao YX, Luo MX, et al. Advancements and challenges in pharmacokinetic and pharmacodynamic research on the traditional Chinese medicine saponins: a comprehensive review. Front Pharmacol. 2024;15:1393409. https://doi.org/10.3389/fphar.2024.1393409.

[74]

Yang X, Gao M, Miao M, et al. Combining combretastatin A4 phosphate with ginsenoside Rd synergistically inhibited hepatocellular carcinoma by reducing HIF-1α via PI3K/AKT/mTOR signalling pathway. J Pharm Pharmacol. 2021; 73(2):263-271. https://doi.org/10.1093/jpp/rgaa006.

[75]

Chen X, Xu T, Lv X, et al. Ginsenoside Rh 2 alleviates ulcerative colitis by regulating the STAT3/miR-214 signaling pathway. J Ethnopharmacol. 2021;274:113997. https://doi.org/10.1016/j.jep.2021.113997.

[76]

Li KF, Kang CM, Yin XF, et al. Ginsenoside Rh 2 inhibits human A172 glioma cell proliferation and induces cell cycle arrest status via modulating Akt signaling pathway. Mol Med Report. 2017:3062-3068. https://doi.org/10.3892/mmr.2017.8193.

[77]

Gu B, Wang J, Song Y, et al. The inhibitory effects of ginsenoside Rd on the human glioma U251 cells and its underlying mechanisms. J Cell Biochem. 2018; 120(3):4444-4450. https://doi.org/10.1002/jcb.27732.

[78]

Tang M, Deng H, Zheng K, et al. Ginsenoside 3β-O-Glc-DM (C3DM) suppressed glioma tumor growth by downregulating the EGFR/PI3K/AKT/mTOR signaling pathway and modulating the tumor microenvironment. Toxicol Appl Pharmacol. 2023;460:116378. https://doi.org/10.1016/j.taap.2023.116378.

[79]

Zhang G, Hu J, Li A, et al. Ginsenoside Rg 5 inhibits glioblastoma by activating ferroptosis via NR3C1/HSPB1/NCOA4. Phytomedicine. 2024;129:155631. https://doi.org/10.1016/j.phymed.2024.155631.

[80]

An R, Zhang W, Huang X. Developments in the antitumor activity, mechanisms of action, structural modifications, and structure-activity relationships of steroidal saponins. Mini-Rev Med Chem. 2022; 22(17):2188-2212. https://doi.org/10.2174/1389557522666220217113719.

[81]

Dong RF, Qin CJ, Yin Y, et al. Discovery of a potent inhibitor of chaperone-mediated autophagy that targets the HSC70-LAMP2A interaction in non-small cell lung cancer cells. Br J Pharmacol. 2025; 182(10):2287-2309. https://doi.org/10.1111/bph.16165.

[82]

Liu J, Zhang Y, Chen L, et al. Polyphyllin I induces G2/M phase arrest and apoptosis in U251 human glioma cells via mitochondrial dysfunction and the JNK signaling pathway. Acta Biochim Biophys Sin. 2017; 49(6):479-486. https://doi.org/10.1093/abbs/gmx033.

[83]

Yu Q, Li Q, Lu P, et al. Polyphyllin D induces apoptosis in U87 human glioma cells through the c-Jun NH2-terminal kinase pathway. J Med Food. 2014; 17(9):1036-1042. https://doi.org/10.1089/jmf.2013.2957.

[84]

Liu W, Chai Y, Hu L, et al. Polyphyllin VI induces apoptosis and autophagy via reactive oxygen species mediated JNK and P38 activation in glioma. Onco Targets Ther. 2020; 13:2275-2288. https://doi.org/10.2147/OTT.S243953.

[85]

Pang D, Li C, Yang C, et al. Polyphyllin VII promotes apoptosis and autophagic cell death via ROS-inhibited AKT activity, and sensitizes glioma cells to temozolomide. Oxid Med Cell Longev. 2019;2019:1805635. https://doi.org/10.1155/2019/1805635.

[86]

Guo C, Dong Y, Zhu H, et al. Ameliorative effects of protodioscin on experimental diabetic nephropathy. Phytomedicine. 2018; 51:77-83. https://doi.org/10.1016/j.phymed.2018.06.033.

[87]

Shen J, Yang X, Meng Z, et al. Protodioscin ameliorates fructose-induced renal injury via inhibition of the mitogen activated protein kinase pathway. Phytomedicine. 2016; 23(12):1504-1510. https://doi.org/10.1016/j.phymed.2016.08.009.

[88]

Lv LL, Zheng LL, Dong DS, et al. Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: a potential new drug for treatment of glioblastoma multiforme. Food Chem Toxicol. 2013; 59:657-669. https://doi.org/10.1016/j.fct.2013.07.012.

[89]

Gomes de Carvalho NKG, Mendes JWD, da Costa JGM. Quinones: biosynthesis, characterization of 13C spectroscopical data and pharmacological activities. Chem Biodivers. 2023; 20(12):e202301365. https://doi.org/10.1002/cbdv.202301365.

[90]

Peng J, Zhou W, Xia X, et al. Encapsulation of acetylshikonin by polyamidoamine dendrimers for preparing prominent nanoparticles. AAPS PharmSciTech. 2014; 15(2):425-433. https://doi.org/10.1208/s12249-014-0074-2.

[91]

Guo H, Sun J, Li D, et al. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother. 2019;112:108704. https://doi.org/10.1016/j.biopha.2019.108704.

[92]

Lu B, Gong X, Wang ZQ, et al. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin. 2017; 38(11):1543-1553. https://doi.org/10.1038/aps.2017.112.

[93]

Guo N, Miao R, Gao X, et al.Shikonin inhibits proliferation and induces apoptosis in glioma cells via downregulation of CD147. Mol Med Report. 2019; 19(5):4335-4343. https://doi.org/10.3892/mmr.2019.10101.

[94]

Ma X, Yu M, Hao C, et al. Shikonin induces tumor apoptosis in glioma cells via endoplasmic reticulum stress, and Bax/Bak mediated mitochondrial outer membrane permeability. J Ethnopharmacol. 2020;263:113059. https://doi.org/10.1016/j.jep.2020.113059.

[95]

Yuan L, Zhang T, Pan H, et al. The effect of shikonin on U87 cells through Notch2 signaling pathway and its mechanism. J Biomater Tissue Eng. 2021; 11(2):290-294. https://doi.org/10.1166/jbt.2021.2536.

[96]

Qin X, Zhang L, Liu J, et al. Shikonin induces glioma necroptosis, stemness decline, and impedes (immuno)proteasome activity. Stem Cells Int. 2024;2024:1348269. https://doi.org/10.1155/2024/1348269.

[97]

Zhang FY, Hu Y, Que ZY, et al. Shikonin inhibits the migration and invasion of human glioblastoma cells by targeting phosphorylated β-catenin and phosphorylated PI3K/Akt: a potential mechanism for the anti-glioma efficacy of a traditional Chinese herbal medicine. Int J Mol Sci. 2015; 16(10):23823-23848. https://doi.org/10.3390/ijms161023823.

[98]

Zhan S, Lu L, Pan SS, et al. Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth. Br J Cancer. 2022; 127(2):364-376. https://doi.org/10.1038/s41416-022-01800-y.

[99]

Niu M, Cai W, Liu H, et al. Plumbagin inhibits growth of gliomas in vivo via suppression of FOXM1 expression. J Pharmacol Sci. 2015; 128(3):131-136. https://doi.org/10.1016/j.jphs.2015.06.005.

[100]

Chen G, Yue Y, Qin J, et al. Plumbagin suppresses the migration and invasion of glioma cells via downregulation of MMP-2/9 expression and inaction of PI3K/Akt signaling pathway in vitro. J Pharmacol Sci. 2017; 134(1):59-67. https://doi.org/10.1016/j.jphs.2017.04.003.

[101]

Wang J, Liu K, Wang XF, et al. Juglone reduces growth and migration of U251 glioblastoma cells and disrupts angiogenesis. Oncol Rep. 2017; 38(4):1959-1966. https://doi.org/10.3892/or.2017.5878.

[102]

Meskelevicius D, Sidlauskas K, Bagdonaviciute R, et al. Juglone exerts cytotoxic, anti-proliferative and anti-invasive effects on glioblastoma multiforme in a cell culture model. Anticancer Agents Med Chem. 2016; 16(9):1190-1197. https://doi.org/10.2174/1871520616666160204113217.

[103]

Wu J, Zhang H, Xu Y, et al. Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma. BMC Neurol. 2017; 17(1):70. https://doi.org/10.1186/s12883-017-0843-0.

[104]

Guo F, Ling G, Qiu J, et al. Juglone induces ferroptosis in glioblastoma cells by inhibiting the Nrf2-GPX4 axis through the phosphorylation of p38MAPK. Chin Med. 2024; 19(1):52. https://doi.org/10.1186/s13020-024-00920-2.

[105]

Dai X, Fan J, Liu D, et al. The marine natural product trichobotrysin B inhibits proliferation and promotes apoptosis of human glioma cells via the IL-6-mediated STAT3/JAK signaling pathway. Smart Mater Med. 2024; 5(1):66-74. https://doi.org/10.1016/j.smaim.2023.08.001.

[106]

Yong K, Kaleem S, Ma M, et al. Antiglioma natural products from the marine-associated fungus penicillium sp. ZZ1750. Molecules. 2022; 27(20):7099. https://doi.org/10.3390/molecules27207099.

[107]

Jiang MH, Wu QL, Guo H, et al. Shikimate-derived meroterpenoids from the ascidian-derived fungus Amphichorda felina SYSU-MS7908 and their anti-glioma activity. J Nat Prod. 2023; 86(12):2651-2660. https://doi.org/10.1021/acs.jnatprod.3c00664.

[108]

Shen S, Zhang Y, Wang Z, et al. Bufalin induces the interplay between apoptosis and autophagy in glioma cells through endoplasmic reticulum stress. Int J Biol Sci. 2014; 10(2):212-224. https://doi.org/10.7150/ijbs.8056.

[109]

LingHu HR, Luo H, Gang L. Bufalin induces glioma cell death by apoptosis or necroptosis. Onco Targets Ther. 2020; 13:4767-4778. https://doi.org/10.2147/OTT.S242567.

[110]

Li Y, Zhang Y, Wang X, et al. Bufalin induces mitochondrial dysfunction and promotes apoptosis of glioma cells by regulating annexin A2 and DRP1 protein expression. Cancer Cell Int. 2021; 21(1):424. https://doi.org/10.1186/s12935-021-02137-x.

[111]

Wu HL, Fu XY, Cao WQ, et al. Induction of apoptosis in human glioma cells by fucoxanthin via triggering of ROS-mediated oxidative damage and regulation of MAPKs and PI3K-AKT pathways. J Agric Food Chem. 2019; 67(8):2212-2219. https://doi.org/10.1021/acs.jafc.8b07126.

[112]

Zhou Y, Shi J, Qi M, et al. Osthole relieves skin damage and inhibits chronic itch through modulation of Akt/ZO-3 pathway in atopic dermatitis. Eur J Pharmacol. 2023;947:175649. https://doi.org/10.1016/j.ejphar.2023.175649.

[113]

Jiang X, Lu Z, Zhang Q, et al. Osthole: a potential AMPK agonist that inhibits NLRP3 inflammasome activation by regulating mitochondrial homeostasis for combating rheumatoid arthritis. Phytomedicine. 2023;110:154640. https://doi.org/10.1016/j.phymed.2022.154640.

[114]

Sun C, Gui Y, Hu R, et al. Preparation and pharmacokinetics evaluation of solid self-microemulsifying drug delivery system (S-SMEDDS) of osthole. AAPS PharmSciTech. 2018; 19(5):2301-2310. https://doi.org/10.1208/s12249-018-1067-3.

[115]

Lin KAI, Gao Z, Shang BIN, et al.Osthole suppresses the proliferation and accelerates the apoptosis of human glioma cells via the upregulation of microRNA-16 and downregulation of MMP-9. Mol Med Report. 2015; 12(3):4592-4597. https://doi.org/10.3892/mmr.2015.3929.

[116]

Huangfu M, Wei R, Wang J, et al. Osthole induces necroptosis via ROS overproduction in glioma cells. FEBS Open Bio. 2021; 11(2):456-467. https://doi.org/10.1002/2211-5463.13069.

[117]

Du X, Zhao Y, Ma Y, et al. Effect of radix hedysari polysaccharide on glioma by cell cycle arrest and TNF-α signaling pathway regulation. Int J Polym Sci. 2019; 2019(1): 2725084. https://doi.org/10.1155/2019/2725084.

[118]

Wang C, Shi S, Chen Q, et al. Antitumor and immunomodulatory activities of ganoderma lucidum polysaccharides in glioma-bearing rats. Integr Cancer Ther. 2018; 17(3):674-683. https://doi.org/10.1177/1534735418762537.

[119]

Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res. 2024; 85(3):e22180. https://doi.org/10.1002/ddr.22180.

[120]

Zhang J, Wu Y, Li Y, et al. Natural products and derivatives for breast cancer treatment: from drug discovery to molecular mechanism. Phytomedicine. 2024;129:155600. https://doi.org/10.1016/j.phymed.2024.155600.

[121]

Miao JF, Peng YF, Chen S, et al. A novel harmine derivative, N-(4-(hydroxycarbamoyl)benzyl)-1-(4-methoxyphenyl)-9H-pyrido[3, 4-b]indole-3-carboxamide (HBC), as histone deacetylase inhibitor: in vitro antiproliferation, apoptosis induction, cell cycle arrest, and antimetastatic effects. Eur J Pharmacol. 2018; 824:78-88. https://doi.org/10.1016/j.ejphar.2018.02.004.

[122]

Hu Y, Yu X, Yang L, et al. Research progress on the antitumor effects of harmine. Front Oncol. 2024;14:1382142. https://doi.org/10.3389/fonc.2024.1382142.

[123]

Meinguet C, Bruyère C, Frédérick R, et al. 3D-QSAR, design, synthesis and characterization of trisubstituted harmine derivatives with in vitro antiproliferative properties. Eur J Med Chem. 2015; 94:45-55. https://doi.org/10.1016/j.ejmech.2015.02.044.

[124]

Shen L, Li H, Li S, et al. Synthesis and biological evaluation of nitrate derivatives of thiocolchicine as potential anticancer drugs. Lat Am J Pharm. 2013; 32(2):220-224.

[125]

Wu J, Liu Z. Progress in the management of acute colchicine poisoning in adults. Intern Emerg Med. 2022; 17(7):2069-2081. https://doi.org/10.1007/s11739-022-03079-6.

[126]

Fang KM, Liu JJ, Li CC, et al. Colchicine derivative as a potential anti-glioma compound. J Neurooncol. 2015; 124(3):403-412. https://doi.org/10.1007/s11060-015-1874-2.

[127]

Zhang TZ, Fu Q, Chen T, et al. Anti-asthmatic effects of oxymatrine in a mouse model of allergic asthma through regulating CD40 signaling. Chin J Nat Med. 2015; 13(5):368-374. https://doi.org/10.1016/S1875-5364(15)30028-5.

[128]

Wu C, Sun X, Feng C, et al. Proton-coupled organic cation antiporter contributes to the hepatic uptake of matrine. J Pharm Sci. 2016; 105(3):1301-1306. https://doi.org/10.1016/S0022-3549(15)00190-2.

[129]

Qiu G, Li F, Kowah JAH, et al. Novel chiral matrine derivatives as potential antitumor agents: design, synthesis and biological evaluation. Bioorg Chem. 2024;146:107276. https://doi.org/10.1016/j.bioorg.2024.107276.

[130]

Suliphuldevara Mathada B, Gunavanthrao Yernale N, Basha JN. The multi‐pharmacological targeted role of indole and its derivatives: a review. ChemistrySelect. 2023; 8(1):e202204181. https://doi.org/10.1002/slct.202204181.

[131]

Andrade AKdS, Santos JF, et al. Anti-migratory and cytotoxic effect of indole derivative in C6 glioma cells. Toxicol In Vitro. 2024;96:105786. https://doi.org/10.1016/j.tiv.2024.105786.

[132]

Rao L, Su Y, He Q, et al. Geranylated or prenylated flavonoids from Cajanus volubilis. Chin J Nat Med. 2023; 21(4):292-297. https://doi.org/10.1016/S1875-5364(23)60437-6.

[133]

Yuan LW, Jiang XM, Xu YL, et al. Licochalcone A inhibits interferon-gamma-induced programmed death-ligand 1 in lung cancer cells. Phytomedicine. 2021;80:153394. https://doi.org/10.1016/j.phymed.2020.153394.

[134]

Qin YQ, Liu W, Yin R, et al. New 4', 5'-methylenedioxyflavone derivatives from the whole plant of sarcandra glabra. Nat Prod Res. 2024; 38(2):177-185. https://doi.org/10.1080/14786419.2022.2111562.

[135]

Loch Neckel G, Bicca MA, Leal PC, et al. In vitro and in vivo anti-glioma activity of a chalcone-quinoxaline hybrid. Eur J Med Chem. 2015; 90:93-100. https://doi.org/10.1016/j.ejmech.2014.11.014.

[136]

Bittencourt LFF, Oliveira KAd, Cardoso CB, et al. Novel synthetic chalcones induces apoptosis in human glioblastoma cells. Chem Biol Interact. 2016; 252:74-81. https://doi.org/10.1016/j.cbi.2016.03.022.

[137]

Kiekow CJ, Figueiró F, Dietrich F, et al. Quercetin derivative induces cell death in glioma cells by modulating NF-κB nuclear translocation and caspase-3 activation. Eur J Pharm Sci. 2016; 84:116-122. https://doi.org/10.1016/j.ejps.2016.01.019.

[138]

Ma Y, Peng Z, Pan R, et al. The bioinformatics analysis of quercetin in octagonal lotus for the screening of breast cancer MYC, CXCL10, CXCL11, and E2F1. Int J Immunopathol Pharmacol. 2021;35:20587384211040903. https://doi.org/10.1177/20587384211040903.

[139]

Yang T, Wang Y, Cao X, et al. Targeting mTOR/YY1 signaling pathway by quercetin through CYP7A1-mediated cholesterol-to-bile acids conversion alleviated type 2 diabetes mellitus induced hepatic lipid accumulation. Phytomedicine. 2023;113:154703. https://doi.org/10.1016/j.phymed.2023.154703.

[140]

Wang G, Wang Y, Yao L, et al. Pharmacological activity of quercetin: an updated review. Evid Based Complement Alternat Med. 2022;2022:3997190. https://doi.org/10.1155/2022/3997190.

[141]

Dell'Albani P, Di Marco B, Grasso S, et al. Quercetin derivatives as potent inducers of selective cytotoxicity in glioma cells. Eur J Pharm Sci. 2017; 101:56-65. https://doi.org/10.1016/j.ejps.2017.01.036.

[142]

Li G, Du Z, Shen P, et al. Novel MeON-glycosides of ursolic acid: synthesis, antitumor evaluation, and mechanism studies. Fitoterapia. 2023;169:105595. https://doi.org/10.1016/j.fitote.2023.105595.

[143]

Fan H, Geng L, Yang F, et al. Ursolic acid derivative induces apoptosis in glioma cells through down-regulation of cAMP. Eur J Med Chem. 2019; 176:61-67. https://doi.org/10.1016/j.ejmech.2019.04.059.

[144]

Zhou H, Zhu H, Zha Y, et al. Synthesis, biological evaluation and mechanism studies of C-3 substituted nitrogenous heterocyclic 23-hydroxybetulinic acid derivatives as anticancer agents. Fitoterapia. 2022;160:105222. https://doi.org/10.1016/j.fitote.2022.105222.

[145]

KrÓL SK, BĘBenek EWA, SŁAwiŃSka Brych A, et al. Synthetic betulin derivatives inhibit growth of glioma cells in vitro. Anticancer Res. 2020; 40(11):6151-6158. https://doi.org/10.21873/anticanres.14635.

[146]

Król SK, Bębenek E, Dmoszyńska Graniczka M, et al. Acetylenic synthetic betulin derivatives inhibit Akt and Erk kinases activity, trigger apoptosis and suppress proliferation of neuroblastoma and rhabdomyosarcoma cell lines. Int J Mol Sci. 2021; 22(22):12299. https://doi.org/10.3390/ijms222212299.

[147]

Radwan MO, Abd-Alla HI, Alsaggaf AT, et al. Gypsogenin battling for a front position in the pentacyclic triterpenes game of thrones on anti-cancer therapy: a critical review—dedicated to the memory of professor Hanaa M. Rady. Molecules. 2023; 28(15):5677. https://doi.org/10.3390/molecules28155677.

[148]

Ciftci HI, Radwan MO, Sever B, et al. EGFR-targeted pentacyclic triterpene analogues for glioma therapy. Int J Mol Sci. 2021; 22(20):10945. https://doi.org/10.3390/ijms222010945.

[149]

Li M, Xie F, Wang L, et al. Celastrol: an update on its hepatoprotective properties and the linked molecular mechanisms. Front Pharmacol. 2022;13:857956. https://doi.org/10.3389/fphar.2022.857956.

[150]

Lei ZC, Li N, Yu NR, et al. Design and synthesis of novel celastrol derivatives as potential anticancer agents against gastric cancer cells. J Nat Prod. 2022; 85(5):1282-1293. https://doi.org/10.1021/acs.jnatprod.1c01236.

[151]

Feng Y, Wang W, Zhang Y, et al. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis. Eur J Med Chem. 2022;229:114070. https://doi.org/10.1016/j.ejmech.2021.114070.

[152]

Yang YH, Li W, Ren LW, et al. S670, an amide derivative of 3-O-acetyl-11-keto-β-boswellic acid, induces ferroptosis in human glioblastoma cells by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome. Acta Pharmacol Sin. 2023; 45(1):209-222. https://doi.org/10.1038/s41401-023-01157-9.

[153]

Sun M, Zhang S, Wang J, et al. Synthesis of novel acetyl-11-keto-β-boswellic acid derivatives as potential anti-GBM agents. Chem Biodivers. 2024; 21(4):e202301979. https://doi.org/10.1002/cbdv.202301979.

[154]

Li J, Li J, Fang H, et al. Isolongifolene alleviates liver ischemia/reperfusion injury by regulating AMPK-PGC1α signaling pathway-mediated inflammation, apoptosis, and oxidative stress. Int Immunopharmacol. 2022;113:109185. https://doi.org/10.1016/j.intimp.2022.109185.

[155]

Jiang Y, Wang Y, Zhao L, et al. P129, a pyrazole ring-containing isolongifolanone-derivate: synthesis and investigation of anti-glioma action mechanism. Discov Oncol. 2024; 15(1):6. https://doi.org/10.1007/s12672-024-00858-9.

[156]

Liu H, Huang Z, Jiang H, et al. Dihydroartemisinin attenuates ischemia/reperfusion-induced renal tubular senescence by activating autophagy. Chin J Nat Med. 2023; 21(9):682-693. https://doi.org/10.1016/S1875-5364(23)60398-X.

[157]

Peng J, Wang Q, Zhou J, et al. Targeted lipid nanoparticles encapsulating dihydroartemisinin and chloroquine phosphate for suppressing the proliferation and liver metastasis of colorectal cancer. Front Pharmacol. 2021;12:720777. https://doi.org/10.3389/fphar.2021.720777.

[158]

Li Y, Shan NN and Sui XH. Research progress on artemisinin and its derivatives against hematological malignancies. Chin J Integr Med. 2020; 26(12):947-955. https://doi.org/10.1007/s11655-019-3207-3.

[159]

Shoaib S, Khan FB, Alsharif MA, et al. Reviewing the prospective pharmacological potential of isothiocyanates in fight against female-specific cancers. Cancers (Basel). 2023; 15(8):2390. https://doi.org/10.3390/cancers15082390.

[160]

Nyein CM, Zhong X, Lu J, et al. Synthesis and anti-glioblastoma effects of artemisinin-isothiocyanate derivatives. RSC Adv. 2018; 8(71):40974-40983. https://doi.org/10.1039/C8RA08162J.

[161]

Zottel A, Jovčevska I, Šamec N, et al. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: a systematic review. Crit Rev Oncol Hematol. 2021;160:103283. https://doi.org/10.1016/j.critrevonc.2021.103283.

[162]

Silvani A, De Simone I, Fregoni V, et al. Multicenter single arm, phase II trial on the efficacy of ortataxel in recurrent glioblastoma. J Neurooncol. 2019; 142(3):455-462. https://doi.org/10.1007/s11060-019-03116-z.

[163]

Varidaki A, Hong Y, Coffey ET. Repositioning microtubule stabilizing drugs for brain disorders. Front Cell Neurosci. 2018;12:226.

[164]

Neshasteh Riz A, Zeinizade E, Safa M, et al. Cabazitaxel inhibits proliferation and potentiates the radiation response of U87MG glioblastoma cells. Cell Biol Int. 2018; 42(7):815-822. https://doi.org/10.1002/cbin.10940.

[165]

Manley PE, Trippett T, Smith AA, et al. A phase 1/2 dose-finding, safety, and activity study of cabazitaxel in pediatric patients with refractory solid tumors including tumors of the central nervous system. Pediatr Blood Cancer. 2018; 65(9):e27217. https://doi.org/10.1002/pbc.27217.

[166]

Fitzgerald DP, Emerson DL, Qian Y, et al. TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol Cancer Ther. 2012; 11(9):1959-1967. https://doi.org/10.1158/1535-7163.MCT-12-0061.

[167]

Goldlust SA, Nabors LB, Mohile N, et al. Phase 1/2 trial of bevacizumab plus TPI 287, a brain penetrable anti-microtubule agent, in patients with recurrent glioblastoma. J Clin Oncol. 2016; 34(15):2055-2055. https://doi.org/10.1200/JCO.2016.34.15_suppl.2055.

[168]

Jin X, Lu X, Zhang Z, et al. Indocyanine green-parthenolide thermosensitive liposome combination treatment for triple-negative breast cancer. Int J Nanomed. 2020; 15:3193-3206. https://doi.org/10.2147/IJN.S245289.

[169]

Liang P, Wu H, Zhang Z, et al. Preparation and characterization of parthenolide nanocrystals for enhancing therapeutic effects of sorafenib against advanced hepatocellular carcinoma. Int J Pharm. 2020;583:119375. https://doi.org/10.1016/j.ijpharm.2020.119375.

[170]

Liu X, Wang X. Recent advances on the structural modification of parthenolide and its derivatives as anticancer agents. Chin J Nat Med. 2022; 20(11):814-829. https://doi.org/10.1016/S1875-5364(22)60238-3.

[171]

Ding Y, Xue Q, Liu S, et al. Identification of parthenolide dimers as activators of pyruvate kinase M2 in xenografts of glioblastoma multiforme in vivo. J Med Chem. 2020; 63(4):1597-1611. https://doi.org/10.1021/acs.jmedchem.9b01328.

[172]

Zhai JD, Li D, Long J, et al. Biomimetic semisynthesis of arglabin from parthenolide. J Org Chem. 2012; 77(16):7103-7107. https://doi.org/10.1021/jo300888s.

[173]

An Y, Guo W, Li L, et al. Micheliolide derivative DMAMCL inhibits glioma cell growth in vitro and in vivo. PLoS One. 2015; 10(2):e0116202. https://doi.org/10.1371/journal.pone.0116202.

[174]

Lickliter JD, Jennens R, Lemech CR, et al.Phase1 dose-escalation study of ACT001 in patients with recurrent glioblastoma and other advanced solid tumors. J Clin Oncol. 2021; 39(15):2037-2037. https://doi.org/10.1200/JCO.2021.39.15_suppl.2037.

[175]

Tang YT, Li Y, Chu P, et al. Molecular biological mechanism of action in cancer therapies: juglone and its derivatives, the future of development. Biomed Pharmacother. 2022;148:112785. https://doi.org/10.1016/j.biopha.2022.112785.

[176]

Zhang J, Fu M, Wu J, et al. The anti-glioma effect of juglone derivatives through ROS generation. Front Pharmacol. 2022;13:911760. https://doi.org/10.3389/fphar.2022.911760.

[177]

Manciu FS, Guerrero J, Bennet KE, et al. Assessing nordihydroguaiaretic acid therapeutic effect for glioblastoma multiforme. Sensors. 2022; 22(7):2643. https://doi.org/10.3390/s22072643.

[178]

Zhao QW, Lin Y, Xu CR, et al. NDGA-P21, a novel derivative of nordihydroguaiaretic acid, inhibits glioma cell proliferation and stemness. Lab Invest. 2017; 97(10):1180-1187. https://doi.org/10.1038/labinvest.2017.46.

[179]

Zhang GL, Dai DZ, Zhang C, et al. Apocynin and raisanberine alleviate intermittent hypoxia induced abnormal StAR and 3β-HSD and low testosterone by suppressing endoplasmic reticulum stress and activated p66Shc in rat testes. Reprod Toxicol. 2013; 36:60-70. https://doi.org/10.1016/j.reprotox.2012.12.002.

[180]

Zhang CL, Shi GR, Liu YF, et al.Apocynin derivatives from Iris tectorum. J Asian Nat Prod Res. 2017; 19(2):128-133. https://doi.org/10.1080/10286020.2016.1268128.

[181]

Savla SR, Laddha AP, Kulkarni YA. Pharmacology of apocynin: a natural acetophenone. Drug Metab Rev. 2021; 53(4):542-562. https://doi.org/10.1080/03602532.2021.1895203.

[182]

Yang T, Zang DW, Shan W, et al. Synthesis and evaluations of novel apocynin derivatives as anti-glioma agents. Front Pharmacol. 2019;10:951. https://doi.org/10.3389/fphar.2019.00951.

[183]

Zhou JL, Zheng JY, Cheng XQ, et al. Chemical markers’ knockout coupled with UHPLC-HRMS-based metabolomics reveals anti-cancer integration effects of the curcuminoids of turmeric (Curcuma longa L.) on lung cancer cell line. J Pharm Biomed Anal. 2019;175:112738. https://doi.org/10.1016/j.jpba.2019.06.035.

[184]

Shi L, Gao LL, Cai SZ, et al. A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur J Med Chem. 2021;221:113528. https://doi.org/10.1016/j.ejmech.2021.113528.

[185]

Wang YF and Hu JY. Natural and synthetic compounds for glioma treatment based on ROS-mediated strategy. Eur J Pharmacol. 2023;953:175537. https://doi.org/10.1016/j.ejphar.2023.175537.

[186]

Singh P, Lim B.Targeting apoptosis in cancer. Curr Oncol Rep. 2022; 24(3):273-284. https://doi.org/10.1007/s11912-022-01199-y.

[187]

Li W, Xu X. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment. Front Pharmacol. 2023;14:1211719. https://doi.org/10.3389/fphar.2023.1211719.

[188]

Green DR. The death receptor pathway of apoptosis. Cold Spring Harb Perspect Biol. 2022; 14(2):a041053. https://doi.org/10.1101/cshperspect.a041053.

[189]

Dibdiakova K, Majercikova Z, Galanda T, et al. Relationship between the expression of matrix metalloproteinases and their tissue inhibitors in patients with brain tumors. Int J Mol Sci. 2024; 25(5):2858. https://doi.org/10.3390/ijms25052858.

[190]

Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019; 176(6):1248-1264. https://doi.org/10.1016/j.cell.2019.01.021.

[191]

Dewanjee S, Dua T, Bhattacharjee N, et al. Natural products as alternative choices for P-glycoprotein (P-gp) inhibition. Molecules. 2017; 22(6):871. https://doi.org/10.3390/molecules22060871.

[192]

Wang M, Ding L, Zhang C, et al. Natural borneol serves as an adjuvant agent to promote the cellular uptake of piperlongumine for improving its antiglioma efficacy. Eur J Pharm Sci. 2023;181:106347. https://doi.org/10.1016/j.ejps.2022.106347.

[193]

Wang N, Zhang Q, Ning B, et al.β-Asarone promotes Temozolomide’s entry into glioma cells and decreases the expression of P-glycoprotein and MDR1. Biomed Pharmacother. 2017; 90:368-374. https://doi.org/10.1016/j.biopha.2017.03.083.

[194]

Zi Y, Yang K, He J, et al. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Del Rev. 2022;188:114449. https://doi.org/10.1016/j.addr.2022.114449.

[195]

Zu C, Yu Y, Yu C, et al. Highly loaded deoxypodophyllotoxin nano-formulation delivered by methoxy polyethylene glycol-block-poly (D, L-lactide) micelles for efficient cancer therapy. Drug Deliv. 2020; 27(1):248-257. https://doi.org/10.1080/10717544.2020.1716875.

[196]

Zhu W, Wang R, Liu F, et al. Construction of long circulating and deep tumor penetrating gambogic acid-hydroxyethyl starch nanoparticles. J Drug Deliv Sci Technol. 2022;77:103910. https://doi.org/10.1016/j.jddst.2022.103910.

[197]

Li J, Tan T, Zhao L, et al. Recent advancements in liposome-targeting strategies for the treatment of gliomas: a systematic review. ACS Appl Bio Mater. 2020; 3(9):5500-5528. https://doi.org/10.1021/acsabm.0c00705.

[198]

Ismail M, Yang W, Li Y, et al. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials. 2022;287:121608. https://doi.org/10.1016/j.biomaterials.2022.121608.

[199]

Hong C, Liang J, Xia J, et al. One stone four birds: A novel liposomal delivery system multi-functionalized with ginsenoside Rh2 for tumor targeting therapy. Nano-Micro Lett. 2020; 12(1):129. https://doi.org/10.1007/s40820-020-00472-8.

[200]

Ao H, Song H, Li J, et al.Enhanced anti-glioma activity of annonaceous acetogenins based on a novel liposomal co-delivery system with ginsenoside Rh2. Drug Deliv. 2024; 31(1):2324716. https://doi.org/10.1080/10717544.2024.2324716.

[201]

Wang H, Chen W, Wu G, et al. A magnetic T7 peptide&AS1411 aptamer-modified microemulsion for triple glioma-targeted delivery of shikonin and docetaxel. J Pharm Sci. 2021; 110(8):2946-2954. https://doi.org/10.1016/j.xphs.2021.03.018.

[202]

Lu L, Zhao X, Fu T, et al. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials. 2020;230:119666. https://doi.org/10.1016/j.biomaterials.2019.119666.

[203]

Wu C, Xu Q, Chen X, et al. Delivery luteolin with folacin-modified nanoparticle for glioma therapy. Int J Nanomed. 2019; 14:7515-7531. https://doi.org/10.2147/IJN.S214585.

[204]

Koneru T, McCord E, Pawar S, et al. Transferrin: biology and use in receptor-targeted nanotherapy of gliomas. ACS Omega. 2021; 6(13):8727-8733. https://doi.org/10.1021/acsomega.0c05848.

[205]

Ramalho MJ, Bravo M, Loureiro JA, et al. Transferrin-modified nanoparticles for targeted delivery of Asiatic acid to glioblastoma cells. Life Sci. 2022;296:120435. https://doi.org/10.1016/j.lfs.2022.120435.

[206]

Zhang J, Xiao X, Zhu J, et al. Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy. Int J Nanomed. 2018; 13:3039-3051. https://doi.org/10.2147/IJN.S161163.

[207]

Wanjale MV, Kumar GSV. Peptides as a therapeutic avenue for nanocarrier-aided targeting of glioma. Expert Opin Drug Del. 2016; 14(6):811-824. https://doi.org/10.1080/17425247.2017.1242574.

[208]

Xiang Y, Duan X, Feng L, et al. tLyp-1-conjugated GSH-sensitive biodegradable micelles mediate enhanced pUNO1-hTRAILa/curcumin co-delivery to gliomas. Chem Eng J. 2019; 374:392-404. https://doi.org/10.1016/j.cej.2019.05.186.

[209]

Xin X, Liu W, Zhang ZA, et al. Efficient anti-glioma therapy through the brain-targeted RVG15-modified liposomes loading paclitaxel-cholesterol complex. Int J Nanomed. 2021; 16:5755-5776. https://doi.org/10.2147/IJN.S318266.

[210]

Jang EH, Shim MK, Kim GL, et al. Hypoxia-responsive folic acid conjugated glycol chitosan nanoparticle for enhanced tumor targeting treatment. Int J Pharm. 2020;580:119237. https://doi.org/10.1016/j.ijpharm.2020.119237.

[211]

Yang C, Yang Z, Wang S, et al. Berberine and folic acid co-modified pH-sensitive cascade-targeted PTX-liposomes coated with Tween 80 for treating glioma. Biorg Med Chem. 2022;69:116893. https://doi.org/10.1016/j.bmc.2022.116893.

[212]

He Y, Wu C, Duan J, et al. Anti-glioma effect with targeting therapy using folate modified nano-micelles delivery curcumin. J Biomed Nanotechnol. 2020; 16(1):1-13. https://doi.org/10.1166/jbn.2020.2878.

[213]

Meng L, Chu X, Xing H, et al. Improving glioblastoma therapeutic outcomes via doxorubicin-loaded nanomicelles modified with borneol. Int J Pharm. 2019;567:118485. https://doi.org/10.1016/j.ijpharm.2019.118485.

[214]

Lv L, Li X, Qian W, et al. Enhanced anti-glioma efficacy by borneol combined with CGKRK-modified paclitaxel self-assembled redox-sensitive nanoparticles. Front Pharmacol. 2020;11:558. https://doi.org/10.3389/fphar.2020.00558.

[215]

Zhao X, Ni S, Song Y, et al. Intranasal delivery of Borneol/R8dGR peptide modified PLGA nanoparticles co-loaded with curcumin and cisplatin alleviate hypoxia in pediatric brainstem glioma which improves the synergistic therapy. J Control Release. 2023; 362:121-137. https://doi.org/10.1016/j.jconrel.2023.08.048.

[216]

Wang GY, Wang N and Liao HN. Effects of muscone on the expression of P-gp, MMP-9 on blood-brain barrier model in vitro. Cell Mol Neurobiol. 2015; 35(8):1105-1115. https://doi.org/10.1007/s10571-015-0204-8.

[217]

Qi N, Duan W, Gao D, et al. “Guide” of muscone modification enhanced brain‐targeting efficacy and anti‐glioma effect of lactoferrin modified DTX liposomes. Bioeng Transl Med. 2022; 8(2):e10393. https://doi.org/10.1002/btm2.10393.

[218]

Liang J, Zhu Y, Gao C, et al. Menthol-modified BSA nanoparticles for glioma targeting therapy using an energy restriction strategy. NPG Asia Mater. 2019; 11(1):38. https://doi.org/10.1038/s41427-019-0138-6.

[219]

Gao C, Liang J, Zhu Y, et al. Menthol-modified casein nanoparticles loading 10-hydroxycamptothecin for glioma targeting therapy. Acta Pharm Sin B. 2019; 9(4):843-857. https://doi.org/10.1016/j.apsb.2019.01.006.

[220]

Shahein SA, Aboul Enein AM, Higazy IM, et al. Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release. Int J Nanomed. 2019; 14:5503-5526. https://doi.org/10.2147/IJN.S206899.

[221]

Guo X, Cheng Y, Zhao X, et al. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnol. 2018; 16(1):1-10. https://doi.org/10.1186/s12951-017-0328-8.

[222]

Liu Y, Yu S, Jiang X, et al. Functional paclitaxel-manganese-doped mesoporous silica nanoparticles for orthotopic brain glioma targeted therapy. Mater Des. 2024;238:112715. https://doi.org/10.1016/j.matdes.2024.112715.

[223]

Jing G, Li Y, Sun F, et al. Near-infrared light-activatable upconversion nanoparticle/curcumin hybrid nanodrug: a potent strategy to induce the differentiation and elimination of glioma stem cells. Adv Compos Hybrid Mater. 2024; 7(3):82. https://doi.org/10.1007/s42114-024-00886-7.

PDF (5833KB)

91

Accesses

0

Citation

Detail

Sections
Recommended

/