Anti-cancer and anti-inflammatory effects of flavan-4-ol and flavan glycosides from the roots of Pronephrium penangianum

Feibing Huang , Yong Yang , Qingling Xie , Hanwen Yuan , Muhammad Aamer , Yuqing Jian , Ye Zhang , Wei Wang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) : 593 -603.

PDF (5943KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (5) :593 -603. DOI: 10.1016/S1875-5364(25)60814-4
Original article
research-article

Anti-cancer and anti-inflammatory effects of flavan-4-ol and flavan glycosides from the roots of Pronephrium penangianum

Author information +
History +
PDF (5943KB)

Abstract

Five new flavan-4-ol glycosides jixueqiosides A-E (1−5) and two new flavan glycosides jixueqiosides F and G (6 and 7), along with twelve known flavan-4-ol glycosides (8−19), were isolated from the roots of Pronephrium penangianum. Comprehensive spectral analyses, X-ray single-crystal diffraction, and theoretical electronic circular dichroism (ECD) calculations established structures and absolute configurations. A single crystal structure of flavan-4-ol glycoside (14) was reported for the first time, while the characteristic ECD and NMR data for all isolated flavan-4-ol glycosides (1−5, 8−19) were analyzed, establishing a set of empirical rules. Activity screening of these isolates showed that 8 and 9 could inhibit the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 7.93 ± 2.85 μmol·L−1 and 5.87 ± 1.58 μmol·L−1 (MDA-MB-231), and 2.21 ± 1.38 μmol·L−1 and 3.52 ± 1.55 μmol·L−1 (MCF-7), respectively. Western blotting and flow cytometry analyses demonstrated that 8 and 9 dose-dependently induced apoptosis in MDA-MB-231 cells by up-regulating BAX, activating caspase-3 and down-regulating BCL-2. Additionally, compound 8 affected autophagy-related proteins, increasing the ratio of LC3-II/LC3-I and Beclin-1 levels to inhibit MDA-MB-231 cell proliferation. Moreover, anti-inflammatory studies indicated that 2, 3, 7, 13, 14, and 18 moderately inhibited tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) release.

Keywords

Pronephrium penangianum / Tujia ethnomedicine / Jixueqi / Flavan-4-ol and Flavan glycosides / Anti-cancer / Anti-inflammatory

Cite this article

Download citation ▾
Feibing Huang, Yong Yang, Qingling Xie, Hanwen Yuan, Muhammad Aamer, Yuqing Jian, Ye Zhang, Wei Wang. Anti-cancer and anti-inflammatory effects of flavan-4-ol and flavan glycosides from the roots of Pronephrium penangianum. Chinese Journal of Natural Medicines, 2025, 23(5): 593-603 DOI:10.1016/S1875-5364(25)60814-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Editorial Committee of Flora of China CAoS. Flora Reipublicae Popularis Sinicae(IV). Beijing: Science Press. 1990, P301-303.

[2]

Chen LF, Cai GX. Hunan Pharmacopoeia. Hunan Science and Technology Press. 2004, P2588-2589.

[3]

Zhou Q, Jian YQ, Yi P, et al. A comprehensive review on Pronephrium penangianum. Isr J Chem. 2019; 59(5):371-377. https://doi.org/10.1002/ijch.201800141.

[4]

Luo Y, Jian YQ, Liu YK, et al. Flavanols from nature: a phytochemistry and biological activity review. Molecules. 2022; 27(3):719. https://doi.org/10.3390/molecules27030719.

[5]

Tanaka N, Murakami T, Wada H, et al. Chemical and chemotaxonomical studies of filices. LXI. chemical studies on the constituents of Pronephrium triphyllum Hollt. Chem Pharm Bull. 1985; 33(12):5231-5238. https://doi.org/10.1248/CPB.33.5231.

[6]

Zhong XW, Zhang WX, Lu HX, et al. A new flavan-4-ol glycoside from Pronephrium triphyllum. Chin Herb Med. 2011; 3(3):161-164. https://doi.org/10.3969/j.issn.1674-6384.2011.03.001.

[7]

Zhen F, Jing J, Lin CZ, et al. New flavanol glucosides from Abacopteris aspera (Presl) Ching. Helv Chim Acta. 2015; 98(1):108-115. https://doi.org/10.1002/hlca.201400135.

[8]

Jiang JH, Tian L, Wang LQ, et al. Phenolic compounds from the fern Glaphyropteridopsis erubescens (Hook.) Ching. Biochem Syst Ecol. 2013; 50:136-138. https://doi.org/10.1016/j.bse.2013.04.005.

[9]

Luo ZW, Yin FC, Wang XB, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[10]

Zhao ZX, Ruan JL, Jin J, et al. Flavan-4-ol glycosides from the rhizomes of Abacopteris penangiana. J Nat Prod. 2006; 69(2):265-268. https://doi.org/10.1021/np050191p.

[11]

Liu Y, Zhao JP, Chen Y, et al. Polyacetylenic oleanane-type triterpene saponins from the roots of Panax japonicus. J Nat Prod. 2016; 79(12):3079-3085. https://doi.org/10.1021/acs.jnatprod.6b00748.

[12]

Chen J, Chen X, Lei YF, et al. Vascular protective potential of the total flavanol glycosides from Abacopteris penangiana via modulating nuclear transcription factor-κB signaling pathway and oxidative stress. J Ethnopharmacol. 2011; 136(1):217-223. https://doi.org/10.1016/j.jep.2011.04.052.

[13]

Zhao ZX, Jin J, Ruan JL, et al. Antioxidant flavonoid glycosides from aerial parts of the fern Abacopteris penangiana. J Nat Prod. 2007; 70(10):1683-1686. https://doi.org/10.1021/np0703850.

[14]

Tanaka N, Sada T, Murakami T, et al. Chemische und chemotaxonomische untersuchungen der pterophyten. XLV. chemische untersuchungen der inhaltsstoffe von Glaphyropteridopsis erubescens (Wall) Copel. Chem Pharm Bull. 1984; 32(2):490-496. https://doi.org/10.1248/CPB.32.490.

[15]

Slade D, Ferreira D, Marais JP. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry. 2005; 66(18):2177-2215. https://doi.org/10.1016/j.phytochem.2005.02.002.

[16]

Xie Q, Fan XM, Han YH, et al. Daphnoretin arrests the cell cycle and induces apoptosis in human breast cancer cells. J Nat Prod. 2022; 85(10):2332-2339. https://doi.org/10.1021/acs.jnatprod.2c00504.

[17]

Lee SE, Sivtseva S, Lim C, et al. Artemisia kruhsiana leaf extract induces autophagic cell death in human prostate cancer cells. Chin J Nat Med. 2021; 19(2):134-142. https://doi.org/10.1016/S1875-5364(21)60014-6.

PDF (5943KB)

106

Accesses

0

Citation

Detail

Sections
Recommended

/