Shionone protects cerebral ischemic injury through alleviating microglia-mediated neuroinflammation

Lushan Xu , Chenggang Li , ChenChen Zhao , Zibu Wang , Zhi Zhang , Xin Shu , Xiang Cao , Shengnan Xia , Xinyu Bao , Pengfei Shao , Yun Xu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) : 471 -479.

PDF (4596KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (4) :471 -479. DOI: 10.1016/S1875-5364(25)60812-0
Original article
research-article

Shionone protects cerebral ischemic injury through alleviating microglia-mediated neuroinflammation

Author information +
History +
PDF (4596KB)

Abstract

Microglia, the resident immune cells in the central nervous system (CNS), rapidly transition from a resting to an active state in the acute phase of ischemic brain injury. This active state mediates a pro-inflammatory response that can exacerbate the injury. Targeting the pro-inflammatory response of microglia in the semi-dark band during this acute phase may effectively reduce brain injury. Shionone (SH), an active ingredient extracted from the dried roots and rhizomes of the genus Aster (Asteraceae), has been reported to regulate the inflammatory response of macrophages in sepsis-induced acute lung injury. However, its function in post-stroke neuroinflammation, particularly microglia-mediated neuroinflammation, remains uninvestigated. This study found that SH significantly inhibited lipopolysaccharide (LPS)-induced elevation of inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS), in microglia in vitro. Furthermore, the results demonstrated that SH alleviated infarct volume and improved behavioral performance in middle cerebral artery occlusion (MCAO) mice, which may be attributed to the inhibition of the microglial inflammatory response induced by SH treatment. Mechanistically, SH potently inhibited the phosphorylation of serine-threonine protein kinase B (AKT), mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 3 (STAT3). These findings suggest that SH may be a potential therapeutic agent for relieving ischemic stroke (IS) by alleviating microglia-associated neuroinflammation.

Keywords

Shionone / Ischemic Stroke / Neuroinflammation / Microglial Activation / AKT-mTOR-STAT3 Signaling Pathway

Cite this article

Download citation ▾
Lushan Xu, Chenggang Li, ChenChen Zhao, Zibu Wang, Zhi Zhang, Xin Shu, Xiang Cao, Shengnan Xia, Xinyu Bao, Pengfei Shao, Yun Xu. Shionone protects cerebral ischemic injury through alleviating microglia-mediated neuroinflammation. Chinese Journal of Natural Medicines, 2025, 23(4): 471-479 DOI:10.1016/S1875-5364(25)60812-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Phipps MS Cronin CA.Management of acute ischemic stroke. BMJ. 2020;368:l6983. https://doi.org/10.1097/CCM.0000000000004597.

[2]

Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation-target or tool for therapy?. Acta Neuropathol. 2019; 137(5):693-714. https://doi.org/10.1007/s00401-018-1930-z.

[3]

Deng SJ, Ge JW, Xia SN, et al. Fraxetin alleviates microglia-mediated neuroinflammation after ischemic stroke. Ann Transl Med. 2022; 10(8):439. https://doi.org/10.21037/atm-21-4636.

[4]

Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke-implications for treatment. Nat Rev Neurol. 2019; 15(8):473-481. https://doi.org/10.1038/s41582-019-0221-1.

[5]

Qin C, Zhou LQ, Ma XT, et al. Dual functions of microglia in ischemic stroke. Neurosci Bull. 2019; 35(5):921-933. https://doi.org/10.1007/s12264-019-00388-3.

[6]

Xu L, He D, Bai Y.Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol. 2016; 53(10):6709-6715. https://doi.org/10.1007/s12035-015-9593-4.

[7]

Kim E, Cho S. Microglia and monocyte-derived macrophages in stroke. Neurotherapeutics. 2016; 13(4):702-718. https://doi.org/10.1007/s13311-016-0463-1.

[8]

Pickering M, Cumiskey D, O'Connor JJ. Actions of TNF-α on glutamatergic synaptic transmission in the central nervous system. Exp Physiol. 2005; 90(5):663-670. https://doi.org/10.1113/expphysiol.2005.030734.

[9]

Yin L, Ye S, Chen Z, et al. Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice. Int J Neurosci. 2012; 122(12):748-756. https://doi.org/10.3109/00207454.2012.721827.

[10]

Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010; 87(5):779-789. https://doi.org/10.1189/jlb.1109766.

[11]

Cai Y, Xue F, Qin H, et al. Differential roles of the mTOR-STAT3 signaling in dermal γδ T cell effector function in skin inflammation. Cell Rep. 2019; 27(10):3034-3048 e3035. https://doi.org/10.1016/j.celrep.2019.05.019.

[12]

Xu X, Zhi T, Chao H, et al. ERK1/2/mTOR/Stat3 pathway-mediated autophagy alleviates traumatic brain injury-induced acute lung injury. Biochim Biophys Acta Mol Basis Dis. 2018; 1864(5 Pt A):1663-1674. https://doi.org/10.1016/j.bbadis.2018.04.003.

[13]

Liu Y, Deng S, Zhang Z, et al. 6-Gingerol attenuates microglia-mediated neuroinflammation and ischemic brain injuries through Akt-mTOR-STAT3 signaling pathway. Eur J Pharmacol. 2020;883:173294. https://doi.org/10.1016/j.ejphar.2020.173294.

[14]

Zhang W, Tian T, Gong SX, et al. Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke. Neural Regen Res. 2021; 16(1):6-11. https://doi.org/10.4103/1673-5374.286954.

[15]

Wang X, Yin H, Fan L, et al. Shionone alleviates NLRP3 inflammasome mediated pyroptosis in interstitial cystitis injury. Int Immunopharmacol. 2021;90:107132. https://doi.org/10.1016/j.intimp.2020.107132.

[16]

Song Y, Wu Q, Jiang H, et al. The effect of shionone on sepsis-induced acute lung injury by the ECM1/STAT5/NF-κB pathway. Front Pharmacol. 2021;12:764247. https://doi.org/10.3389/fphar.2021.764247.

[17]

Lin L, Desai R, Wang X, et al. Characteristics of primary rat microglia isolated from mixed cultures using two different methods. J Neuroinflammation. 2017; 14(1):101. https://doi.org/10.1186/s12974-017-0877-7.

[18]

Sert NPD, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci. 2020; 4(1):e100115. https://doi.org/10.1111/bph.15193.

[19]

Shiotsuki H, Yoshimi K, Shimo Y, et al. A rotarod test for evaluation of motor skill learning. J Neurosci Methods. 2010; 189(2):180-185. https://doi.org/10.1016/j.jneumeth.2010.03.026.

[20]

Gharbawie OA, Auer RN, Whishaw IQ. Subcortical middle cerebral artery ischemia abolishes the digit flexion and closing used for grasping in rat skilled reaching. Neuroscience. 2006; 137(4):1107-1118. https://doi.org/10.1016/j.neuroscience.2005.10.043.

[21]

Wang R, Wang H, Liu Y, et al. Optimized mouse model of embolic MCAO: from cerebral blood flow to neurological outcomes. J Cereb Blood Flow Metab. 2022; 42(3):495-509. https://doi.org/10.1177/0271678X20917625.

[22]

Ge JW, Deng SJ, Xue ZW, et al. Imperatorin inhibits mitogen-activated protein kinase and nuclear factor κB signaling pathways and alleviates neuroinflammation in ischemic stroke. CNS Neurosci Ther. 2022; 28(1):116-125. https://doi.org/10.1111/cns.13748.

[23]

Liu PY, Zhang Z, Liu Y, et al. TMEM16A inhibition preserves blood-brain barrier integrity after ischemic stroke. Front Cell Neurosci. 2019;13:360. https://doi.org/10.3389/fncel.2019.00360.

[24]

Boyko M, Ohayon S, Goldsmith T, et al. Morphological and neuro-behavioral parallels in the rat model of stroke. Behav Brain Res. 2011; 223(1):17-23. https://doi.org/10.1016/j.bbr.2011.03.019.

[25]

Li Z, Bishop N, Chan SL, et al. Effect of TTC treatment on immunohistochemical quantification of collagen IV in rat brains after stroke. Transl Stroke Res. 2018; 9(5):499-505. https://doi.org/10.1007/s12975-017-0604-9.

[26]

Liu DY, Huang HZ, Li K, et al.EPAC2 knockout causes abnormal tau pathology through calpain-mediated CDK5 activation. Adv Neurol. 2022; 1(1):1-12. https://doi.org/10.36922/an.v1i1.8.

[27]

Wu G, McBride DW and Zhang JH. Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-κB pathway after MCAO in rats. Neurobiol Dis. 2018; 110:59-67. https://doi.org/10.1016/j.nbd.2017.11.009.

[28]

Wang Y, Ge X, Yu S, et al. Achyranthes bidentata polypeptide alleviates neurotoxicity of lipopolysaccharide-activated microglia via PI3K/Akt dependent NOX2/ROS pathway. Ann Trans Med. 2021; 9(20):1522-1522. https://doi.org/10.21037/atm-21-4027.

[29]

Spittau B, Dokalis N, Prinz M. The role of TGF-β signaling in microglia maturation and activation. Trends Immunol. 2020; 41(9):836-848. https://doi.org/10.1016/j.it.2020.07.003.

[30]

Subhramanyam CS, Wang C, Hu Q, et al.Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019; 94:112-120. https://doi.org/10.1016/j.semcdb.2019.05.004.

[31]

Hendrickx DAE, van Eden CG, Schuurman KG, et al. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. 2017; 309:12-22. https://doi.org/10.1016/j.jneuroim.2017.04.007.

[32]

Ma Y, Wang J, Wang Y, et al. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017; 157:247-272. https://doi.org/10.1016/j.pneurobio.2016.01.005.

[33]

Barksby HE, Lea SR, Preshaw PM, et al. The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin Exp Immunol. 2007; 149(2):217-225. https://doi.org/10.1111/j.1365-2249.2007.03441.x.

[34]

Liberale L, Bonetti NR, Puspitasari YM, et al. TNF-α antagonism rescues the effect of ageing on stroke: perspectives for targeting inflamm-ageing. Eur J Clin Invest. 2021; 51(11):e13600. https://doi.org/10.1111/eci.13600.

[35]

Lin SY, Wang YY, Chang CY, et al. TNF-α receptor inhibitor alleviates metabolic and inflammatory changes in a rat model of ischemic stroke. Antioxidants (Basel). 2021; 10(6):851. https://doi.org/10.3390/antiox10060851.

[36]

Li T, Xu T, Zhao J, et al. Depletion of iNOS-positive inflammatory cells decelerates neuronal degeneration and alleviates cerebral ischemic damage by suppressing the inflammatory response. Free Radic Biol Med. 2022; 181:209-220. https://doi.org/10.1016/j.freeradbiomed.2022.02.008.

[37]

Louveau A, Nerriere-Daguin V, Vanhove B, et al. Targeting the CD80/CD86 costimulatory pathway with CTLA4-Ig directs microglia toward a repair phenotype and promotes axonal outgrowth. Glia. 2015; 63(12):2298-2312. https://doi.org/10.1002/glia.22894.

[38]

Tang JY, Cheng YB, Chuang YT, et al. Oxidative stress and AKT-associated angiogenesis in a zebrafish model and its potential application for withanolides. Cells. 2022; 11(6):961. https://doi.org/10.3390/cells11060961.

[39]

Hou Y, Wang K, Wan W, et al. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis. 2018; 5(3):245-255. https://doi.org/10.1016/j.gendis.2018.06.001.

[40]

Yu M, Xue H, Wang Y, et al. miR-345 inhibits tumor metastasis and EMT by targeting IRF1-mediated mTOR/STAT3/AKT pathway in hepatocellular carcinoma. Int J Oncol. 2017; 50(3):975-983. https://doi.org/10.3892/ijo.2017.3852.

PDF (4596KB)

90

Accesses

0

Citation

Detail

Sections
Recommended

/