Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling

Yongxian Li , Jinbo Yuan , Wei Deng , Haishan Li , Yuewei Lin , Jiamin Yang , Kai Chen , Heng Qiu , Ziyi Wang , Vincent Kuek , Dongping Wang , Zhen Zhang , Bin Mai , Yang Shao , Pan Kang , Qiuli Qin , Jinglan Li , Huizhi Guo , Yanhuai Ma , Danqing Guo , Guoye Mo , Yijing Fang , Renxiang Tan , Chenguang Zhan , Teng Liu , Guoning Gu , Kai Yuan , Yongchao Tang , De Liang , Liangliang Xu , Jiake Xu , Shuncong Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) : 90 -101.

PDF (20975KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) :90 -101. DOI: 10.1016/S1875-5364(25)60810-7
Original article
research-article

Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling

Author information +
History +
PDF (20975KB)

Abstract

Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL’s impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL’s inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.

Keywords

Osteoporosis / Estrogen deficiency / Osteoclast / Buqi-Tongluo / NFATc1 / MAPK / NF-κB

Cite this article

Download citation ▾
Yongxian Li, Jinbo Yuan, Wei Deng, Haishan Li, Yuewei Lin, Jiamin Yang, Kai Chen, Heng Qiu, Ziyi Wang, Vincent Kuek, Dongping Wang, Zhen Zhang, Bin Mai, Yang Shao, Pan Kang, Qiuli Qin, Jinglan Li, Huizhi Guo, Yanhuai Ma, Danqing Guo, Guoye Mo, Yijing Fang, Renxiang Tan, Chenguang Zhan, Teng Liu, Guoning Gu, Kai Yuan, Yongchao Tang, De Liang, Liangliang Xu, Jiake Xu, Shuncong Zhang. Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling. Chinese Journal of Natural Medicines, 2025, 23(1): 90-101 DOI:10.1016/S1875-5364(25)60810-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Downey PA, Siegel MI. Bone biology and the clinical implications for osteoporosis. Phys Ther. 2006; 86(1):77-91. https://doi.org/10.1093/ptj/86.1.77.

[2]

Feehan J, Kassem M, Pignolo RJ, et al. Bone from blood: characteristics and clinical implications of circulating osteogenic progenitor (COP) cells. J Bone Miner Res. 2021; 36(1):12-23. https://doi.org/10.1002/jbmr.4204.

[3]

Maciel GB, Maciel RM, Danesi CC. Bone cells and their role in physiological remodeling. Mol Biol Rep. 2023; 50(3):2857-2863. https://doi.org/10.1007/s11033-022-08190-7.

[4]

Sobacchi C, Schulz A, Coxon FP, et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013; 9(9):522-536. https://doi.org/10.1038/nrendo.2013.137.

[5]

Cheng CH, Chen LR, Chen KH. Osteoporosis due to hormone imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci. 2022; 23(3):1376. https://doi.org/10.3390/ijms23031376.

[6]

Khalid AB, Krum SA. Estrogen receptors alpha and beta in bone. Bone. 2016; 87:130-135. https://doi.org/10.1016/j.bone.2016.03.016.

[7]

Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000; 289(5484):1504-1508. https://doi.org/10.1126/science.289.5484.1504.

[8]

Yao Z, Getting SJ, Locke IC. Regulation of TNF-induced osteoclast differentiation. Cells. 2021; 11(1):132.

[9]

Chen X, Wang Z, Duan N, et al. Osteoblast-osteoclast interactions. Connect Tissue Res. 2018; 59(2):99-107. https://doi.org/10.1080/03008207.2017.1290085.

[10]

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003; 423(6937):337-342. https://doi.org/10.1038/nature01658.

[11]

Kular J, Tickner J, Chim SM, et al. An overview of the regulation of bone remodelling at the cellular level. Clin Biochem. 2012; 45(12):863-873. https://doi.org/10.1016/j.clinbiochem.2012.03.021.

[12]

Zhang XC, Lavoie G, Meant A, et al. Extracellular signal-regulated kinases 1 and 2 phosphorylate Gab2 To promote a negative-feedback loop that attenuates phosphoinositide 3-kinase/Akt signaling. Mol Cell Biol. 2017; 37(7):e00357-16. https://doi.org/10.1128/MCB.00357-16.

[13]

Cuevas VD, Simon FM, Orta ZE, et al. The gene signature of activated M-CSF-primed human monocyte-derived macrophages is IL-10-dependent. J Innate Immun. 2022; 14(3):243-256. https://doi.org/10.1159/000519305.

[14]

Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021; 39(1):19-26. https://doi.org/10.1007/s00774-020-01162-6.

[15]

Takayanagi H. RANKL as the master regulator of osteoclast differentiation. J Bone Miner Metab. 2021; 39(1):13-18. https://doi.org/10.1007/s00774-020-01191-1.

[16]

Yang ZD, Han QM, He ZH, et al. Effect of Buqi Tongluo prescription on oxygen free radicals in rats with acute crush injury of sciatic nerve. J Guangzhou Univ Tradit Chin Med. 2002; 4:295-297. https://doi.org/10.13359/j.cnki.gzxbt.cm.2002.04.015.

[17]

Ding L, Li Y, Yang Y, et al. Wenfei Buqi Tongluo Formula against bleomycin-induced pulmonary fibrosis by inhibiting TGF-beta/Smad3 pathway. Front Pharmacol. 2021;12:762998. https://doi.org/10.3389/fphar.2021.762998.

[18]

Ji Z, Jiang Y, Lin H, et al. Global identification and quantitative analysis of representative components of Xin-Nao-Kang Capsule, a traditional Chinese medicinal formula, by UHPLC-Q-TOF-MS and UHPLC-TQ-MS. J Pharm Biomed Anal. 2021;198:114002. https://doi.org/10.1016/j.jpba.2021.114002.

[19]

Shang H, Zhang K, Guan Z, et al. Optimization of evidence-based research in the prevention and treatment of coronary heart disease with traditional Chinese medicine: a comprehensive review. J Tradit Chin Med Sci. 2022; 9(2):100-107. https://doi.org/10.1016/j.jtcms.2022.04.004.

[20]

Xu J, Tan JW, Huang L, et al. Cloning, sequencing, and functional characterization of the rat homologue of receptor activator of NF-kappaB ligand. J Bone Miner Res. 2000; 15(11):2178-2186. https://doi.org/10.1359/jbmr.2000.15.11.2178.

[21]

Charles JF, Aliprantis AO. Osteoclasts: more than bone eaters. Trends Mol Med. 2014; 20(8):449-459. https://doi.org/10.1016/j.molmed.2014.06.001.

[22]

Zhou L, Liu QL, Yang ML, et al. Dihydroartemisinin, an anti-malaria drug, suppresses estrogen deficiency-induced osteoporosis, osteoclast formation, and RANKL-induced signaling pathways. J Bone Miner Res. 2016; 31(5):964-974. https://doi.org/10.1002/jbmr.2771.

[23]

Chen K, Qiu P, Yuan Y, et al. Pseurotin A inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species. Theranostics. 2019; 9(6):1634-1650. https://doi.org/10.7150/thno.30206.

[24]

Schindelin J, Rueden CT, Hiner MC, et al. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015; 82(7-8):518-529. https://doi.org/10.1002/mrd.22489.

[25]

Wang C, Steer JH, Joyce DA, et al. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits osteoclastogenesis by suppressing RANKL-induced NF-kappaB activation. J Bone Miner Res. 2003; 18(12):2159-2168. https://doi.org/10.1359/jbmr.2003.18.12.2159.

[26]

Cheng JW, Zhou L, Liu Q, et al. Cyanidin chloride inhibits ovariectomy-induced osteoporosis by suppressing RANKL-mediated osteoclastogenesis and associated signaling pathways. J Cell Physiol. 2018; 233(3):2502-2512. https://doi.org/10.1002/jcp.26126.

[27]

Bouxsein ML, Boyd SK, Christiansen BA, et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010; 25(7):1468-1486. https://doi.org/10.1002/jbmr.141.

[28]

van't Hof RJ, Rose L, Bassonga E, et al. Open source software for semi-automated histomorphometry of bone resorption and formation parameters. Bone. 2017; 99:69-79. https://doi.org/10.1016/j.bone.2017.03.051.

[29]

Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007; 40(2):251-264. https://doi.org/10.1016/j.bone.2006.09.023.

[30]

Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab. 2014; 21(4):233-241. https://doi.org/10.11005/jbm.2014.21.4.233.

[31]

Greenblatt MB, Shim JH, Zou W, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010; 120(7):2457-2473. https://doi.org/10.1172/JCI42285.

[32]

Kuroda Y, Hisatsune C, Nakamura T, et al. Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc Natl Acad Sci U S A. 2008; 105(25):8643-8648. https://doi.org/10.1073/pnas.0800642105.

[33]

Tella SH, Gallagher JC. Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol. 2014; 142:155-170. https://doi.org/10.1016/j.jsbmb.2013.09.008.

[34]

Malle O, Borgstroem F, Fahrleitner PA, et al. Mind the gap: incidence of osteoporosis treatment after an osteoporotic fracture-results of the Austrian branch of the International Costs and Utilities Related to Osteoporotic Fractures Study (ICUROS). Bone. 2021;142:115071. https://doi.org/10.1016/j.bone.2019.115071.

[35]

Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011; 377(9773):1276-1287. https://doi.org/10.1016/S0140-6736(10)62349-5.

[36]

Ishtiaq S, Fogelman I, Hampson G. Treatment of post-menopausal osteoporosis: beyond bisphosphonates. J Endocrinol Invest. 2015; 38(1):13-29. https://doi.org/10.1007/s40618-014-0152-z.

[37]

Wang QQ, Yao LY, Xu K, et al. Madecassoside inhibits estrogen deficiency-induced osteoporosis by suppressing RANKL-induced osteoclastogenesis. J Cell Mol Med. 2019; 23(1):380-394. https://doi.org/10.1111/jcmm.13942.

[38]

Yao ZS, Liang D. Interventional effect of Buqi Tongluo Fang on the functional recovery of rats after acute crush injury of sciatic nerve. Chin J Clin Rehab. 2005; 20(2):96-98.

[39]

Song D, Cao Z, Liu Z, et al. Cistanche deserticola polysaccharide attenuates osteoclastogenesis and bone resorption via inhibiting RANKL signaling and reactive oxygen species production. J Cell Physiol. 2018; 233(12):9674-9684. https://doi.org/10.1002/jcp.26882.

[40]

Lee K, Chung YH, Ahn H, et al. Selective regulation of MAPK signaling mediates RANKL-dependent osteoclast differentiation. Int J Biol Sci. 2016; 12(2):235-245. https://doi.org/10.7150/ijbs.13814.

[41]

Peng B, Zhu H, Ma LY, et al. AP-1 transcription factors c-FOS and c-JUN mediate GnRH-induced cadherin-11 expression and trophoblast cell invasion. Endocrinology. 2015; 156(6):2269-2277. https://doi.org/10.1210/en.2014-1871.

[42]

Efferth T, Oesch F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev. 2021; 41(6):3023-3061. https://doi.org/10.1002/med.21842.

[43]

Lee SE, Woo KM, Kim SY, et al. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone. 2002; 30(1):71-77. https://doi.org/10.1016/S8756-3282(01)00657-3.

[44]

He Y, Staser K, Rhodes SD, et al. Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One. 2011; 6(9):e24780. https://doi.org/10.1371/journal.pone.0024780.

[45]

Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res. 2010; 20(1):24-33. https://doi.org/10.1038/cr.2009.137.

[46]

Bradford JW, Baldwin AS. IKK/nuclear factor-kappaB and oncogenesis: roles in tumor-initiating cells and in the tumor microenvironment. Adv Cancer Res. 2014; 121:125-145. https://doi.org/10.1016/B978-0-12-800249-0.00003-2.

[47]

Boyce BF, Xiu Y, Li JB, et al. NF-kappa B-mediated regulation of osteoclastogenesis. Endocrinol Metab. 2015; 30(1):35-44. https://doi.org/10.3803/EnM.2015.30.1.35.

[48]

Asagiri M, Sato K, Usami T, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 2005; 202(9):1261-1269. https://doi.org/10.1084/jem.20051150.

[49]

Negishi KT, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev. 2009; 231:241-256. https://doi.org/10.1111/j.1600-065X.2009.00821.x.

[50]

Kuroda Y, Matsuo K. Molecular mechanisms of triggering, amplifying and targeting RANK signaling in osteoclasts. World J Orthopedics. 2012; 3(11):167-174. https://doi.org/10.5312/wjo.v3.i11.167.

[51]

Zhou L, Liu Q, Hong G, et al. Cumambrin A prevents OVX-induced osteoporosis via the inhibition of osteoclastogenesis, bone resorption, and RANKL signaling pathways. FASEB J. 2019; 33(6):6726-6735. https://doi.org/10.1096/fj.201800883RRR.

PDF (20975KB)

216

Accesses

0

Citation

Detail

Sections
Recommended

/