Stem-leaf saponins of Panax notoginseng attenuate experimental Parkinson’s disease progression in mice by inhibiting microglia-mediated neuroinflammation via P2Y2R/PI3K/AKT/NFκB signaling pathway

Hui Wu , Chenyang Ni , Yu Zhang , Yingying Song , Longchan Liu , Fei Huang , Hailian Shi , Zhengtao Wang , Xiaojun Wu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) : 43 -53.

PDF (14144KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) :43 -53. DOI: 10.1016/S1875-5364(25)60809-0
Original article
research-article

Stem-leaf saponins of Panax notoginseng attenuate experimental Parkinson’s disease progression in mice by inhibiting microglia-mediated neuroinflammation via P2Y2R/PI3K/AKT/NFκB signaling pathway

Author information +
History +
PDF (14144KB)

Abstract

Stem-leaf saponins from Panax notoginseng (SLSP) comprise numerous PPD-type saponins with diverse pharmacological properties; however, their role in Parkinson’s disease (PD), characterized by microglia-mediated neuroinflammation, remains unclear. This study evaluated the effects of SLSP on suppressing microglia-driven neuroinflammation in experimental PD models, including the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model and lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our findings revealed that SLSP mitigated behavioral impairments and excessive microglial activation in models of PD, including MPTP-treated mice. Additionally, SLSP inhibited the upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) and attenuated the phosphorylation of PI3K, protein kinase B (AKT), nuclear factor-κB (NFκB), and inhibitor of NFκB protein α (IκBα) both in vivo and in vitro. Moreover, SLSP suppressed the production of inflammatory markers such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α) in LPS-stimulated BV-2 cells. Notably, the P2Y2R agonist partially reversed the inhibitory effects of SLSP in LPS-treated BV-2 cells. These results suggest that SLSP inhibit microglia-mediated neuroinflammation in experimental PD models, likely through the P2Y2R/PI3K/AKT/NFκB signaling pathway. These novel findings indicate that SLSP may offer therapeutic potential for PD by attenuating microglia-mediated neuroinflammation.

Keywords

Stem-leaf saponins of Panax Notoginseng / P2Y2 receptor / Neuroinflammation / Microglia / NFκB

Cite this article

Download citation ▾
Hui Wu, Chenyang Ni, Yu Zhang, Yingying Song, Longchan Liu, Fei Huang, Hailian Shi, Zhengtao Wang, Xiaojun Wu. Stem-leaf saponins of Panax notoginseng attenuate experimental Parkinson’s disease progression in mice by inhibiting microglia-mediated neuroinflammation via P2Y2R/PI3K/AKT/NFκB signaling pathway. Chinese Journal of Natural Medicines, 2025, 23(1): 43-53 DOI:10.1016/S1875-5364(25)60809-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao HM, Hong JS. Gene-environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol. 2011; 94(1):1-19. https://doi.org/10.1016/j.pneurobio.2011.03.005.

[2]

Marino BLB, de Souza LR, Sousa KPA, et al. Parkinson’s disease: a review from pathophysiology to treatment. Mini-Rev Med Chem. 2020; 20(9):754-767. https://doi.org/10.2174/1389557519666191104110908.

[3]

Vallée A, Lecarpentier Y, Guillevin R, et al. Circadian rhythms, neuroinflammation and oxidative stress in the story of Parkinson’s disease. Cells-Basel. 2020; 9(2):314. https://doi.org/10.3390/cells9020314.

[4]

Vila M, Przedborski S. Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med. 2004; 10(Suppl 7):S58-S62. https://doi.org/10.1038/nm1068.

[5]

Monte DAD. The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins. Lancet Neurol. 2003; 2(9):531-538. https://doi.org/10.1016/S1474-4422(03)00501-5.

[6]

Grünblatt E, Mandel S, Maor G, et al. Gene expression analysis in N-methyl-4-phdel of Parkinson’s disease using cDNA microarray: effect of R-apomorphineenyl-1,2,3,6-tetrahydropyridine mice mo. J Neurochem. 2001; 78(1):1-12. https://doi.org/10.1046/j.1471-4159.2001.00397.x.

[7]

Frank-Cannon TC, Alto LT, McAlpine FE, et al. Does neuroinflammation fan the flame in neurodegenerative diseases. Mol Neurodegener. 2009;4:47. https://doi.org/10.1186/1750-1326-4-47.

[8]

Annunziato L, Boscia F, Pignataro G. Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J Cereb Blood Flow Metab. 2013; 33(7):969-982. https://doi.org/10.1038/jcbfm.2013.44.

[9]

Song GJ, Suk K. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Front Aging Neurosci. 2017;9:139. https://doi.org/10.3389/fnagi.2017.00139.

[10]

Liu B, Huang B, Hu G, et al. Isovitexin-mediated regulation of microglial polarization in lipopolysaccharide-induced neuroinflammation via activation of the CaMKKbeta/AMPK-PGC-1alpha signaling axis. Front Immunol. 2019;10:2650. https://doi.org/10.3389/fimmu.2019.02650.

[11]

Yang L, Zhou R, Tong Y, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis. 2020;140:104814. https://doi.org/10.1016/j.nbd.2020.104814.

[12]

Vijitruth R, Liu M, Choi DY, et al. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation. 2006;3:6. https://doi.org/10.1186/1742-2094-3-6.

[13]

Feng ZH, Wang TG, Li DD, et al. Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett. 2002; 329(3):354-358. https://doi.org/10.1016/s0304-3940(02)00704-8.

[14]

Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 1999; 5(12):1403-1409. https://doi.org/10.1038/70978.

[15]

Itzhak Y, Martin JL, Ali SF. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice. Synapse. 1999; 34(4):305-312.10.1002/(SICI)1098-2396(19991215)34:4<305::AID-SYN6>3.0.CO;2-#.

[16]

Dehmer T, Lindenau J, Haid S, et al. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem. 2000; 74(5):2213-2216. https://doi.org/10.1046/j.1471-4159.2000.0742213.x.

[17]

Liu YX, Qin LY, Li GR, et al. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther. 2003; 305(1):212-218. https://doi.org/10.1124/jpet.102.043166.

[18]

Liu B, Du L, Hong JS. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther. 2000; 293(2):607-617. https://www.ncbi.nlm.nih.gov/pubmed/10773035

[19]

Choi SH, Lee DY, Chung ES, et al. Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J Neurochem. 2005; 95(6):1755-1765. https://doi.org/10.1111/j.1471-4159.2005.03503.x.

[20]

Quintas C, Pinho D, Pereira C, et al. Microglia P2Y(6) receptors mediate nitric oxide release and astrocyte apoptosis. J Neuroinflammation. 2014;11:141. https://doi.org/10.1186/s12974-014-0141-3.

[21]

Neher JJ, Neniskyte U, Hornik T, et al. Inhibition of UDP/P2Y6 purinergic signaling prevents phagocytosis of viable neurons by activated microglia in vitro and in vivo. Glia. 2014; 62(9):1463-1475. https://doi.org/10.1002/glia.22693.

[22]

Peterson TS, Camden JM, Wang YF, et al. P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol. 2010; 41(2-3):356-366. https://doi.org/10.1007/s12035-010-8115-7.

[23]

Burnstock G, Krugel U, Abbracchio MP, et al. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol. 2011; 95(2):229-274. https://doi.org/10.1016/j.pneurobio.2011.08.006.

[24]

Zhou D, Cen K, Liu W, et al. Xuesaitong exerts long-term neuroprotection for stroke recovery by inhibiting the ROCKII pathway, in vitro and in vivo. J Ethnopharmacol. 2021;272:113943. https://doi.org/10.1016/j.jep.2021.113943.

[25]

Shi XW, Yu WJ, Yang TT, et al. Panax notoginseng saponins provide neuroprotection by regulating NgR1/RhoA/ROCK2 pathway expression, in vitro and in vivo. J Ethnopharmacol. 2016; 190:301-312. https://doi.org/10.1016/j.jep.2016.06.017.

[26]

Wang YY, Ren Y, Xing LL, et al. Endothelium-dependent vasodilation effects of and its main components are mediated by nitric oxide and cyclooxygenase pathways. Exp Ther Med. 2016; 12(6):3998-4006. https://doi.org/10.3892/etm.2016.3890.

[27]

Xu D, Huang P, Yu Z, et al. Efficacy and safety of Panax notoginseng saponin therapy for acute intracerebral hemorrhage, meta-analysis, and mini review of potential mechanisms of action. Front Neurol. 2014;5:274. https://doi.org/10.3389/fneur.2014.00274.

[28]

Wan JB, Yang FQ, Li SP, et al. Chemical characteristics for different parts of using pressurized liquid extraction and HPLC-ELSD. J Pharmaceut Biomed. 2006; 41(5):1596-1601. https://doi.org/10.1016/j.jpba.2006.01.058.

[29]

Xiang H, Liu Y, Zhang B, et al. The antidepressant effects and mechanism of action of total saponins from the caudexes and leaves of Panax notoginseng in animal models of depression. Phytomedicine. 2011; 18(8-9):731-738. https://doi.org/10.1016/j.phymed.2010.11.014.

[30]

Guo DJ, Yang WT, Tian J, et al. Effect of Chinese traditional medicine Sanqi on neuronal plasticity after focal cerebral ischemia reperfusion injury. Chin J Rehabil. 2003;18:132-135.

[31]

Cao Y, Li Q, Yang Y, et al. Cardioprotective effect of stem-leaf saponins from Panax notoginseng on mice with sleep derivation by inhibiting abnormal autophagy through PI3K/Akt/mTOR pathway. Front Cardiovasc Med. 2021;8:694219. https://doi.org/10.3389/fcvm.2021.694219.

[32]

Cao Y, Yang Y, Wu H, et al. Stem-leaf saponins from Panax notoginseng counteract aberrant autophagy and apoptosis in hippocampal neurons of mice with cognitive impairment induced by sleep deprivation. J Ginseng Res. 2020; 44(3):442-452. https://doi.org/10.1016/j.jgr.2019.01.009.

[33]

Bai YY, Zhou J, Zhu H, et al. Isoliquiritigenin inhibits microglia-mediated neuroinflammation in models of Parkinson’s disease via JNK/AKT/NFκB signaling pathway. Phytother Res. 2023; 37(3):848-859. https://doi.org/10.1002/ptr.7665.

[34]

Wu H, Gao Y, Shi HL, et al. Astragaloside IV improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network. Sci Rep. 2016;6:30190. https://doi.org/10.1038/srep30190.

[35]

Cao Q, Qin LY, Huang F, et al. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol Appl Pharm. 2017; 319:80-90. https://doi.org/10.1016/j.taap.2017.01.019.

[36]

Weisman GA, Wang M, Kong Q, et al. Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol. 2005; 31(1-3):169-183. https://doi.org/10.1385/mn:31:1-3:169.

[37]

Erb L, Liao ZJ, Seye CI, et al. P2 receptors: intracellular signaling. Pflug Arch Eur J Phy. 2006; 452(5):552-562. https://doi.org/10.1007/s00424-006-0069-2.

[38]

Strassheim D, Verin A, Batori R, et al. P2Y purinergic receptors, endothelial dysfunction, and cardiovascular diseases. Int J Mol Sci. 2020; 21(18):6855. https://doi.org/10.3390/ijms21186855.

[39]

Shihan M, Novoyatleva T, Lehmeyer T, et al. Role of the purinergic P2Y2 receptor in pulmonary hypertension. Int J Environ Res Public Health. 2021; 18(21):11009. https://doi.org/10.3390/ijerph182111009.

[40]

Pajares M, Rojo AI, Manda G, et al. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells-Basel. 2020; 9(7):1687. https://doi.org/10.3390/cells9071687.

[41]

Williams GP, Schonhoff AM, Jurkuvenaite A, et al. Targeting of the class II transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinson’s disease. J Neuroinflamm. 2018; 15(1):244. https://doi.org/10.1186/s12974-018-1286-2.

[42]

Tufekci KU, Meuwissen R, Genc S, et al. Inflammation in Parkinson’s disease. Adv Protein Chem Str. 2012; 88:69-132. https://doi.org/10.1016/B978-0-12-398314-5.00004-0.

[43]

Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem. 2018; 153:105-115. https://doi.org/10.1016/j.ejmech.2017.09.001.

[44]

Lehnardt S, Lachance C, Patrizi S, et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci. 2002; 22(7):2478-2486. https://doi.org/10.1523/Jneurosci.22-07-02478.2002.

[45]

More SV, Kumar H, Cho DY, et al. Toxin-induced experimental models of learning and memory impairment. Int J Mol Sci. 2016; 17(9):1447. https://doi.org/10.3390/ijms17091447.

[46]

Bove J, Perier C. Neurotoxin-based models of parkinson’s disease. Neuroscience. 2012; 211:51-76. https://doi.org/10.1016/j.neuroscience.2011.10.057.

[47]

L'Episcopo F, Tirolo C, Serapide MF, et al. Microglia polarization, gene-environment interactions and Wnt/β-catenin signaling: emerging roles of glia-neuron and glia-stem/neuroprogenitor crosstalk for dopaminergic neurorestoration in aged parkinsonian brain. Front Aging Neurosci. 2018;10:12. https://doi.org/10.3389/fnagi.2018.00012.

[48]

Kim DY, Park JS, Leem YH, et al. The potent PDE10A inhibitor MP-10 (PF-2545920) suppresses microglial activation in LPS-induced neuroinflammation and MPTP-induced Parkinson’s disease mouse models. J Neuroimmune Pharm. 2021; 16(2):470-482. https://doi.org/10.1007/s11481-020-09943-6.

[49]

Wang BZ, Wang YW, Qiu JR, et al. The STING inhibitor C-176 attenuates MPTP-induced neuroinflammation and neurodegeneration in mouse parkinsonian models. Int Immunopharmacol. 2023;124:110827. https://doi.org/10.1016/j.intimp.2023.110827.

[50]

Wu Q, Wang MD, Chen W, et al. Daidzein exerts neuroprotective activity against MPTP-induced Parkinson’s disease in experimental mice and lipopolysaccharide-induced BV2 microglial cells. J Biochem Mol Toxic. 2022; 36(2):e22949. https://doi.org/10.1002/jbt.22949.

[51]

Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases. Mol Med Rep. 2016; 13(4):3391-3396. https://doi.org/10.3892/mmr.2016.4948.

[52]

Liu T, Zhang LY, Joo D, et al. NF-κB signaling in inflammation. Signal Transduct Tar. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.

[53]

Di Virgilio F, Sarti AC, Coutinho SR. Purinergic signaling, DAMPs and inflammation. Am J Physiol-CellPh. 2020; 318(5):C832-C835. https://doi.org/10.1152/ajpcell.00053.2020.

[54]

Luttikhuizen DT, Harmsen MC, de Leij LFMH, et al. Expression of P 2 receptors at sites of chronic inflammation. Cell Tissue Res. 2004; 317(3):289-298. https://doi.org/10.1007/s00441-004-0939-x.

[55]

Cheng RD, Zhu GY, Ni CT, et al. P2Y2 receptor mediated neuronal regeneration and angiogenesis to affect functional recovery in rats with spinal cord injury. Neural Plast. 2022;2022:2191011. https://doi.org/10.1155/2022/2191011.

[56]

Pendergast W, Yerxa BR, Douglass JG, et al. Synthesis and P2Y receptor activity of a series of uridine dinucleoside 5′-polyphosphates. Bioorg Med Chem Lett. 2001; 11(2):157-160. https://doi.org/10.1016/S0960-894x(00)00612-0.

[57]

Byun YS, Yoo YS, Kwon JY, et al. Diquafosol promotes corneal epithelial healing via intracellular calcium-mediated ERK activation. Exp Eye Res. 2016; 143:89-97. https://doi.org/10.1016/j.exer.2015.10.013.

PDF (14144KB)

114

Accesses

0

Citation

Detail

Sections
Recommended

/