Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway

Wenqin Yang , Wen Wen , Hao Chen , Haijun Zhang , Yun Lu , Ping Wang , Shijun Xu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) : 77 -89.

PDF (15921KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) :77 -89. DOI: 10.1016/S1875-5364(25)60808-9
Original article
research-article

Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway

Author information +
History +
PDF (15921KB)

Abstract

The activation of the sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species (ROS) levels. Clinical trials have demonstrated that Zhongfeng Xingnao Liquid (ZFXN) ameliorates post-stroke cognitive impairment (PSCI). However, the underlying mechanism, particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway, remains unclear. This study employed an oxygen-glucose deprivation (OGD) cell model using SH-SY5Y cells and induced PSCI in rats through modified bilateral carotid artery ligation (2VO). The effects of ZFXN on learning and memory, neuroprotective activity, mitochondrial function, oxidative stress, and the SIRT1/Nrf2/HO-1 pathway were evaluated both in vivo and in vitro. Results indicated that ZFXN significantly increased the B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax) ratio, reduced terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL)+ cells, and markedly improved cognition, synaptic plasticity, and neuronal function in the hippocampus and cortex. Furthermore, ZFXN exhibited potent antioxidant activity, evidenced by decreased ROS and malondialdehyde (MDA) content and increased superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels. ZFXN also demonstrated considerable enhancement of mitochondrial membrane potential (MMP), Tom20 fluorescence intensity, adenosine triphosphate (ATP) and energy charge (EC) levels, and mitochondrial complex I and III activity, thereby inhibiting mitochondrial damage. Additionally, ZFXN significantly increased SIRT1 activity and elevated SIRT1, nuclear Nrf2, and HO-1 levels. Notably, these effects were substantially counteracted when SIRT1 was suppressed by the inhibitor EX-527 in vitro. In conclusion, ZFXN alleviates PSCI by activating the SIRT1/Nrf2/HO-1 pathway and preventing mitochondrial damage.

Keywords

Zhongfeng Xingnao Liquid / Post-stroke cognitive impairment / Oxidative stress / Mitochondrial function / Apoptosis / Sirtuin1/nuclear factor erythroid 2-related factor / 2/heme oxygenase 1 pathway

Cite this article

Download citation ▾
Wenqin Yang, Wen Wen, Hao Chen, Haijun Zhang, Yun Lu, Ping Wang, Shijun Xu. Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. Chinese Journal of Natural Medicines, 2025, 23(1): 77-89 DOI:10.1016/S1875-5364(25)60808-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avan A, Hachinski V. Stroke and dementia, leading causes of neurological disability and death, potential for prevention. Alzheimers Dement. 2021; 17(6):1072-1076. https://doi.org/10.1002/alz.12340.

[2]

Feigin VL, Brainin M, Norrving B, et al. World stroke organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022; 17(1):18-29. https://doi.org/10.1177/17474930211065917.

[3]

Kim KY, Shin KY, Chang KA. Potential biomarkers for post-stroke cognitive impairment: a systematic review and meta-analysis. Int J Mol Sci. 2022; 23(2):602. https://doi.org/10.3390/ijms23020602.

[4]

Wang YJ, Li ZX, Gu HQ, et al. China stroke statistics:an update on the 2019 report from the national center for healthcare quality management in neurological diseases, China national clinical research center for neurological diseases, the Chinese stroke association, national center for chronic and non-communicable disease control and prevention, Chinese center for disease control and prevention and institute for global neuroscience and stroke collaborations. Stroke Vasc Neurol. 2022; 7(5):415-450. https://doi.org/10.1136/svn-2021-001374.

[5]

Kuźma E, Lourida I, Moore SF, et al. Stroke and dementia risk: a systematic review and meta-analysis. Alzheimers Dement. 2018; 14(11):1416-1426. https://doi.org/10.1016/j.jalz.2018.06.3061.

[6]

Georgakis MK, Fang R, Düring M, et al. Cerebral small vessel disease burden and cognitive and functional outcomes after stroke: a multicenter prospective cohort study. Alzheimers Dement. 2023; 19(4):1152-1163. https://doi.org/10.1002/alz.12744.

[7]

Ouyang F, Jiang Z, Chen X, et al. Is cerebral amyloid-β deposition related to post-stroke cognitive impairment. Transl Stroke Res. 2021; 12(6):946-957. https://doi.org/10.1007/s12975-021-00921-5.

[8]

Ham PB, Raju R. Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol. 2017; 157:92-116. https://doi.org/10.1016/j.pneurobio.2016.06.006.

[9]

Peng J, Ghosh D, Pang J, et al. Intertwined relation between the endoplasmic reticulum and mitochondria in ischemic stroke. Oxid Med Cell Longev. 2022;2022:3335887. https://doi.org/10.1155/2022/3335887.

[10]

Gureev AP, Silachev DN, Sadovnikova IS, et al. The ketogenic diet but not hydroxycitric acid keeps brain mitochondria quality control and mtDNA integrity under focal stroke. Mol Neurobiol. 2023; 60(8):4288-4303. https://doi.org/10.1007/s12035-023-03325-8.

[11]

Cadenas S. Mitochondria rescue cells from ischemic injury. Science. 2022; 377(6606):579-580. https://doi.org/10.1126/science.add4629.

[12]

Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018; 16:263-275. https://doi.org/10.1016/j.redox.2018.03.002.

[13]

He Z, Ning N, Zhou Q, et al. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med. 2020; 146:45-58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005.

[14]

Jiao F, Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid Med Cell Longev. 2020;2020:6782872. https://doi.org/10.1155/2020/6782872.

[15]

Yan W, Sun W, Fan J, et al. Sirt1-ROS-TRAF6 signaling-induced pyroptosis contributes to early injury in ischemic mice. Neurosci Bull. 2020; 36(8):845-859. https://doi.org/10.1007/s12264-020-00489-4.

[16]

Tang H, Wen J, Qin T, et al. New insights into Sirt1: potential therapeutic targets for the treatment of cerebral ischemic stroke. Front Cell Neurosci. 2023;17:1228761. https://doi.org/10.3389/fncel.2023.1228761.

[17]

Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015; 88(Pt B):179-188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036.

[18]

Liu DD, Yuan X, Chu SF, et al. CZ-7, a new derivative of Claulansine F, ameliorates 2VO-induced vascular dementia in rats through a Nrf2-mediated antioxidant responses. Acta Pharmacol Sin. 2019; 40(4):425-440. https://doi.org/10.1038/s41401-018-0078-7.

[19]

Wang H, Zhou XM, Wu LY, et al. Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury. J Neuroinflammation. 2020; 17(1):188. https://doi.org/10.1186/s12974-020-01863-9.

[20]

Yang T, Zhang F. Targeting transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) for the intervention of vascular cognitive impairment and dementia. Arterioscler Thromb Vasc Biol. 2021; 41(1):97-116. https://doi.org/10.1161/ATVBAHA.120.314804.

[21]

Xu X, Shi Y, Yu Q, et al. Coumarin-derived imino sulfonate 5H ameliorates cardiac injury induced by myocardial infarction via activating the Sirt1/Nrf2 signaling pathway. Eur J Pharmacol. 2023;945:175615. https://doi.org/10.1016/j.ejphar.2023.175615.

[22]

Zhang L, Ma Q, Zhou Y. Strawberry leaf extract treatment alleviates cognitive impairment by activating Nrf2/HO-1 signaling in rats with streptozotocin-induced diabetes. Front Aging Neurosci. 2020;12:201. https://doi.org/10.3389/fnagi.2020.00201.

[23]

Kang H, Kim B. Bioactive compounds as inhibitors of inflammation, oxidative stress and metabolic dysfunctions via regulation of cellular redox balance and histone acetylation state. Foods. 2023; 12(5):925. https://doi.org/10.3390/foods12050925.

[24]

Braud L, Pini M, Stec DF, et al. Increased Sirt1 secreted from visceral white adipose tissue is associated with improved glucose tolerance in obese Nrf2-deficient mice. Redox Biol. 2021;38:101805. https://doi.org/10.1016/j.redox.2020.101805.

[25]

Dang R, Wang M, Li X, et al. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J Neuroinflammation. 2022; 19(1):41. https://doi.org/10.1186/s12974-022-02400-6.

[26]

Mei Z, Du L, Liu X, et al. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food Funct. 2022; 13(1):198-212. https://doi.org/10.1039/D1FO02579A.

[27]

Zhang Z, Fang J, Zhou J, et al. Pterostilbene attenuates subarachnoid hemorrhage-induced brain injury through the SIRT1-dependent Nrf2 signaling pathway. Oxid Med Cell Longev. 2022;2022:3550204. https://doi.org/10.1155/2022/3550204.

[28]

Chenna S, Koopman WJH, Prehn JHM, et al. Mechanisms and mathematical modeling of ROS production by the mitochondrial electron transport chain. Am J Physiol Cell Physiol. 2022; 323(1):C69-C83. https://doi.org/10.1152/ajpcell.00455.2021.

[29]

Duncombe J, Kitamura A, Hase Y, et al. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond). 2017; 131(19):2451-2468. https://doi.org/10.1042/CS20160727.

[30]

Carlson AP, Hänggi D, Macdonald RL, et al. Nimodipine reappraised: an old drug with a future. Curr Neuropharmacol. 2020; 18(1):65-82. https://doi.org/10.2174/1570159X17666190927113021.

[31]

Johnston SC, Amarenco P, Denison H, et al. Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. N Engl J Med. 2020; 383(3):207-217. https://doi.org/10.1056/NEJMoa1916870.

[32]

Xiong Z, Lu W, Zhu L, et al. Dl-3-n-butylphthalide treatment enhances hemodynamics and ameliorates memory deficits in rats with chronic cerebral hypoperfusion. Front Aging Neurosci. 2017;9:238. https://doi.org/10.3389/fnagi.2017.00238.

[33]

Liu X, Li Y, Bai N, et al. Updated evidence of Dengzhan Shengmai Capsule against ischemic stroke: a systematic review and meta-analysis. J Ethnopharmacol. 2022;283:114675. https://doi.org/10.1016/j.jep.2021.114675.

[34]

Kim DW, Kim SH, Kook HJ, et al. Efficacy and safety of Buyang-Huanwu-Tang (Boyang-Hwano-Tang) in patients with vascular dementia: a systematic review and meta-analysis. Complement Ther Clin Pract. 2022;47:101547. https://doi.org/10.1016/j.ctcp.2022.101547.

[35]

An H, Tao W, Liang Y, et al. Dengzhanxixin Injection ameliorates cognitive impairment through a neuroprotective mechanism based on mitochondrial preservation in patients with acute ischemic stroke. Front Pharmacol. 2021;12:712436. https://doi.org/10.3389/fphar.2021.712436.

[36]

Huang Y, Chen Y, Zhang M, et al. Clinical study of Zhongfeng Xingnao Liquid as adjuvant treatment for acute ischemic stroke. Int J Trad Chin Med. 2022; 44(7):739-743. https://doi.org/10.3760/cma.j.cn115398-20210812-00121.

[37]

Wang YW. Clinical study on the treatment of cognitive impairment in the acute stage of ischemic stroke with Zhongfeng Xingnao Liquid. Chengdu Univ Tradit Chin Med. 2020;2:202005. https://doi.org/10.26988/d.cnki.gcdzu.2020.000629.

[38]

Yao DW, Chen X, Lu Y. Effect of Zhongfeng Xingnao Liquid on neurological recorvery of patients with ischemic stroke at early recovery. Chin J Exp Tradit Med Form. 2020; 26(1):104-109. https://doi.org/10.13422/j.cnki.syfjx.20192231.

[39]

Li YQ, Xie Q, Zhang XY. The research of Zhongfeng Xingnao medicated serum effect on activity of SOD and content of MDA in ischemia reperfusion PC-12 cell. J Emerg Tradit Chin Med. 2013; 22(11):1821-1829.

[40]

Chen Q, Yang J, Chen H, et al. Inhibition Ras/MEK/ERK pathway: an important mechanism of Baihu Jia Guizhi Decoction ameliorated rheumatoid arthritis. J Ethnopharmacol. 2023;304:116072. https://doi.org/10.1016/j.jep.2022.116072.

[41]

Vidyanti AN, Hsieh JY, Lin KJ, et al. Role of HMGB1 in an animal model of vascular cognitive impairment induced by chronic cerebral hypoperfusion. Int J Mol Sci. 2020; 21(6):2176. https://doi.org/10.3390/ijms21062176.

[42]

Yuan FY, Ju C, Zang CX, et al. Gardenia jasminoides extract GJ-4 alleviates memory deficiency of vascular dementia in rats through PERK-mediated endoplasmic reticulum stress pathway. Am J Chin Med. 2023; 51(1):53-72. https://doi.org/10.1142/S0192415X23500040.

[43]

Tan Z, Chen Y, Xie W, et al. Nimodipine attenuates tau phosphorylation at Ser396 via miR-132/GSK-3β pathway in chronic cerebral hypoperfusion rats. Eur J Pharmacol. 2018; 819:1-8. https://doi.org/10.1016/j.ejphar.2017.10.027.

[44]

Liu H, Zhang Z, Zang C, et al. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. J Ethnopharmacol. 2021;267:113491. https://doi.org/10.1016/j.jep.2020.113491.

[45]

Zhang XY, Jing SS, Qiao O, et al. Cerebralcare granule® combined with nimodipine improves cognitive impairment in bilateral carotid artery occlusion rats by reducing lipocalin-2. Life Sci. 2021;286:120048. https://doi.org/10.1016/j.lfs.2021.120048.

[46]

Wei JP, Wen W, Dai Y, et al. Drinking water temperature affects cognitive function and progression of Alzheimer’s disease in a mouse model. Acta Pharmacol Sin. 2021; 42(1):45-54. https://doi.org/10.1038/s41401-020-0407-5.

[47]

Zhuang H, Yao X, Li H, et al. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav Immun. 2022; 100:155-171. https://doi.org/10.1016/j.bbi.2021.11.018.

[48]

Xu Y, Hu R, He D, et al. Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer’s disease by up-regulating SIRT1. Brain Behav. 2020; 10(7):e01655. https://doi.org/10.1002/brb3.1655.

[49]

Li Z, Wang H, Xiao G, et al. Recovery of post-stroke cognitive and motor deficiencies by Shuxuening Injection via regulating hippocampal BDNF-mediated neurotrophin/Trk signaling. Biomed Pharmacother. 2021;141:111828. https://doi.org/10.1016/j.biopha.2021.111828.

[50]

He XF, Li LL, Xian WB, et al. Chronic colitis exacerbates NLRP3-dependent neuroinflammation and cognitive impairment in middle-aged brain. J Neuroinflammation. 2021; 18(1):153. https://doi.org/10.1186/s12974-021-02199-8.

[51]

Odorcyk FK, Ribeiro RT, Roginski AC, et al. Differential age-dependent mitochondrial dysfunction, oxidative stress, and apoptosis induced by neonatal hypoxia-ischemia in the immature rat brain. Mol Neurobiol. 2021; 58(5):2297-2308. https://doi.org/10.1007/s12035-020-02261-1.

[52]

Li X, Wen W, Li P, et al. Mitochondrial protection and against glutamate neurotoxicity via Shh/Ptch1 signaling pathway to ameliorate cognitive dysfunction by Kaixin San in multi-infarct dementia rats. Oxid Med Cell Longev. 2021;2021:5590745. https://doi.org/10.1155/2021/5590745.

[53]

Zhou M, Zhang T, Zhang B, et al. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke. ACS Nano. 2022; 16(1):1456-1470. https://doi.org/10.1021/acsnano.1c09626.

[54]

Gascoigne DA, Minhaj MM, Aksenov DP. Neonatal anesthesia and oxidative stress. Antioxidants (Basel). 2022; 11(4):787. https://doi.org/10.3390/antiox11040787.

[55]

Yu S, Doycheva DM, Gamdzyk M, et al. BMS-470539 attenuates oxidative stress and neuronal apoptosis via MC1R/cAMP/PKA/Nurr1 signaling pathway in a neonatal hypoxic-ischemic rat model. Oxid Med Cell Longev. 2022;2022:4054938. https://doi.org/10.1155/2022/4054938.

[56]

Martínez GI, Arboleya S, Grijota FJ, et al. The therapeutic role of exercise and probiotics in stressful brain conditions. Int J Mol Sci. 2022; 23(7):3610. https://doi.org/10.3390/ijms23073610.

[57]

Ren X, Chen L, Xie J, et al. Resveratrol ameliorates mitochondrial elongation via Drp1/Parkin/PINK1 signaling in senescent-like cardiomyocytes. Oxid Med Cell Longev. 2017;2017:4175353. https://doi.org/10.1155/2017/4175353.

[58]

Trushina E, Trushin S, Hasan MF. Mitochondrial complex I as a therapeutic target for Alzheimer’s disease. Acta Pharm Sin B. 2022; 12(2):483-495. https://doi.org/10.1016/j.apsb.2021.11.003.

[59]

Liu J, Huang J, Zhang Z, et al. Mesenchymal stem cell-derived exosomes ameliorate delayed neurocognitive recovery in aged mice by inhibiting hippocampus ferroptosis via activating SIRT1/Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2022;2022:3593294. https://doi.org/10.1155/2022/3593294.

[60]

Gao J, Ma C, Xia D, et al. Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-κB/ferroptosis pathway. Br J Pharmacol. 2023; 180(3):308-329. https://doi.org/10.1111/bph.15961.

[61]

Zeng X, Zhang YD, Ma RY, et al. Activated Drp 1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil Med Res. 2022; 9(1):25. https://doi.org/10.1186/s40779-022-00383-2.

[62]

Kvistad CE, Næss H, Helleberg BH, et al. Tenecteplase versus alteplase for the management of acute ischaemic stroke in Norway (NOR-TEST 2, part A): a phase 3, randomised, open-label, blinded endpoint, non-inferiority trial. Lancet Neurol. 2022; 21(6):511-519. https://doi.org/10.1016/S1474-4422(22)00124-7.

[63]

Wali B, Ishrat T, Won S, et al. Progesterone in experimental permanent stroke: a dose-response and therapeutic time-window study. Brain. 2014; 137(Pt 2):486-502. https://doi.org/10.1093/brain/awt319.

[64]

Kim JO, Lee SJ, Pyo JS. Effect of acetylcholinesterase inhibitors on post-stroke cognitive impairment and vascular dementia: a meta-analysis. PLoS One. 2020; 15(2):e0227820. https://doi.org/10.1371/journal.pone.0227820.

[65]

Guekht A, Skoog I, Edmundson S, et al. Artemida trial (a randomized trial of efficacy, 12 months international double-blind actovegin): a randomized controlled trial to assess the efficacy of actovegin in poststroke cognitive impairment. Stroke. 2017; 48(5):1262-1270. https://doi.org/10.1161/STROKEAHA.116.014321.

[66]

Salvadori E, Poggesi A, Donnini I, et al. Association of nimodipine and choline alphoscerate in the treatment of cognitive impairment in patients with cerebral small vessel disease: study protocol for a randomized placebo-controlled trial-the CONIVaD trial. Aging Clin Exp Res. 2020; 32(3):449-457. https://doi.org/10.1007/s40520-019-01229-z.

[67]

Pei H, Ma L, Cao Y, et al. Traditional Chinese medicine for Alzheimer’s disease and other cognitive impairment: a review. Am J Chin Med. 2020; 48(3):487-511. https://doi.org/10.1142/S0192415X20500251.

[68]

Zhu T, Wang L, Wang LP, et al. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: applications for natural compounds from medicinal herbs. Biomed Pharmacother. 2022;148:112719. https://doi.org/10.1016/j.biopha.2022.112719.

[69]

Bourourou M, Heurteaux C, Blondeau N. Alpha-linolenic acid given as enteral or parenteral nutritional intervention against sensorimotor and cognitive deficits in a mouse model of ischemic stroke. Neuropharmacology. 2016; 108:60-72. https://doi.org/10.1016/j.neuropharm.2016.04.040.

[70]

Fu C, Wu Y, Liu S, et al. Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol. 2022;289:115021. https://doi.org/10.1016/j.jep.2022.115021.

[71]

Mi Y, Xu J, Shi R, et al. Okanin from Coreopsis tinctoria Nutt. alleviates cognitive impairment in bilateral common carotid artery occlusion mice by regulating the miR-7/NLRP3 axis in microglia. Food Funct. 2023; 14(1):369-387. https://doi.org/10.1039/D2FO01476A.

[72]

Liu L, Zhang H, Chen, SH, et al. Research progress on pharmacological effects of Zhongfeng Xingnao Liquid on stroke. Chin Med Pharmaco Clinic. 2021; 37(2):227-233. https://doi.org/10.13412/j.cnki.zyyl.20201214.003.

[73]

Xu M, Ma Q, Fan C, et al. Ginsenosides Rb1 and Rg1 protect primary cultured astrocytes against oxygen-glucose deprivation/reoxygenation-induced injury via improving mitochondrial function. Int J Mol Sci. 2019; 20(23):6086. https://doi.org/10.3390/ijms20236086.

[74]

Chu SF, Zhang Z, Zhou X, et al. Ginsenoside Rg 1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway. Acta Pharmacol Sin. 2019; 40(1):13-25. https://doi.org/10.1038/s41401-018-0154-z.

[75]

Chen J, Zhang X, Liu X, et al. Ginsenoside Rg 1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur J Pharmacol. 2019;856:172418. https://doi.org/10.1016/j.ejphar.2019.172418.

[76]

Jiang N, Lv J, Wang H, et al. Ginsenoside Rg 1 ameliorates chronic social defeat stress-induced depressive-like behaviors and hippocampal neuroinflammation. Life Sci. 2020;252:117669. https://doi.org/10.1016/j.lfs.2020.117669.

[77]

Liu JQ, Zhao M, Zhang Z, et al. Rg1 improves LPS-induced Parkinsonian symptoms in mice via inhibition of NF-κB signaling and modulation of M1/M2 polarization. Acta Pharmacol Sin. 2020; 41(4):523-534. https://doi.org/10.1038/s41401-020-0358-x.

[78]

Cai J, Huang K, Han S, et al. A comprehensive system review of pharmacological effects and relative mechanisms of Ginsenoside Re: recent advances and future perspectives. Phytomedicine. 2022;102:154119. https://doi.org/10.1016/j.phymed.2022.154119.

[79]

Lee GH, Lee WJ, Hur J, et al. Ginsenoside Re mitigates 6-hydroxydopamine-induced oxidative stress through upregulation of GPX4. Molecules. 2020; 25(1):188. https://doi.org/10.3390/molecules25010188.

[80]

Nguyen BT, Shin EJ, Jeong JH, et al. Ginsenoside Re attenuates memory impairments in aged Klotho deficient mice via interactive modulations of angiotensin II AT1 receptor, Nrf2 and GPx-1 gene. Free Radic Biol Med. 2022; 189:2-19. https://doi.org/10.1016/j.freeradbiomed.2022.07.003.

[81]

Jiang LS, Li W, Zhuang TX, et al. Ginsenoside Ro ameliorates high-fat diet-induced obesity and insulin resistance in mice via activation of the G protein-coupled bile acid receptor 5 pathway. J Pharmacol Exp Ther. 2021; 377(3):441-451. https://doi.org/10.1124/jpet.120.000435.

[82]

Ma GD, Chiu CH, Hsu YJ, et al. Changbai Mountain Ginseng (Panax ginseng C. A.Mey) extract supplementation improves exercise performance and energy utilization and decreases fatigue-associated parameters in mice. Molecules. 2017; 22(2):237. https://doi.org/10.3390/molecules22020237.

[83]

Kim S, Oh MH, Kim BS, et al. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells. J Ginseng Res. 2015; 39(4):365-370. https://doi.org/10.1016/j.jgr.2015.03.008.

[84]

Shin JH, Kwon HW, Cho HJ, et al. Vasodilator-stimulated phosphoprotein-phosphorylation by ginsenoside Ro inhibits fibrinogen binding to αIIb/β(3) in thrombin-induced human platelets. J Ginseng Res. 2016; 40(4):359-365. https://doi.org/10.1016/j.jgr.2015.11.003.

[85]

Dong X, Huang R. Ferulic acid: an extraordinarily neuroprotective phenolic acid with anti-depressive properties. Phytomedicine. 2022;105:154355. https://doi.org/10.1016/j.phymed.2022.154355.

[86]

Han Y, Chen Y, Zhang Q, et al. Overview of therapeutic potentiality of Angelica sinensis for ischemic stroke. Phytomedicine. 2021;90:153652. https://doi.org/10.1016/j.phymed.2021.153652.

[87]

Zhang X, Zheng W, Wang T, et al. Danshen-Chuanxiong-Honghua ameliorates cerebral impairment and improves spatial cognitive deficits after transient focal ischemia and identification of active compounds. Front Pharmacol. 2017;8:452. https://doi.org/10.3389/fphar.2017.00452.

[88]

Hu T, Li S, Liang WQ, et al. Notoginsenoside R1-induced neuronal repair in models of Alzheimer disease is associated with an alteration in neuronal hyperexcitability, which is regulated by Nav. Front Cell Neurosci. 2020;14:280. https://doi.org/10.3389/fncel.2020.00280.

[89]

Hu K, Li C, Yu T, et al. Global analysis of qualitative and quantitative metabolism of notoginsenoside R1 in rat liver-brain-gut axis based on LC-IT-TOF/MS combing mMDF strategy. Phytomedicine. 2022;104:154261. https://doi.org/10.1016/j.phymed.2022.154261.

[90]

Li H, Zhu J, Xu YW, et al. Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. Redox Biol. 2022;54:102384. https://doi.org/10.1016/j.redox.2022.102384.

[91]

Tong Q, Zhu PC, Zhuang Z, et al. Notoginsenoside R1 for organs ischemia/reperfusion injury: a preclinical systematic review. Front Pharmacol. 2019;10:1204. https://doi.org/10.3389/fphar.2019.01204.

[92]

Zhu T, Xie WJ, Wang L, et al. Notoginsenoside R1 activates the NAMPT-NAD(+)-SIRT1 cascade to promote postischemic angiogenesis by modulating Notch signaling. Biomed Pharmacother. 2021;140:111693. https://doi.org/10.1016/j.biopha.2021.111693.

[93]

Yin Z, Gao D, Du K, et al. Rhein ameliorates cognitive impairment in an APP/PS1 transgenic mouse model of Alzheimer’s disease by relieving oxidative stress through activating the SIRT1/PGC-1α pathway. Oxid Med Cell Longev. 2022;2022:2524832. https://doi.org/10.1155/2022/2524832.

[94]

Huang Q, Lou T, Lu J, et al. Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons. J Ginseng Res. 2022; 46(6):759-770. https://doi.org/10.1016/j.jgr.2022.02.002.

[95]

Lou T, Huang Q, Su H, et al. Targeting sirtuin 1 signaling pathway by ginsenosides. J Ethnopharmacol. 2021;268:113657. https://doi.org/10.1016/j.jep.2020.113657.

[96]

Wang H, Lv J, Jiang N, et al. Ginsenoside Re protects against chronic restraint stress-induced cognitive deficits through regulation of NLRP3 and Nrf2 pathways in mice. Phytother Res. 2021; 35(5):2523-2535. https://doi.org/10.1002/ptr.6947.

[97]

Hou T, Zhang L, Yang X. Ferulic acid, a natural polyphenol, protects against osteoporosis by activating SIRT1 and NF-κB in neonatal rats with glucocorticoid-induced osteoporosis. Biomed Pharmacother. 2019;120:109205. https://doi.org/10.1016/j.biopha.2019.109205.

[98]

Yin Z, Geng X, Zhang Z, et al. Rhein relieves oxidative stress in an Aβ1-42 oligomer-burdened neuron model by activating the SIRT1/PGC-1α-regulated mitochondrial biogenesis. Front Pharmacol. 2021;12:746711. https://doi.org/10.3389/fphar.2021.746711.

[99]

Chen Y, Zhu L, Meng H, et al. Ferulic acid protects human lens epithelial cells against ionizing radiation-induced oxidative damage by activating Nrf2/HO-1 signal pathway. Oxid Med Cell Longev. 2022;2022:6932188. https://doi.org/10.1155/2022/6932188.

[100]

Du F, Huang H, Cao Y, et al. Notoginsenoside R1 protects against high glucose-induced cell injury through AMPK/Nrf2 and downstream HO-1 signaling. Front Cell Dev Biol. 2021;9:791643. https://doi.org/10.3389/fcell.2021.791643.

[101]

Zhou Y, Gao C, Vong CT, et al. Rhein regulates redox-mediated activation of NLRP3 inflammasomes in intestinal inflammation through macrophage-activated crosstalk. Br J Pharmacol. 2022; 179(9):1978-1997. https://doi.org/10.1111/bph.15773.

[102]

Peng D, Wang YX, Huang TH, et al. Ligustilide improves cognitive impairment via regulating the SIRT1/IRE1α/XBP1s/CHOP pathway in vascular dementia rats. Oxid Med Cell Longev. 2022;2022:6664990. https://doi.org/10.1155/2022/6664990.

[103]

Wang ZY, Li MZ, Li WJ, et al. Mechanism of action of Daqinjiao Decoction in treating cerebral small vessel disease explored using network pharmacology and molecular docking technology. Phytomedicine. 2023;108:154538. https://doi.org/10.1016/j.phymed.2022.154538.

[104]

Hu Y, Yang Y, Zhang M, et al. Intermittent fasting pretreatment prevents cognitive impairment in a rat model of chronic cerebral hypoperfusion. J Nutr. 2017; 147(7):1437-1445. https://doi.org/10.3945/jn.116.245613.

[105]

Washida K, Hattori Y, Ihara M. Animal models of chronic cerebral hypoperfusion: from mouse to primate. Int J Mol Sci. 2019; 20(24):6176. https://doi.org/10.3390/ijms20246176.

[106]

Magee JC, Grienberger C. Synaptic plasticity forms and functions. Annu Rev Neurosci. 2020; 43:95-117. https://doi.org/10.1146/annurev-neuro-090919-022842.

[107]

Fuchsberger T, Paulsen O. Modulation of hippocampal plasticity in learning and memory. Curr Opin Neurobiol. 2022;75:102558. https://doi.org/10.1016/j.conb.2022.102558.

[108]

Zhou S, Liu J, Sun Y, et al. Dietary choline metabolite TMAO impairs cognitive function and induces hippocampal synaptic plasticity declining through the mTOR/P70S6K/4EBP1 pathway. Food Funct. 2023; 14(6):2881-2895. https://doi.org/10.1039/D2FO03874A.

[109]

Sun XY, Li LJ, Dong QX, et al. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2021; 18(1):131. https://doi.org/10.1186/s12974-021-02182-3.

[110]

Jaganjac M, Milkovic L, Zarkovic N, et al. Oxidative stress and regeneration. Free Radic Biol Med. 2022; 181:154-165. https://doi.org/10.1016/j.freeradbiomed.2022.02.004.

[111]

Nadeem MS, Kazmi I, Ullah I, et al. Allicin, an antioxidant and neuroprotective agent, ameliorates cognitive impairment. Antioxidants (Basel). 2021; 11(1):87. https://doi.org/10.3390/antiox11010087.

[112]

Tang X, Liu H, Xiao Y, et al. Vitamin C intake and ischemic stroke. Front Nutr. 2022;9:935991. https://doi.org/10.3389/fnut.2022.935991.

[113]

Thangwong P, Jearjaroen P, Govitrapong P, et al. Melatonin improves cognitive function by suppressing endoplasmic reticulum stress and promoting synaptic plasticity during chronic cerebral hypoperfusion in rats. Biochem Pharmacol. 2022;198:114980. https://doi.org/10.1016/j.bcp.2022.114980.

[114]

Liu F, Lu J, Manaenko A, et al. Mitochondria in ischemic stroke: new insight and implications. Aging Dis. 2018; 9(5):924-937. https://doi.org/10.14336/AD.2017.1126.

[115]

Miwa S, Kashyap S, Chini E, et al. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest. 2022; 132(13):e158447. https://doi.org/10.1172/JCI158447.

[116]

Rajeev V, Fann DY, Dinh QN, et al. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics. 2022; 12(4):1639-1658. https://doi.org/10.7150/thno.68304.

[117]

Shaw P, Chattopadhyay A. Nrf2-ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. J Cell Physiol. 2020; 235(4):3119-3130. https://doi.org/10.1002/jcp.29219.

[118]

Mao H, Wang L, Xiong Y, et al. Fucoxanthin attenuates oxidative damage by activating the Sirt1/Nrf2/HO-1 signaling pathway to protect the kidney from ischemia-reperfusion injury. Oxid Med Cell Longev. 2022;2022:7444430. https://doi.org/10.1155/2022/7444430.

[119]

Fang C, Xu H, Yuan L, et al. Natural compounds for SIRT1-mediated oxidative stress and neuroinflammation in stroke: a potential therapeutic target in the future. Oxid Med Cell Longev. 2022;2022:1949718. https://doi.org/10.1155/2022/1949718.

[120]

Lee JM, Lee JH, Song MK, et al. NXP031 improves cognitive impairment in a chronic cerebral hypoperfusion-induced vascular dementia rat model through Nrf2 signaling. Int J Mol Sci. 2021; 22(12):6285. https://doi.org/10.3390/ijms22126285.

[121]

Yang R, Shen YJ, Chen M, et al. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats. J Asian Nat Prod Res. 2022; 24(3):278-289. https://doi.org/10.1080/10286020.2021.1949302.

[122]

Zhou Y, Peng L, Li Y, et al. Silent information regulator 1 ameliorates oxidative stress injury via PGC-1α/PPARγ-Nrf2 pathway after ischemic stroke in rat. Brain Res Bull. 2022; 178:37-48. https://doi.org/10.1016/j.brainresbull.2021.11.001.

[123]

Zhang S, Ju Z, Guan H, et al. Dose-dependent exposure profile and metabolic characterization of notoginsenoside R1 in rat plasma by ultra-fast liquid chromatography-electrospray ionization-tandem mass spectrometry. Biomed Chromatogr. 2019; 33(11):e4670. https://doi.org/10.1002/bmc.4670.

PDF (15921KB)

132

Accesses

0

Citation

Detail

Sections
Recommended

/