Pinelliae Rhizoma: a systematic review on botany, ethnopharmacology, phytochemistry, preclinical and clinical evidence

Zuanji Liang , Jinchao Wei , Sioi Chan , Siyuan Zhang , Li Xu , Chenxiao Shen , Zhangfeng Zhong , Yitao Wang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) : 1 -20.

PDF (14013KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) :1 -20. DOI: 10.1016/S1875-5364(25)60807-7
Review
research-article

Pinelliae Rhizoma: a systematic review on botany, ethnopharmacology, phytochemistry, preclinical and clinical evidence

Author information +
History +
PDF (14013KB)

Abstract

Pinelliae Rhizoma (PR), known as Banxia in Chinese, Hange in Japanese, and Banha in Korean, is a renowned herbal medicine in East Asia derived from the dry tuber of Pinellia ternata (Thunb.) Breit. (PT). It is extensively utilized in dispensing granules, classical prescriptions, and herbal formulas to treat various conditions, including cough, infection, phlegm, nausea, asthma, and inflammation. Despite numerous studies on PR and its classical prescriptions over recent decades, a comprehensive synthesis of available evidence regarding its multifunctional roles and therapeutic potential is lacking. This review aims to address this gap by examining emerging evidence from metabonomics, preclinical studies, and clinical trials, while exploring potential trends and prospects for future research. A systematic literature search was conducted across six electronic databases, including PubMed, Web of Science, Scopus, ScienceDirect, Wanfang, and China National Knowledge Infrastructure, to identify relevant articles on PR published until March 2023. PR contains 107 compounds with diverse pharmacological activities, including anti-inflammatory, immune regulatory, anti-viral, anti-cancer, anti-asthma, antitussive and expectorant, antioxidant, anti-obesity, anti-atherosclerosis, anti-microbial, emetic and anti-emetic, anti-convulsant and anti-epileptic, sedative and hypnotic, learning and memory enhancement, and anti-depressant effects. Metabonomic studies suggest that raw PR may exhibit cardiotoxicity and pregnancy toxicity while showing no apparent hepatorenal toxicity. However, limited pharmacokinetic investigations on PR constrain its clinical translation. Furthermore, clinical safety data on PR is scarce, with only four clinical trials assessing its positive effects in pediatric epilepsy, nausea and vomiting, soft tissue injury, and chronic sinus tract. This review aims to enhance understanding of PR and provide valuable information and recommendations for further research and development of herbal medicine.

Keywords

Pinelliae Rhizoma / Pinellia ternata / Herbal medicine / Classical prescription / Dispensing granule

Cite this article

Download citation ▾
Zuanji Liang, Jinchao Wei, Sioi Chan, Siyuan Zhang, Li Xu, Chenxiao Shen, Zhangfeng Zhong, Yitao Wang. Pinelliae Rhizoma: a systematic review on botany, ethnopharmacology, phytochemistry, preclinical and clinical evidence. Chinese Journal of Natural Medicines, 2025, 23(1): 1-20 DOI:10.1016/S1875-5364(25)60807-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiong Y, Huang J. Anti-malarial drug: the emerging role of artemisinin and its derivatives in liver disease treatment. Chin Med. 2021; 16(1):80. https://doi.org/10.1186/s13020-021-00489-0.

[2]

Lv W, Tan X, Chen X, et al. D-Limonene for regulating metabolism-associated fatty liver disease (MAFLD) and analysis of the TCM constitution: a protocol for an exploratory, randomized, double-blind, placebo-controlled trial (DL-MAFLD-TCM). Food Front. 2022; 3(4):550-559. https://doi.org/10.1002/fft2.171.

[3]

Zhong Z, Vong CT, Chen F, et al. Immunomodulatory potential of natural products from herbal medicines as immune checkpoints inhibitors: helping to fight against cancer via multiple targets. Med Res Rev. 2022; 42(3):1246-1279. https://doi.org/10.1002/med.21876.

[4]

Yang C, Zhong ZF, Wang SP, et al. HIF-1: structure, biology and natural modulators. Chin J Nat Med. 2021; 19(7):521-527. https://doi.org/10.1016/S1875-5364(21)60051-1.

[5]

Zhang S, Luo H, Tan D, et al. Holism of Chinese herbal medicine prescriptions for inflammatory bowel disease: a review based on clinical evidence and experimental research. Phytomedicine. 2022;102:154202. https://doi.org/10.1016/j.phymed.2022.154202.

[6]

Liang Z, Lai Y, Li M, et al. Applying regulatory science in traditional chinese medicines for improving public safety and facilitating innovation in China: a scoping review and regulatory implications. Chin Med. 2021; 16(1):23. https://doi.org/10.1186/s13020-021-00433-2.

[7]

Luo H, Vong CT, Chen H, et al. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med. 2019;14:48. https://doi.org/10.1186/s13020-019-0270-9.

[8]

Yang Y, Islam MS, Wang J, et al. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci. 2020; 16(10):1708-1717. https://doi.org/10.7150/ijbs.45538.

[9]

An X, Zhang Y, Duan L, et al. The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed Pharmacother. 2021;137:111267. https://doi.org/10.1016/j.biopha.2021.111267.

[10]

Huang K, Zhang P, Zhang Z, et al. Traditional Chinese medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther. 2021;225:107843. https://doi.org/10.1016/j.pharmthera.2021.107843.

[11]

Kang X, Jin D, Jiang L, et al. Efficacy and mechanisms of traditional Chinese medicine for COVID-19: a systematic review. Chin Med. 2022; 17(1):30. https://doi.org/10.1186/s13020-022-00587-7.

[12]

Xing D, Liu Z. Effectiveness and safety of traditional Chinese medicine in treating COVID-19: clinical evidence from China. Aging Dis. 2021; 12(8):1850-1856. https://doi.org/10.14336/AD.2021.0906.

[13]

Ni L, Chen L, Huang X, et al. Combating COVID-19 with integrated traditional Chinese and Western medicine in China. Acta Pharm Sin B. 2020; 10(7):1149-1162. https://doi.org/10.1016/j.apsb.2020.06.009.

[14]

Shu Z, Zhou Y, Chang K, et al. Clinical features and the traditional Chinese medicine therapeutic characteristics of 293 COVID-19 inpatient cases. Front Med. 2020; 14(6):760-775. https://doi.org/10.1007/s11684-020-0803-8.

[15]

Xiong X, Wang P, Su K, et al. Chinese herbal medicine for coronavirus disease 2019: a systematic review and meta-analysis. Pharmacol Res. 2020;160:105056. https://doi.org/10.1016/j.phrs.2020.105056.

[16]

Liu W, Huang J, Zhang F, et al. Comprehensive profiling and characterization of the absorbed components and metabolites in mice serum and tissues following oral administration of Qing-Fei-Pai-Du Decoction by UHPLC-Q-Exactive-Orbitrap HRMS. Chin J Nat Med. 2021; 19(4):305-320. https://doi.org/10.1016/S1875-5364(21)60031-6.

[17]

Wei WL, Wu SF, Li HJ, et al. Chemical profiling of Huashi Baidu prescription, an effective anti-COVID-19 TCM formula, by UPLC-Q-TOF/MS. Chin J Nat Med. 2021; 19(6):473-480. https://doi.org/10.1016/S1875-5364(21)60046-8.

[18]

He L, Ding Z, Jiang F, et al. Induction and identification of hexadecaploid of Pinellia ternate. Euphytica. 2012; 186(2):479-488. https://doi.org/10.1007/s10681-012-0642-z.

[19]

Liu Y, Ota M, Fueki T, et al. Historical study for the differences of processing of Pinellia ternata tuber between China and Japan. Front Pharmacol. 2022;13:892732. https://doi.org/10.3389/fphar.2022.892732.

[20]

Wang H, Hu J, Li L, et al. Involvement of PtPHR1 in phosphates starvation-induced alkaloid biosynthesis in Pinellia ternata (Thunb.) Breit. Front Plant Sci. 2022;13:914648. https://doi.org/10.3389/fpls.2022.914648.

[21]

Zhou Z, Li Y, Li H. Study on current situation of import and export trade and industrialization development of Pinelliae Rhizoma. Chin Med Mat. 2022; 45(5):1033-1040. https://doi.org/10.13863/j.issn1001-4454.2022.05.001.

[22]

Mao R, He Z. Pinellia ternata (Thunb.) Breit: a review of its germplasm resources, genetic diversity and active components. J Ethnopharmacol. 2020;263:113252. https://doi.org/10.1016/j.jep.2020.113252.

[23]

Peng W, Li N, Jiang E, et al. A review of traditional and current processing methods used to decrease the toxicity of the rhizome of Pinellia ternata in traditional Chinese medicine. J Ethnopharmacol. 2022;299:115696. https://doi.org/10.1016/j.jep.2022.115696.

[24]

Bai J, Qi JB, Yang L, et al. A comprehensive review on ethnopharmacological, phytochemical, pharmacological and toxicological evaluation, and quality control of Pinellia ternata (Thunb.) Breit. J Ethnopharmacol. 2022;298:115650. https://doi.org/10.1016/j.jep.2022.115650.

[25]

Ji X, Huang B, Wang G, et al. The ethnobotanical, phytochemical and pharmacological profile of the genus Pinellia. Fitoterapia. 2014; 93:1-17. https://doi.org/10.1016/j.fitote.2013.12.010.

[26]

Page MJ, Mckenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71. https://doi.org/10.1136/bmj.n71.

[27]

Nanjing University of Traditional Chinese Medicine. Dictionary of Traditional Chinese Medicine. Shanghai Sci Technol Press, Shanghai, 2006.

[28]

Juneidi S, Gao Z, Yin H, et al. Breaking the summer dormancy of Pinellia ternata by introducing a heat tolerance receptor-like kinase ERECTA gene. Front Plant Sci. 2020;11:780. https://doi.org/10.3389/fpls.2020.00780.

[29]

Ma G, Zhang M, Xu J, et al. Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin. Ecotoxicol Environ Saf. 2020;202:110877. https://doi.org/10.1016/j.ecoenv.2020.110877.

[30]

Vargas GS, Meriles J, Conforto C, et al. Field assessment of soil biological and chemical quality in response to crop management practices. World J Microb Biot. 2009; 25(3):439-448. https://doi.org/10.1007/s11274-008-9908-y.

[31]

He Z, Mao R, Dong JE, et al. Remediation of deterioration in microbial structure in continuous Pinellia ternata cropping soil by crop rotation. Can J Microbiol. 2019; 65(4):282-295. https://doi.org/10.1139/cjm-2018-0409.

[32]

Liu S WH, Sun H, et al. Effects of continuous cropping of Pinellia ternata on rhizospheric microbial community. Chin Tradit Herbal Drugs. 2022; 53(4):1148-1155. https://doi.org/10.7501/j.issn.0253-2670.2022.04.023.

[33]

Noushahi HA, Zhu Z, Khan AH, et al. Rhizosphere microbial diversity in rhizosphere of Pinellia ternata intercropped with maize. Biotech. 2021; 11(11):469. https://doi.org/10.1007/s13205-021-03011-3.

[34]

Jie EY, Ryu YB, Choi SA, et al. Mass propagation of microtubers from suspension cultures of Pinellia ternata cells and quantitative analysis of succinic acid in Pinellia tubers. Plant Biotechnol Rep. 2015; 9(5):331-338. https://doi.org/10.1007/s11816-015-0369-0.

[35]

Chialva M, Guglielmone L, Ercole E, et al. Pinellia ternata (Araceae) a Silent Inhabitant of Italian Botanical Gardens, or Something More. Boll Mus Ist Biol Univ Genova, 2013.

[36]

Zhang ZH, Zhao YY, Cheng XL, et al. General toxicity of Pinellia ternata (Thunb.) Berit. in rat: a metabonomic method for profiling of serum metabolic changes. J Ethnopharmacol. 2013; 149(1):303-310. https://doi.org/10.1016/j.jep.2013.06.039.

[37]

Chen ZM, Vong CT, Zhang TJ, et al. Quality evaluation methods of Chinese medicine based on scientific supervision: recent research progress and prospects. Chin Med. 2023; 18(1):126. https://doi.org/10.1186/s13020-023-00836-3.

[38]

Su T, Zhang WW, Zhang YM, et al. Standardization of the manufacturing procedure for Pinelliae Rhizoma Praeparatum cum Zingibere et Alumine. J Ethnopharmacol. 2016; 193:663-669. https://doi.org/10.1016/j.jep.2016.09.038.

[39]

Yang BY, Li M, Jing Y, et al. Difference of chemical constituents and efficacy between crude and processed Pinelliae Rhizoma. Chin Tradit Herb Drugs. 2018; 49:4349-4355. https://doi.org/10.7501/j.issn.0253-2670.2018.18.020.

[40]

Sun LM, Zhang B, Wang YC, et al. Metabolomic analysis of raw Pinelliae Rhizoma and its alum-processed products via UPLC-MS and their cytotoxicity. Biomed Chromatogr. 2019; 33(2):e4411. https://doi.org/10.1002/bmc.4411.

[41]

Liu Y, Li XJ, Chen C, et al. Effect of mineral excipients on processing traditional Chinese medicines: an insight into the components, pharmacodynamics and mechanism. Chin Med. 2021; 16(1):143. https://doi.org/10.1186/s13020-021-00554-8.

[42]

Yu H, Pan Y, Wu H, et al. The alum-processing mechanism attenuating toxicity of Araceae Pinellia ternata and Pinellia pedatisecta. Arch Pharm Res. 2015; 38(10):1810-1821. https://doi.org/10.1007/s12272-015-0556-0.

[43]

Pan LY, Wang YS, Yue LX, et al. Review on processing methods of toxic Chinese materia medica and the related mechanisms of action. Am J Chin Med. 2023; 51(6):1385-1412. https://doi.org/10.1142/S0192415X23500635.

[44]

Fueki T, Nose I, Liu Y, et al. Oxalic acid in ginger specifically denatures the acrid raphides in the unprocessed dried tuber of Pinellia ternata. Acupunct Herb Med. 2022; 2:33-40. https://doi.org/10.1097/HM9.0000000000000025.

[45]

Chung HS, Um JY, Kim MS, et al. Determination of the site of origin of Pinellia ternata roots based on RAPD analysis and PCR-RFLP. Hereditas. 2002; 136(2):126-129. https://doi.org/10.1034/j.1601-5223.2002.1360206.x.

[46]

Choi NR, Park J, Ko SJ, et al. Prediction of the medicinal mechanisms of Pinellia ternata Breitenbach, a traditional medicine for gastrointestinal motility disorders, through network pharmacology. Plants. 2022; 11(10):1348. https://doi.org/10.3390/plants11101348.

[47]

Fueki T, Tanaka K, Obara K, et al. The acrid raphides in tuberous root of Pinellia ternata have lipophilic character and are specifically denatured by ginger extract. J Nat Med. 2020; 74(4):722-731. https://doi.org/10.1007/s11418-020-01425-6.

[48]

Jing Y, Lai Y, Chen H, et al. Study on the identification of Pinelliae Rhizoma and Pinelliae Pedatisectae Rhizoma based on the characteristic component triglochinic acid. RSC Adv. 2019; 9(21):11774-11780. https://doi.org/10.1039/C9RA01626K.

[49]

Leung AY. Traditional toxicity documentation of Chinese materia medica: an overview. Toxicol Pathol. 2006; 34(4):319-326. https://doi.org/10.1080/01926230600773958.

[50]

Sheridan H, Kopp B, Krenn L, et al. Traditional Chinese herbal medicine preparation: invoking the butterfly effect. Science. 2015;350:S64-S66. https://doi.org/10.1126/science.aac5891.

[51]

Wu X, Wang S, Lu J, et al. Seeing the unseen of Chinese herbal medicine processing (Paozhi): advances in new perspectives. Chin Med. 2018;13:4. https://doi.org/10.1186/s13020-018-0163-3.

[52]

Chen Y, Liu MQ, Wen JL, et al. Panax japonicus C.A. Meyer: a comprehensive review on botany, phytochemistry, pharmacology, pharmacokinetics and authentication. Chin Med. 2023; 28(1):148. https://doi.org/10.1186/s13020-023-00857-y.

[53]

Arai I, Kawahara N. Kampo pharmaceutical products in the Japanese health-care system: legal status and quality assurance. Tradit Kampo Med. 2019; 6(1):3-11. https://doi.org/10.1002/tkm2.1204.

[54]

Iwasa M, Iwasaki T, Ono T, et al. Chemical composition and major odor-active compounds of essential oil from Pinellia tuber (dried rhizome of Pinellia ternata) as crude drug. J Oleo Sci. 2014; 63(2):127-135. https://doi.org/10.5650/jos.ess13092.

[55]

Yahagi T, Atsumi T, Mano S, et al. Quality evaluation of Pinellia Tuber by LC-TOF/MS targeted to ephedrine. J Nat Med. 2021; 75(3):692-698. https://doi.org/10.1007/s11418-021-01485-2.

[56]

Yoon JS, Seo JC, Han SW. Pinelliae Rhizoma herbal-acupuncture solution induced apoptosis in human cervical cancer cells. SNU-17. Am J Chin Med. 2006; 34(3):401-408. https://doi.org/10.1142/S0192415X0600393X.

[57]

Yi LT, Wang X, Wang Y, et al. Antidepressant-like effects of monarch drug compatibility in Banxia Houpu Decoction. Chin J Nat Med. 2010; 8(5):362-369. https://doi.org/10.1016/S1875-5364(10)60043-X.

[58]

Wang JL, Chen JL, Zhang XY, et al. Physiological and transcriptional responses to heat stress in a typical phenotype of Pinellia ternata. Chin J Nat Med. 2023; 21(4):243-252. https://doi.org/10.1016/S1875-5364(23)60433-9.

[59]

Kim BY, Cho SJ, Kim HW, et al. Genome wide expression analysis of the effect of Pinelliae Rhizoma extract on psychological stress. Phytother Res. 2010; 24(3):384-392. https://doi.org/10.1002/ptr.2957.

[60]

He L, Kang Q, Zhang Y, et al. Glycyrrhizae Radix et Rhizoma: the popular occurrence of herbal medicine applied in classical prescriptions. Phytother Res. 2023; 37(7):3135-3160. https://doi.org/10.1002/ptr.7869.

[61]

Cheung F. TCM: made in China. Nature. 2011; 480(7378):S82-S83. https://doi.org/10.1038/480S82a.

[62]

Masuy I, Van Oudenhove L, Tack J. Review article: treatment options for functional dyspepsia. Aliment Pharmacol Ther. 2019; 49(9):1134-1172. https://doi.org/10.1111/apt.15191.

[63]

Miwa H, Nagahara A, Asakawa A, et al. Evidence-based clinical practice guidelines for functional dyspepsia 2021. J Gastroenterol. 2022; 57(2):47-61. https://doi.org/10.1007/s00535-021-01843-7.

[64]

Yamada C, Hattori T, Ohnishi S, et al. Ghrelin enhancer, the latest evidence of rikkunshito. Front Nutr. 2021;8:761631. https://doi.org/10.3389/fnut.2021.761631.

[65]

Tsukamoto K, Yamamoto K, Makino T. Counteractive effect of Paeonia lactiflora root constituent mudanpioside E against suppressive effect of shoseiryuto-extract on passive cutaneous anaphylaxis reaction in mice. J Ethnopharmacol. 2014; 153(3):884-889. https://doi.org/10.1016/j.jep.2014.03.053.

[66]

Nagai T, Arai Y, Emori M, et al. Anti-allergic activity of a Kampo (Japanese herbal) medicine “Sho-Seiryu-To (Xiao-Qing-Long-Tang)” on airway inflammation in a mouse model. Int Immunopharmacol. 2004; 4(10):1353-1365. https://doi.org/10.1016/j.intimp.2004.05.021.

[67]

Yan Y, Zhang J, Liu H, et al. Efficacy and safety of the Chinese herbal medicine Xiao-Qing-Long-Tang for allergic rhinitis: a systematic review and meta-analysis of randomized controlled trials. J Ethnopharmacol. 2022;297:115169. https://doi.org/10.1016/j.jep.2022.115169.

[68]

Chang CM, Chu HT, Wei YH, et al. The core pattern analysis on Chinese herbal medicine for Sjögren’s syndrome: a nationwide population-based study. Sci Rep. 2015;5:9541. https://doi.org/10.1038/srep09541.

[69]

Kim KI, Shin S, Lee N, et al. A traditional herbal medication, Maekmoondong-Tang, for cough: a systematic review and meta-analysis. J Ethnopharmacol. 2016; 178:144-154. https://doi.org/10.1016/j.jep.2015.12.005.

[70]

Wang CY, Wang TC, Liang WM, et al. Effect of Chinese herbal medicine therapy on overall and cancer related mortality in patients with advanced nasopharyngeal carcinoma in Taiwan. Front Pharmacol. 2020;11:607413. https://doi.org/10.3389/fphar.2020.607413.

[71]

Lin YJ, Liang WM, Chen CJ, et al. Network analysis and mechanisms of action of Chinese herb-related natural compounds in lung cancer cells. Phytomedicine. 2019;58:152893. https://doi.org/10.1016/j.phymed.2019.152893.

[72]

Jia Z, Yang F, Liu X, et al. The n-butanol fraction of the Xiao-Chai-Hu Decoction alleviates the endocrine disturbance in the liver of mice exposed to lead. J Ethnopharmacol. 2021;279:114381. https://doi.org/10.1016/j.jep.2021.114381.

[73]

Kong Z, Liang N, Yang GL, et al. Xiao Chai Hu Tang, a herbal medicine, for chronic hepatitis B. Cochrane Database Syst Rev. 2019; 2019(11):CD013090. https://doi.org/10.1002/14651858.CD013090.pub2.

[74]

Shao S, Jia R, Zhao L, et al. Xiao-Chai-Hu-Tang ameliorates tumor growth in cancer comorbid depressive symptoms via modulating gut microbiota-mediated TLR4/MyD88/NF-κB signaling pathway. Phytomedicine. 2021;88:153606. https://doi.org/10.1016/j.phymed.2021.153606.

[75]

Chen J, Ding Z. Advances in natural product anti-coronavirus research (2002-2022). Chin Med. 2023; 18(1):13. https://doi.org/10.1186/s13020-023-00715-x.

[76]

Han Y, Yang Z, Fang S, et al. Data-mining-based of ancient traditional Chinese medicine records from 475 BC to 1949 to potentially treat COVID-19 Anat Rec. 2023; 306(12):2984-2996. https://doi.org/10.1002/ar.24888.

[77]

Kwon S, Lee WB, Jin C, et al. Could herbal medicine (Soshihotang) be a new treatment option for COVID-19: a narrative review. Integr Med Res. 2020; 9(3):100480. https://doi.org/10.1016/j.imr.2020.100480.

[78]

Wang W, Gu W, He C, et al. Bioactive components of Banxia Xiexin Decoction for the treatment of gastrointestinal diseases based on flavor-oriented analysis. J Ethnopharmacol. 2022;291:115085. https://doi.org/10.1016/j.jep.2022.115085.

[79]

Wu ZH, Fu X, Jing HL, et al. Herbal medicine for the prevention of chemotherapy-induced nausea and vomiting in patients with advanced colorectal cancer: a prospective randomized controlled trial. J Ethnopharmacol. 2024;325:117853. https://doi.org/10.1016/j.jep.2024.117853.

[80]

Zhang B, Liu K, Yang H, et al. Gut microbiota: the potential key target of TCM’s therapeutic effect of treating different diseases using the same method-UC and T2DM as examples. Front Cell Infect Microbiol. 2022;12:855075. https://doi.org/10.3389/fcimb.2022.855075.

[81]

Kim YH, Kim JY, Kwon OJ, et al. Efficacy of a traditional herbal formula, Banha-Sasim-Tang in functional dyspepsia classified as excess pattern. Front Pharmacol. 2021;12:698887. https://doi.org/10.3389/fphar.2021.698887.

[82]

Wang W, Xu C, Li X, et al. Exploration of the potential mechanism of Banxia Xiexin Decoction for the effects on TNBS-induced ulcerative colitis rats with the assistance of network pharmacology analysis. J Ethnopharmacol. 2021;277:114197. https://doi.org/10.1016/j.jep.2021.114197.

[83]

Wang H, Zhao J, Ouyang Y, et al. Evaluation of the similarity of dispensing granules of Banxia Houpo Tang with traditional decoction by chemical analysis and spasmolytic activity. Arab J Chem. 2021; 14(9):103305. https://doi.org/10.1016/j.arabjc.2021.103305.

[84]

Yang XY, An JR, Dong QB, et al. Banxia-Houpu Decoction inhibits iron overload and chronic intermittent hypoxia-induced neuroinflammation in mice. J Ethnopharmacol. 2024;318(Pt B):117078. https://doi.org/10.1016/j.jep.2023.117078.

[85]

Lian LS, Jiang ZY, Liu XH, et al. Effect of Banxia Houpu Decoction on inflammatory reaction, oxidative stress and vascular endothelial dysfunction in patients with obstructive sleep apnea-hypopnea syndrome. J Guangzhou Univ Trad Chinese Med. 2020; 37:1636-1640. https://doi.org/10.13359/j.cnki.gzxbtcm.2020.09.003.

[86]

Yang H, Chou G, Wang Z, et al. Studies on chemical constituents of tuber of Pinellia ternata. Chin Pharm J. 2007; 42(2):99-101.

[87]

Chen P, Li C, Liang S, et al. Characterization and quantification of eight water-soluble constituents in tubers of Pinellia ternata and in tea granules from the Chinese multiherb remedy Xiaochaihu-Tang. J Chromatogr B Analyt Technol Biomed Life Sci. 2006; 843(2):183-193. https://doi.org/10.1016/j.jchromb.2006.05.028.

[88]

Murakami T, Nagasawa M, Itokawa H, et al. Studies on the water-soluble constituents of crude drugs. I. On the free amino acids isolated from tuber of Pinellia ternate Breitenbach and Arisaema ringens Schott. Yakugaku Zasshi. 1965; 85(9):832-835.

[89]

Gao Q, Cheng Y. A new lactam from Pinellia ternata. Nat Prod Res Dev. 2015; 27:1693-1696. https://doi.org/10.16333/j.1001-6880.2015.10.001.

[90]

Zhang ZH, Dai Z, Hu XR, et al. Isolation and structure elucidation of chemical constituents from Pinellia ternata. J Chin Med Mater. 2013; 36(10):1620-1622. https://doi.org/10.13863/j.issn1001-4454.2013.10.026.

[91]

Oshio H, Tsukui M, Matsuoka T. Isolation of L-ephedrine from Pinelliae Tuber. Chem Pharm Bull. 1978; 26(7):2096-2097. https://doi.org/10.1248/cpb.26.2096.

[92]

Wu YY, Huang XX, Zhang MY, et al. Chemical constituents from the tubers of Pinellia ternata (Araceae) and their chemotaxonomic interest. Biochem Syst Ecol. 2015; 62:236-240. https://doi.org/10.1016/j.bse.2015.09.002.

[93]

Xu JK, Zhang TL, Yi GQ, et al. Isolation and identification of chemical constituents from bulk of Pinellia ternata. J Shenyang Pharm Univ. 2010; 27(6):429-433. https://doi.org/10.14066/j.cnki.cn21-1349/r.2010.06.008.

[94]

Han MH, Yang XW, Zhang M, et al. Phytochemical study of the rhizome of Pinellia ternata and quantification of phenylpropanoids in commercial Pinellia Tuber by RP-LC. Chromatographia. 2006; 64(11):647-653. https://doi.org/10.1365/s10337-006-0103-8.

[95]

Wu YY, Huang XX, Wu J, et al. A new cyclolignan glycoside from the tubers of Pinellia ternata. J Asian Nat Prod Res. 2015; 17(11):1097-1103. https://doi.org/10.1080/10286020.2015.1041931.

[96]

Chen JH, Cui GY, Liu JY, et al. Pinelloside, an antimicrobial cerebroside from Pinellia ternata. Phytochemistry. 2003; 64(4):903-906. https://doi.org/10.1016/S0031-9422(03)00421-7.

[97]

Tomoda M, Gonda R, Ohara N, et al. A glucan having reticuloendothelial system-potentiating and anti-complementary activities from the tuber of Pinellia ternata. Biol Pharm Bull. 1994; 17(6):859-861. https://doi.org/10.1248/bpb.17.859.

[98]

Gonda R, Tomoda M, Shimizu N, et al. Characterization of an acidic polysaccharide with immunological activities from the tuber of Pinellia ternata. Biol Pharm Bull. 1994; 17(12):1549-1553. https://doi.org/10.1248/bpb.17.1549.

[99]

Mo XL, Liu YJ, Li T, et al. Extraction optimization and characterization of polysaccharide antioxidants from Pinellia ternata (Thunb) Breit rhizome. Trop J Pharm Res. 2017; 16(5):1129-1136. https://doi.org/10.4314/tjpr.v16i5.22.

[100]

Hu M, Liu Y, Wang L, et al. Purification, characterization of two polysaccharides from Pinelliae Rhizoma praeparatum cum alumine and their anti-inflammatory effects on mucus secretion of airway epithelium. Int J Mol Sci. 2019; 20(14):3553. https://doi.org/10.3390/ijms20143553.

[101]

Tian WT, Zhang XW, Liu HP, et al. Structural characterization of an acid polysaccharide from Pinellia ternata and its induction effect on apoptosis of Hep G2 cells. Int J Biol Macromol. 2020; 153:451-460. https://doi.org/10.1016/j.ijbiomac.2020.02.219.

[102]

Wang KY, Guo M. Purification of lectin from Pinellia ternata. Chin Biochem J. 1993; 9:545-548. https://doi.org/10.13865/j.cnki.cjbmb.1993.05.007.

[103]

Kurata K, Tai T, Yang Y, et al. Quantitative analysis of anti-emetic principle in the tubers of Pinellia ternata by enzyme immunoassay. Planta Med. 1998; 64(7):645-648. https://doi.org/10.1055/s-2006-957539.

[104]

Lin J, Yao J, Zhou X, et al. Expression and purification of a novel mannose-binding lectin from Pinellia ternata. Mol Biotechnol. 2003; 25(3):215-222. https://doi.org/10.1385/MB:25:3:215.

[105]

Feng R, Zhang W, Xu T. Characterization and biological activities of lectin isolated from Pinellia ternata. Adv Biol Chem. 2012; 2:115-122. https://doi.org/10.4236/abc.2012.22014.

[106]

Zuo Z, Fan H, Wang X, et al. Purification and characterization of a novel plant lectin from Pinellia ternata with antineoplastic activity. Springer Plus. 2012; 1(1):13. https://doi.org/10.1186/2193-1801-1-13.

[107]

Wu X, Xiong E, An S, et al. Sequential extraction results in improved proteome profiling of medicinal plant Pinellia ternata tubers, which contain large amounts of high-abundance proteins. PLoS One. 2012; 7(11):e50497. https://doi.org/10.1371/journal.pone.0050497.

[108]

Zu G, Wang H, Wang J, et al. Rhizoma Pinelliae trypsin inhibitor separation, purification and inhibitory activity on the proliferation of BGC-823 gastric adenocarcinoma cells. Exp Ther Med. 2014; 8(1):248-254. https://doi.org/10.3892/etm.2014.1701.

[109]

Guo W, Han J, Li X, et al. Large-scale analysis of protein crotonylation reveals its diverse functions in Pinellia ternata. BMC Plant Biol. 2022; 22(1):457. https://doi.org/10.1186/s12870-022-03835-y.

[110]

Chang CC, Lien YC, Liu KC, et al. Lignans from Phyllanthus urinaria. Phytochemistry. 2003; 63(7):825-833. https://doi.org/10.1016/S0031-9422(03)00371-6.

[111]

Tao H, Wu X, Cao J, et al. Rhodiola species: a comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med Res Rev. 2019; 39(5):1779-1850. https://doi.org/10.1002/med.21564.

[112]

Kachroo A, Kachroo P. Fatty acid-derived signals in plant defense. Annu Rev Phytopathol. 2009; 47(1):153-176. https://doi.org/10.1146/annurev-phyto-080508-081820.

[113]

Basnet R, Zhang J, Hussain N, et al. Characterization and mutational analysis of a monogalactosyldiacylglycerol synthase gene OsMGD2 in rice. Front Plant Sci. 2019;10:992. https://doi.org/10.3389/fpls.2019.00992.

[114]

Doi M, Morita N, Okuzawa T, et al. Pinellic acid isolated from quercetin-rich onions has a peroxisome pro liferator-activated receptor-alpha/gamma (PPAR-α/γ) transactivation activity. Planta Med. 2022; 88(6):440-446. https://doi.org/10.1055/a-1345-9471.

[115]

Shirahata T, Sunazuka T, Yoshida K, et al. Total synthesis, elucidation of absolute stereochemistry, and adjuvant activity of trihydroxy fatty acids. Tetrahedron. 2006; 62(40):9483-9496. https://doi.org/10.1016/j.tet.2006.06.088.

[116]

Shirahata T, Sunazuka T, Yoshida K, et al. Total synthesis and adjuvant activity of all stereoisomers of pinellic acid. Bioorg Med Chem Lett. 2003; 13(5):937-941. https://doi.org/10.1016/S0960-894X(02)01069-7.

[117]

Nagai T, Shimizu Y, Shirahata T, et al. Oral adjuvant activity for nasal influenza vaccines caused by combination of two trihydroxy fatty acid stereoisomers from the tuber of Pinellia ternata. Int Immunopharmacol. 2010; 10(6):655-661. https://doi.org/10.1016/j.intimp.2010.03.004.

[118]

Nagai T, Kiyohara H, Munakata K, et al. Pinellic acid from the tuber of Pinellia ternata Breitenbach as an effective oral adjuvant for nasal influenza vaccine. Int Immunopharmacol. 2002; 2(8):1183-1193. https://doi.org/10.1016/S1567-5769(02)00086-3.

[119]

Zduńska K, Dana A, Kolodziejczak A, et al. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018; 31(6):332-336. https://doi.org/10.1159/000491755.

[120]

Wang LM, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPAR-γ): a review. Biochem Pharmacol. 2014; 92(1):73-89. https://doi.org/10.1016/j.bcp.2014.07.018.

[121]

Khan Z, Nath N, Rauf A, et al. Multifunctional roles and pharmacological potential of β-sitosterol: emerging evidence toward clinical applications. Chem Biol Interact. 2022;365:110117. https://doi.org/10.1016/j.cbi.2022.110117.

[122]

Zhou BX, Li J, Liang XL, et al. β-Sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice by disrupting the cross-talk between RIG-I and IFN/STAT signaling. Acta Pharmacol Sin. 2020; 41(9):1178-1196. https://doi.org/10.1038/s41401-020-0403-9.

[123]

Choi HG, Park YM, Lu Y, et al. Inhibition of prostaglandin D2 production by trihydroxy fatty acids isolated from Ulmus davidiana var. japonica. Phytother Res. 2013; 27(9):1376-1380. https://doi.org/10.1002/ptr.4882.

[124]

Bai J, Zhang Y, Tang C, et al. Gallic acid: pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021;133:110985. https://doi.org/10.1016/j.biopha.2020.110985.

[125]

Lee J, Choi J, Kim S. Effective suppression of pro-inflammatory molecules by DHCA via IKK-NF-κB pathway, in vitro and in vivo. Br J Pharmacol. 2015; 172(13):3353-3369. https://doi.org/10.1111/bph.13137.

[126]

Lee J, Choi J, Lee W, et al. Dehydrodiconiferyl alcohol (DHCA) modulates the differentiation of Th17 and Th1 cells and suppresses experimental autoimmune encephalomyelitis. Mol Immunol. 2015; 68(2):434-444. https://doi.org/10.1016/j.molimm.2015.09.028.

[127]

Hu X, Qin N, Xue J, et al. Dehydrodiconiferyl alcohol from Silybum marianum (L.) Gaertn accelerates wound healing via inactivating NF-κB pathways in macrophages. J Pharm Pharmacol. 2020; 72(2):305-317. https://doi.org/10.1111/jphp.13205.

[128]

Du W, Su J, Ye D, et al. Pinellia ternata attenuates mucus secretion and airway inflammation after inhaled corticosteroid withdrawal in COPD rats. Am J Chin Med. 2016; 44(5):1027-1041. https://doi.org/10.1142/S0192415X16500579.

[129]

Tao XB, Li J, He J, et al. Pinellia ternata (Thunb.) Breit. attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-κB and NLRP3 signaling pathway. J Ethnopharmacol. 2023;315:116720. https://doi.org/10.1016/j.jep.2023.116720.

[130]

Gad MZ, Azab SS, Khattab AR, et al. Over a century since ephedrine discovery: an updated revisit to its pharmacological aspects, functionality and toxicity in comparison to its herbal extracts. Food Funct. 2021; 12(20):9563-9582. https://doi.org/10.1039/D1FO02093E.

[131]

Lee MY, Shin IS, Jeon WY, et al. Pinellia ternata Breitenbach attenuates ovalbumin-induced allergic airway inflammation and mucus secretion in a murine model of asthma. Immunopharm Immunot. 2013; 35(3):410-418. https://doi.org/10.3109/08923973.2013.770522.

[132]

Ok IS, Kim SH, Kim BK, et al. Pinellia ternata, Citrus reticulata, and their combinational prescription inhibit eosinophil infiltration and airway hyperresponsiveness by suppressing CCR3+ and Th2 cytokines production in the ovalbumin-induced asthma model. Mediators Inflamm. 2009; 2009(5):413270. https://doi.org/10.1155/2009/413270.

[133]

Huang C, Peng W, Wei S, et al. Effect of Pinelliae Rhizoma Praeparatum Cum Alumine polysaccharides on colonic water and liquid metabolism in asthma model rats based on “exterior-interior relationship between lung and large intestine”. Chin Arch Tradit Chin Med. 2020; 38(11):104-108. https://doi.org/10.13193/j.issn.1673-7717.2020.11.027.

[134]

Huang C, Peng W, WEI D, et al. Effect of Pinelliae Rhizoma Praeparatum Cum Alumine polysaccharides on MUC5AC mRNA in lung tissues of allergic asthma model rats. Chin J Exp Tradit Med Form. 2019; 25(22):15-21. https://doi.org/10.13422/j.cnki.syfjx.20192103.

[135]

Peng W, Wei DN, Liu YJ, et al. Comparative research of the curative effects of Pinelliae Rhizoma and Pinelliae Rhizoma Praeparatum Cum Alumine on ovalbumin-induced allergic asthma in rats. Pharmacogn Mag. 2019;14:29.

[136]

Tao X, Liu H, Xia J, et al. Processed product (Pinelliae Rhizoma Praeparatum) of Pinellia ternata (Thunb.) Breit alleviates the allergic airway inflammation of cold phlegm via regulation of PKC/EGFR/MAPK/PI3K-AKT signaling pathway. J Ethnopharmacol. 2022;295:115449. https://doi.org/10.1016/j.jep.2022.115449.

[137]

Lin CC, Wang YY, Chen SM, et al. Shegan-Mahuang Decoction ameliorates asthmatic airway hyperresponsiveness by downregulating Th2/Th17 cells but upregulating CD4+ FoxP3+ Tregs. J Ethnopharmacol. 2020;253:112656. https://doi.org/10.1016/j.jep.2020.112656.

[138]

Wang Y. Comparative study on the immune function of five kinds of Gansu authentic Chinese herbal medicines in aging mice. J Beijing Union Univ. 2016; 30(2):77-82. https://doi.org/10.16255/j.cnki.ldxbz.2016.02.014.

[139]

Qiao Y, Zhao Y, Wang G, et al. Protection from benzene-induced immune dysfunction in mice. Toxicology. 2022;468:153103. https://doi.org/10.1016/j.tox.2022.153103.

[140]

Guo J, Meng J, Du J. Effects of Gancao Xiexin Decoction on main intestinal flora and sIgA in mice with intestinal flora disorder induced by antibiotics. J Chin J Microecol. 2019; 31(11):1246-1259. https://doi.org/10.13381/j.cnki.cjm.201911002.

[141]

Yang Y, Cheng H, Yan H, et al. A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with traditional Chinese medicines. J Med Virol. 2017; 89(5):908-916. https://doi.org/10.1002/jmv.24705.

[142]

Yen MH, Lee JJ, Yeh CF, et al. Yakammaoto inhibited human coxsackievirus B4 (CVB4)-induced airway and renal tubular injuries by preventing viral attachment, internalization, and replication. J Ethnopharmacol. 2014; 151(3):1056-1063. https://doi.org/10.1016/j.jep.2013.11.049.

[143]

You X, Jiang X, Zhang C, et al. Dihydroartemisinin attenuates pulmonary inflammation and fibrosis in rats by suppressing JAK2/STAT3 signaling. Aging. 2022; 14(3):1110-1127. https://doi.org/10.18632/aging.203874.

[144]

Hirano T, Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity. 2020; 52(5):731-733. https://doi.org/10.1016/j.immuni.2020.04.003.

[145]

Murakami M, Kamimura D, Hirano T. Pleiotropy and specificity: insights from the interleukin 6 family of cytokines. Immunity. 2019; 50(4):812-831. https://doi.org/10.1016/j.immuni.2019.03.027.

[146]

Li Q, Xie Y, Cui Z, et al. Analysis of peripheral blood IL-6 and leukocyte characteristics in 364 COVID-19 patients of Wuhan. Front Immunol. 2020;11:559716. https://doi.org/10.3389/fimmu.2020.559716.

[147]

Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021; 33(3):127-148. https://doi.org/10.1093/intimm/dxaa078.

[148]

Ruppert C, Kaiser L, Jacob LJ, et al. Duplex shiny app quantification of the sepsis biomarkers C-reactive protein and interleukin-6 in a fast quantum dot labeled lateral flow assay. J Nanobiotechnology. 2020; 18(1):130. https://doi.org/10.1186/s12951-020-00688-1.

[149]

Luo W, Ding R, Guo X, et al. Clinical data mining reveals Gancao-Banxia as a potential herbal pair against moderate COVID-19 by dual binding to IL-6/STAT3. Comput Biol Med. 2022;145:105457. https://doi.org/10.1016/j.compbiomed.2022.105457.

[150]

Vivancos M, Moreno JJ. β-Sitosterol modulates antioxidant enzyme response in RAW264.7 macrophages. Free Radical Bio Med. 2005; 39(1):91-97. https://doi.org/10.1016/j.freeradbiomed.2005.02.025.

[151]

Lee J, Kim S. Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK-Nrf2 dependent pathway. Toxicol Appl Pharmacol. 2014; 281(1):87-100. https://doi.org/10.1016/j.taap.2014.07.011.

[152]

Liu YJ, Mo XL, Tang XZ, et al. Extraction optimization, characterization, and bioactivities of polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine employing ultrasound-assisted extraction. Molecules. 2017; 22(6):965. https://doi.org/10.3390/molecules22060965.

[153]

Tang D, Yan R, Sun Y, et al. Material basis, effect, and mechanism of ethanol extract of Pinellia ternata tubers on oxidative stress-induced cell senescence. Phytomedicine. 2020;77:153275. https://doi.org/10.1016/j.phymed.2020.153275.

[154]

Zhu X, He R, Wang L, et al. Comparison of antioxidant activities of different traditional Chinese medicines for resolving phlegm in rats with bleomycin-induced pulmonary fibrosis. Hunan J Tradit Chin Med. 2016; 31(10):166-170. https://doi.org/10.16808/j.cnki.issn1003-7705.2016.10.077.

[155]

Liu X, Zhu X, Zhang W. A study on the intervention of Chinese herbs for resolving phlegm on the content of Nrf2 in lung tissue of rats with pulmonary fibrosis. Lishizhen Med Mate Med Res. 2017; 28(9):2081-2084. https://doi.org/10.3969/j.issn.1008-0805.2017.09.011.

[156]

Feng Y, Jin C, Zhao Y, et al. Protective effect and mechanism of Pinellia total alkaloids on gastric mucosa in rats with exercise induced oxidative stress. J Tradit Chin Drug Res Clin Pharmacol. 2021; 32(12):1757-1761. https://doi.org/10.19378/j.issn.1003-9783.2021.12.004.

[157]

Xu N, Li M, Wang P, et al. Spectrum-effect relationship between antioxidant and anti-inflammatory effects of Banxia Baizhu Tianma Decoction: an identification method of active substances with endothelial cell protective effect. Front Pharmacol. 2022;13:823341. https://doi.org/10.3389/fphar.2022.823341.

[158]

Shin IS, Jeon WY, Shin HK, et al. Banhabaekchulchunma-tang, a traditional herbal formula attenuates absolute ethanol-induced gastric injury by enhancing the antioxidant status. BMC Complement Altern Med. 2013; 13(1):170. https://doi.org/10.1186/1472-6882-13-170.

[159]

Li X, Lu P, Zhang W, et al. Study on anti-Ehrlich ascites tumour effect of Pinellia ternata polysaccharide in vivo. Afr J Tradit Complement Altern Med. 2013; 10(5):380-385.

[160]

Zhang C, Ji J, Wang C. Anti-tumor effect and mechanism of Pinellia ternate polysaccharide in vivo. Strait Pharm J. 2016; 28(7):22-24.

[161]

Li Y, Li D, Chen J, et al. A polysaccharide from Pinellia ternata inhibits cell proliferation and metastasis in human cholangiocarcinoma cells by targeting of Cdc42 and 67kDa laminin receptor (LR). Int J Biol Macromol. 2016; 93:520-525. https://doi.org/10.1016/j.ijbiomac.2016.08.069.

[162]

Zhou W, Gao Y, Xu S, et al. Purification of a mannose-binding lectin Pinellia ternata agglutinin and its induction of apoptosis in Bel-7404 cells. Protein Expr Purif. 2014; 93:11-17. https://doi.org/10.1016/j.pep.2013.09.018.

[163]

Du Z, Wang Q, Ma G, et al. Inhibition of Nrf 2 promotes the antitumor effect of Pinelliae Rhizome in papillary thyroid cancer. J Cell Physiol. 2019; 234(8):13867-13877. https://doi.org/10.1002/jcp.28069.

[164]

Yan S, Yue Y, Wang J, et al. Banxia Xiexin Decoction, a traditional Chinese medicine, alleviates colon cancer in nude mice. Ann Transl Med. 2019; 7(16):375. https://doi.org/10.21037/atm.2019.07.26.

[165]

Sun X, Xue D, Zhang K, et al. Acrid-release and bitter-downbearing therapy and Banxia Xiexin Decoction regulate Wnt/β-catenin pathway, inhibit proliferation and invasion, and induce apoptosis in gastric cancer cells. Am J Transl Res. 2021; 13(6):6211-6220.

[166]

Liu XP, Li PQ, Ming HX, et al. Effects of Banxia Xiexin Decoction containing serum on proliferation, invasion and metastasis of gastric cancer peritoneal metastasis cell line GC9811-P. Chin J Integr Tradit West Med. 2016; 36(10):1224-1228.

[167]

Zeng S, Li S, Wu Z, et al. Ingredients-effect relationship study on antitussive and expectorant of Pinelliae Rhizoma. Mod Chin Med. 2013; 15(6):452-455. https://doi.org/10.13313/j.issn.1673-4890.2013.06.010.

[168]

Nie R, Chen W, Lin J, et al. Comparative study on effects of Araceae toxic Chinese herbs and its processed products. J Pharm Clin Chin Mater Med. 2016; 32(4):53-56. https://doi.org/10.13412/j.cnki.zyyl.2016.04.015.

[169]

Su B, Li S, Chen Y, et al. Comparison of Pinellia ternata and its processed products on antitussive and expectorant effects. J Guangdong Pharm Univ. 2013; 29(2):181-184. https://doi.org/10.3969/j.issn.1006-8783.2013.02.017.

[170]

Yang BY, Li M, Ren M, et al. Spectrum-effect relationship of antitussive effect by total organic acids in crude and four processed Pinellia ternate based on gray relative analysis method. J Chin Med Mater. 2016; 47:2301-2307. https://doi.org/10.7501/j.issn.0253-2670.2016.13.016.

[171]

Huang Q, Cai C, Feng X, et al. Comparison of expectorant effect between Pinellia Rhizoma and processed Pinellia Rhizoma on rats with syndrome of cold-damp amassing in lung. Jilin J Chin Med. 2019; 39(6):793-796. https://doi.org/10.13463/j.cnki.jlzyy.2019.06.026.

[172]

Kim YJ, Shin YO, Ha YW, et al. Anti-obesity effect of Pinellia ternata extract in zucker rats. Biol Pharm Bull. 2006; 29(6):1278-1281. https://doi.org/10.1248/bpb.29.1278.

[173]

Tanaka M, Sato A, Kishimoto Y, et al. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients. 2020; 12(5):1479. https://doi.org/10.3390/nu12051479.

[174]

Sowndhar RB, Manivasagam S, Dhanusu S, et al. Diet with high content of advanced glycation end products induces systemic inflammation and weight gain in experimental mice: protective role of curcumin and gallic acid. Food Chem Toxicol. 2018; 114:237-245. https://doi.org/10.1016/j.fct.2018.02.016.

[175]

Apolzan JW, Stein JA, Rood JC, et al. Effects of acute arginine supplementation on neuroendocrine, metabolic, cardiovascular, and mood outcomes in younger men: a double-blind, placebo-controlled trial. Nutrition. 2022;101:111658. https://doi.org/10.1016/j.nut.2022.111658.

[176]

Jobgen WS, Wu G. Dietary L-arginine supplementation increases the hepatic expression of AMP-activated protein kinase in rats. Amino Acids. 2022; 54(12):1569-1584. https://doi.org/10.1007/s00726-022-03194-w.

[177]

González-Juárez DE, Escobedo-Moratilla A, Flores J, et al. A review of the Ephedra genus: distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules. 2020; 25(14):3283. https://doi.org/10.3390/molecules25143283.

[178]

Stohs SJ, Shara M, Ray SD. p-Synephrine, ephedrine, p-octopamine and m-synephrine: comparative mechanistic, physiological and pharmacological properties. Phytother Res. 2020; 34(8):1838-1846. https://doi.org/10.1002/ptr.6649.

[179]

Murugan DD, Balan D, Wong PF. Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: insights from preclinical studies. Phytother Res. 2021; 35(11):5936-5960. https://doi.org/10.1002/ptr.7205.

[180]

Lai S, Yu C, Dennehy CE, et al. Online marketing of Ephedra weight loss supplements: labeling and marketing compliance with the U.S. Food and Drug Administration ban on Ephedra. J Altern Complement Med. 2021; 27(9):796-802. https://doi.org/10.1089/acm.2021.0016.

[181]

Batsis JA, Apolzan JW, Bagley PJ, et al. A systematic review of dietary supplements and alternative therapies for weight loss. Obesity. 2021; 29(7):1102-1113. https://doi.org/10.1002/oby.23110.

[182]

Lu HK, Huang Y, Liang XY, et al. Pinellia ternata attenuates carotid artery intimal hyperplasia and increases endothelial progenitor cell activity via the PI3K/Akt signalling pathway in wire-injured rats. Pharm Biol. 2020; 58(1):1193-1200. https://doi.org/10.1080/13880209.2020.1845748.

[183]

Huang Z, Tao Q, Liu X. Experimental study on re-endothelialization effects of Pinellia ternate extracts on carotid artery injury. Mod Hosp. 2017; 17(7):1053-1056. https://doi.org/10.3969/j.issn.1671-332X.2017.07.037.

[184]

Yang G, Jiang W, Zhang MZ, et al. Anti-atherosclerosis effect and mechanism of phlegm-removing herbs of Rhizoma Pinelliae and Pseudobudobulbus Cremastrae seu Pleione. Trad Chin Drug Res Clin Pharmacol. 2013; 24(3):230-233. https://doi.org/10.3969/j.issn.1003-9783.2013.03.005.

[185]

Sun Y, Huang X, Liang W, et al. Effects of citrus and pinellia on the levels of PI3K-Akt pathway, SOD, MDA, SAsap-gal in atherosclerosis mice. J Cap Med Univ. 2018; 39(6):805-809. https://doi.org/10.3969/j.issn.1006-7795.2018.06.003.

[186]

Wang H, Shan X, Zhao G, et al. Effect and mechanism of Banxia Baizhu Tianmatang on atherosclerosis in ApoE-/- mice. Chin J Exp Tradit Med Form. 2021; 27(7):9-15. https://doi.org/10.13422/j.cnki.syfjx.20210301.

[187]

Kovács Z, Slézia A, Bali ZK, et al. Uridine modulates neuronal activity and inhibits spike-wave discharges of absence epileptic long evans and wistar albino glaxo/rijswijk rats. Brain Res Bull. 2013; 97:16-23. https://doi.org/10.1016/j.brainresbull.2013.05.009.

[188]

Garcia GM, Camici M, Allegrini S, et al. Metabolic aspects of adenosine functions in the brain. Front Pharmacol. 2021;12:672182. https://doi.org/10.3389/fphar.2021.672182.

[189]

Zhou Q, Zhu S, Guo Y, et al. Adenosine A 1 receptors play an important protective role against cognitive impairment and long-term potentiation inhibition in a pentylenetetrazol mouse model of epilepsy. Mol Neurobiol. 2018; 55(4):3316-3327. https://doi.org/10.1007/s12035-017-0571-x.

[190]

Warren TJ, Simeone TA, Smith DD, et al. Adenosine has two faces: regionally dichotomous adenosine tone in a model of epilepsy with comorbid sleep disorders. Neurobiol Dis. 2018; 114:45-52. https://doi.org/10.1016/j.nbd.2018.01.017.

[191]

Dos Santos FME, Soares FA, Dall'Onder LP, et al. Extracellular conversion of guanine-based purines to guanosine specifically enhances astrocyte glutamate uptake. Brain Res. 2003; 972(1):84-89. https://doi.org/10.1016/s0006-8993(03)02506-x.

[192]

Regina VE, Prato SA, Emı́lio SFM, et al. Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res. 2003; 977(1):97-102. https://doi.org/10.1016/S0006-8993(03)02769-0.

[193]

Kovács Z, Kékesi KA, Dobolyi Á, et al. Absence epileptic activity changing effects of non-adenosine nucleoside inosine, guanosine and uridine in wistar albino glaxo rijswijk rats. Neuroscience. 2015; 300:593-608. https://doi.org/10.1016/j.neuroscience.2015.05.054.

[194]

Ganzella M, Faraco RB, Almeida RF, et al. Intracerebroventricular administration of inosine is anticonvulsant against quinolinic acid-induced seizures in mice: an effect independent of benzodiazepine and adenosine receptors. Pharmacol Biochem Behav. 2011; 100(2):271-274. https://doi.org/10.1016/j.pbb.2011.09.001.

[195]

Deng C, Yu Z, Lin P, et al. Effects of pinellia total alkaloids on neuroethology, brain histopathology and BDNF/Trk-B expression in epileptic rats. Jilin J Chin Med. 2021; 41(12):1652-1656. https://doi.org/10.13463/j.cnki.jlzyy.2021.12.029.

[196]

Deng CX, Wu ZB, Chen Y, et al. Pinellia total alkaloids modulate the GABAergic system in hippocampal formation on pilocarpine-induced epileptic rats. Chin J Integr Med. 2020; 26(2):138-145. https://doi.org/10.1007/s11655-019-2944-7.

[197]

Wu XY, Zhao JL, Zhang M, et al. Sedative, hypnotic and anticonvulsant activities of the ethanol fraction from Rhizoma Pinelliae Praeparatum. J Ethnopharmacol. 2011; 135(2):325-329. https://doi.org/10.1016/j.jep.2011.03.016.

[198]

Yang R, Wang M, Cheng Y. Comparison study of supercritical-CO2 fluid extractions of Pinellia Rhizoma on anticonvulsant action. Chin J Exp Tradit Med Form. 2012; 18(6):214-219. https://doi.org/10.13422/j.cnki.syfjx.2012.06.068.

[199]

Yang R, Wang M, Cheng Y. Comparative study of 6 kinds of Chinese herbal medicine of supercritical-CO2 extract of penicillin induced epileptic discharge and related neurotransmitters in hippocampus. Chin J Basic Med Tradit Chin Med. 2013; 19(5):507-510. https://doi.org/10.19945/j.cnki.issn.1006-3250.2013.05.014.

[200]

Lin S, Nie B, Song K, et al. Pinelliae Rhizoma Praeparatum Cum Alumine extract: sedative and hypnotic effects in mice and component compounds. Biomed Res Int. 2019; 2019(9): 6198067. https://doi.org/10.1155/2019/6198067.

[201]

Lin S, Nie B, Yao G, et al. Pinellia ternata (Thunb.) Makino preparation promotes sleep by increasing REM sleep. Nat Prod Res. 2019; 33(22):3326-3329. https://doi.org/10.1080/14786419.2018.1474466.

[202]

Lin S, Chen H, Nie B, et al. Raw Pinelliae Rhizoma: examination of sedative and hypnotic effects in mice and chemical analysis. Sleep Breath. 2023; 27(3):1143-1153. https://doi.org/10.1007/s11325-022-02714-y.

[203]

Zhao JL, Zhao T, Zhang M, et al. Study on sedative and hypnotic activity of different extracts of Pinellia. J Anhui Agri Sci. 2012; 39(35):21627. https://doi.org/10.13989/j.cnki.0517-6611.2011.35.087.

[204]

Wang T, Wang R, Yang W, et al. Effect of six tranquilizing Chinese medicinals on sedation and hypnotization of mice. J Hebei Tradit Chin Med Pharmacol. 2021; 36(2):1-5. https://doi.org/10.16370/j.cnki.13-1214/r.2021.02.001.

[205]

Yang M, Liu X, Zhang Y. Experimental study on sedative and hypnotic effect of Banxia Shumi Decoction. Shandong J Tradit Chin Med. 2019; 38(10):974-977. https://doi.org/10.16295/j.cnki.0257-358x.2019.10.017.

[206]

Zhan AP, Wang P, Chen KL. Comparative study on sedative and hypnotic effects of Pinelliae Rhizoma, Pinelliae Pedatisectae Rhizoma and Typhonii Flagelliformis Rhizoma on mice. J Chin Med Mater. 2006; 29(9):964-965. https://doi.org/10.13863/j.issn1001-4454.2006.09.033.

[207]

Zhai X, He Q, Chen M, et al. Pinellia ternata-containing traditional Chinese medicine combined with 5-HT3RAs for chemotherapy-induced nausea and vomiting: a PRISMA-compliant systematic review and meta-analysis of 22 RCTs. Phytomedicine. 2023; 115(39):154823. https://doi.org/10.1016/j.phymed.2023.154823.

[208]

Lu Y, Nie K, Lin Y, et al. Determination of alkaloids in Pinellia ternate and its effect on the movement of isolated intestine in guinea pigs. Shandong J Tradit Chin Med. 2013; 32(12):916-918. https://doi.org/10.16295/j.cnki.0257-358x.2013.12.032.

[209]

Zhang Q, Gong L, Li G, et al. Effects of alkaloids of Pinellia ternata on 5-HT3 receptor and NK1 receptor in isolated guinea-pig ileum. J Shandong Univ Tradit Chin Med. 2017; 41(5):466-468. https://doi.org/10.16294/j.cnki.1007-659x.2017.05.022.

[210]

Dobrachinski F, Gerbatin RR, Sartori G, et al. Guanosine attenuates behavioral deficits after traumatic brain injury by modulation of adenosinergic receptors. Mol Neurobiol. 2019; 56(5):3145-3158. https://doi.org/10.1007/s12035-018-1296-1.

[211]

Wang NY, Li JN, Liu WL, et al. Ferulic acid ameliorates Alzheimer’s disease-like pathology and repairs cognitive decline by preventing capillary hypofunction in APP/PS1 mice. Neurotherapeutics. 2021; 18(2):1064-1080. https://doi.org/10.1007/s13311-021-01024-7.

[212]

Tsai FS, Wu LY, Yang SE, et al. Ferulic acid reverses the cognitive dysfunction caused by amyloid β peptide 1-40 through anti-oxidant activity and cholinergic activation in rats. Am J Chin Med. 2015; 43(2):319-335. https://doi.org/10.1142/S0192415X15500214.

[213]

Kikugawa M, Tsutsuki H, Ida T, et al. Water-soluble ferulic acid derivatives improve amyloid-β-induced neuronal cell death and dysmnesia through inhibition of amyloid-β aggregation. Biosci Biotechnol Biochem. 2016; 80(3):547-553. https://doi.org/10.1080/09168451.2015.1107463.

[214]

Zhou F, Diao B, Duan K, et al. Effect of total alkaloid derived from Pinellia ternata on learning and memory and preliminary study of its mechanism in rats with Parkinson disease. Chin J Clin Neurosurg. 2011; 16(7):413-416. https://doi.org/10.3969/j.issn.1009-153X.2011.07.010.

[215]

Duan K, Tang Y. Effects of total alkaloids from Pinellia ternata on learning, memory and oxidative stress in Parkinson’s disease rat models. Acta Lab Anim Sci Sin. 2012; 20(2):49-53. https://doi.org/10.3969/j.issn.1005-4847.2012.02.010.

[216]

Tang Y, Lei C, Duan K, et al. Effects of total alkaloids from Pinellia ternate on learning and memory in aging mice induced by D-galactose. Chin J Exp Tradit Med Form. 2012; 18(20):224-227. https://doi.org/10.13422/j.cnki.syfjx.2012.20.067.

[217]

Bettio LEB, Cunha MP, Budni J, et al. Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res. 2012; 234(2):137-148. https://doi.org/10.1016/j.bbr.2012.06.021.

[218]

Camargo A, Bettio LEB, Rosa PB, et al. The antidepressant-like effect of guanosine involves the modulation of adenosine A1 and A2A receptors. Purinergic Signal. 2023; 19(2):387-399. https://doi.org/10.1007/s11302-022-09898-8.

[219]

Dong X, Huang R. Ferulic acid: an extraordinarily neuroprotective phenolic acid with anti-depressive properties. Phytomedicine. 2022;105:154355. https://doi.org/10.1016/j.phymed.2022.154355.

[220]

Fang J, Chen G, Gao J, et al. Behavioral-based investigation of the modulatory effects of high-dose Pinellia ternata on rats with post-traumatic stress disorder. Lishizhen Med Mater Med Res. 2017; 28(8):1870-1871. https://doi.org/10.3969/j.issn.1008-0805.2017.08.026.

[221]

Zhang Y, Ni H. Alleviating effects of ethanol extract of Pinelliae Rhizoma and Magnoliae Officinalis Cortex on depression model in mice. J Chin Mod Drug Appl. 2013; 7(14):245-246. https://doi.org/10.14164/j.cnki.cn11-5581/r.2013.14.041.

[222]

Yi LT, Zhang L, Ding AW, et al. Orthogonal array design for antidepressant compatibility of polysaccharides from Banxia-Houpu Decoction, a traditional Chinese herb prescription in the mouse models of depression. Arch Pharm Res. 2009; 32(10):1417-1423. https://doi.org/10.1007/s12272-009-2011-6.

[223]

Hu J, Li Y. Effects of Banxia Shumi Tang aqueous decoction on mouse model of behavioral despair and serpine model. J Shaanxi Coll Tradit Chin Med. 2015; 38(6):102-105. https://doi.org/10.13424/j.cnki.jsctcm.2015.06.036.

[224]

Li Z, Chang H. Antidepressant-like effect of Banxia Xiexin Tang. Chin J Exp Tradit Med Form. 2013; 19(4):280-282. https://doi.org/10.13422/j.cnki.syfjx.2013.04.087.

[225]

Guo C, Li J, Liu Y, et al. Antidepressant-like effect of Banxia-Houpu Decoction. Sci Technol Eng. 2014; 14(24):191-194.

[226]

Zhang X, Yan J, Gao H, et al. On Pinellia ternate total protein extraction technology and antibacterial effect of Pinellia ternate Lectin. J Southwest China Norm Univ. 2015; 40(6):43-48. https://doi.org/10.13718/j.cnki.xsxb.2015.06.009.

[227]

Guo S, Zhang S, Liu L, et al. Pinelliae Rhizoma Praeparatum involved in the regulation of bile acids metabolism in hepatic injury. Biol Pharm Bull. 2018; 41(6):869-876. https://doi.org/10.1248/bpb.b17-00972.

[228]

Guan Q, Zhang H. Study on anti-inflammatory action and analgesic effect of single antirheumatic Chinese medicine. Chin J Clin Ration Drug Use. 2012; 5(19):6-7. https://doi.org/10.15887/j.cnki.13-1389/r.2012.19.020.

[229]

He S, Li Y, Zhang B, et al. Anti-pulmonary firosis effects of Pinelliae Rhizome and its processed products: in vitro screening and in vivo evaluation. J Beijing Univ Tradit Chin Med. 2022; 45(3):275-283. https://doi.org/10.3969/j.issn.1006-2157.2022.03.011.

[230]

Shi Y, Li W, Tao T, et al. The study of the Rhizoma Pinelliae Cordatae and Rhizoma Pinelliae against Agkistrodon acutus (Guenther) snake venom poisoning. J Snake. 2012; 24(3):233-236. https://doi.org/10.3969/j.issn.1001-5639.2012.03.001.

[231]

Tian S, Li W, Shen Y, et al. The study of three Araceae medicine against Agkistrodon acutus (Güenther) snake venom poisoning. Pharm Clin Chin Mater Med. 2013; 29(3):136-138. https://doi.org/10.13412/j.cnki.zyyl.2013.03.051.

[232]

Wu W, Jiao C, Li H, et al. LC-MS based metabolic and metabonomic studies of Panax ginseng. Phytochem Anal. 2018; 29(4):331-340. https://doi.org/10.1002/pca.2752.

[233]

Schmidt DR, Patel R, Kirsch DG, et al. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 2021; 71(4):333-358. https://doi.org/10.3322/caac.21670.

[234]

Holmes E, Loo RL, Stamler J, et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 2008; 453(7193):396-400. https://doi.org/10.1038/nature06882.

[235]

Zhang A, Sun H, Wang Z, et al. Metabolomics: towards understanding traditional Chinese medicine. Planta Med. 2010; 76(17):2026-2035. https://doi.org/10.1055/s-0030-1250542.

[236]

Chen DQ, Chen H, Chen L, et al. Metabolomic application in toxicity evaluation and toxicological biomarker identification of natural product. Chem Biol Interact. 2016; 252:114-130. https://doi.org/10.1016/j.cbi.2016.03.028.

[237]

Duan L, Guo L, Wang L, et al. Application of metabolomics in toxicity evaluation of traditional Chinese medicines. Chin Med. 2018; 13(1):60. https://doi.org/10.1186/s13020-018-0218-5.

[238]

Su T, Tan Y, Tsui MS, et al. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing. Sci Rep. 2016; 6(1):34692. https://doi.org/10.1038/srep34692.

[239]

Xie HH, Xu JY, Xie T, et al. Effects of Pinellia ternata (Thunb.) Berit. on the metabolomic profiles of placenta and amniotic fluid in pregnant rats. J Ethnopharmacol. 2016; 183:38-45. https://doi.org/10.1016/j.jep.2016.02.030.

[240]

Shen S, Shan J, Xie H, et al. Metabolomic approach to evaluating fetal toxicity of Pinellia Rhizoma and Pinelliae Rhizoma Praeparatum cum Zingibere et Alumina based on BeWo in vitro placenta model. J Nanjing Univ Tradit Chin Med. 2017; 33(3):295-300. https://doi.org/10.14148/j.issn.1672-0482.2017.0295.

[241]

Zhang ZH, Zhao YY, Cheng XL, et al. Metabonomic study of biochemical changes in the rat urine induced by Pinellia ternata (Thunb.) Berit. J Pharm Biomed Anal. 2013; 85:186-193. https://doi.org/10.1016/j.jpba.2013.07.026.

[242]

Tang X, Zhao H, Jiang W, et al. Pharmacokinetics and pharmacodynamics of citrus peel extract in lipopolysaccharide-induced acute lung injury combined with Pinelliae Rhizoma Praeparatum. Food Funct. 2018; 9(11):5880-5890. https://doi.org/10.1039/C8FO01337C.

[243]

Wu J, Li WL, Xu Y, et al. Pharmacokinetic differences of three aconitum alkaloids from Aconiti Lateralis Radix Praeparata and compatibility with Pinellia in rats. Indian J Pharm Educ. 2019; 53:236-241. https://doi.org/10.5530/ijper.53.2.31.

PDF (14013KB)

157

Accesses

0

Citation

Detail

Sections
Recommended

/