Astragali Radix−Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance

Pingping Lin , Hong Chen , Zekun Cui , Boyang Yu , Junping Kou , Fang Li

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) : 54 -63.

PDF (14099KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) :54 -63. DOI: 10.1016/S1875-5364(25)60806-5
Original article
research-article

Astragali Radix−Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance

Author information +
History +
PDF (14099KB)

Abstract

;Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR−NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN’s cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro. High-performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (HPLC-Q-TOF-MS/MS) characterized 23 main components of AN. AN significantly improved cardiac function in the TAC-induced mice. Furthermore, AN considerably reduced the serum levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), cardiac troponin T (CTn-T), and interleukin-6 (IL-6) and mitigated inflammatory cell infiltration. Post-AN treatment, TAC-induced heart size approached normal. AN decreased cardiomyocyte cross-sectional area and attenuated the upregulation of cardiac hypertrophy marker genes (ANP, BNP, and MYH7) in vivo and in vitro. Concurrently, AN alleviated collagen deposition in TAC-induced mice. AN also reduced the expression of fibrosis-related indicators (COL1A1 and COL3A1) and inhibited the activation of the transforming growth factor-β1 (TGF-β1)/mothers against decapentaplegic homolog 3 (Smad3) pathway. Thus, AN improved TAC-induced cardiac remodeling. Moreover, AN downregulated p-dynamin-related protein (Drp1) (Ser616) expression and upregulated mitogen 2 (MFN-2) and optic atrophy 1 (OPA1) expression in vivo and in vitro, thereby restoring mitochondrial fusion and fission balance. In conclusion, AN improves cardiac remodeling by regulating mitochondrial dynamic balance, providing experimental data for the rational application of Chinese medicine prescriptions with AN as the main component in clinical practice.

Keywords

Astragali Radix−Notoginseng Radix et Rhizoma medicine pair / Mitochondrial dynamics / Transforming growth factor-β1/Smad3 pathway / Cardiac hypertrophy / Cardiac fibrosis

Cite this article

Download citation ▾
Pingping Lin, Hong Chen, Zekun Cui, Boyang Yu, Junping Kou, Fang Li. Astragali Radix−Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance. Chinese Journal of Natural Medicines, 2025, 23(1): 54-63 DOI:10.1016/S1875-5364(25)60806-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bragazzi NL, Zhong W, Shu J, et al. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol. 2021; 28(15):1682-1690. https://doi.org/10.1093/eurjpc/zwaa147.

[2]

Forte M, Schirone L, Ameri P, et al. The role of mitochondrial dynamics in cardiovascular diseases. Br J Pharmacol. 2020; 178(10):2060-2076. https://doi.org/10.1111/bph.15068.

[3]

Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018; 15(7):387-407. https://doi.org/10.1038/s41569-018-0007-y.

[4]

Winkle AJ, Nassal DM, Shaheen R, et al. Emerging therapeutic targets for cardiac hypertrophy. Expert Opin Ther Targets. 2022; 26(1):29-40. https://doi.org/10.1080/14728222.2022.2031974.

[5]

Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018; 128(9):3716-3726. https://doi.org/10.1172/JCI120849.

[6]

Jin JY, Wei XX, Zhi XL, et al. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin. 2020; 42(5):655-664. https://doi.org/10.1038/s41401-020-00518-y.

[7]

Jhun B, O-Uchi J, Adaniya S, et al. Adrenergic regulation of drp1-driven mitochondrial fission in cardiac physio-pathology. Antioxidants (Basel). 2018; 7(12):195. https://doi.org/10.3390/antiox7120195.

[8]

Hasan P, Saotome M, Ikoma T, et al. Mitochondrial fission protein, dynamin-related protein 1, contributes to the promotion of hypertensive cardiac hypertrophy and fibrosis in Dahl-salt sensitive rats. J Mol Cell Cardiol. 2018; 121:103-106. https://doi.org/10.1016/j.yjmcc.2018.07.004.

[9]

Shirakabe A, Zhai P, Ikeda Y, et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation. 2016; 133(13):1249-1263. https://doi.org/10.1161/CIRCULATIONAHA.115.020502.

[10]

Meng G, Liu J, Liu S, et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3‐dependent manner. Br J Pharmacol. 2017; 175(8):1126-1145. https://doi.org/10.1111/bph.13861.

[11]

Dong PL, Li H, Yu XJ, et al. Effect and mechanism of “Danggui-Kushen” herb pair on ischemic heart disease. Biomed Pharmacother. 2022;145:112450. https://doi.org/10.1016/j.biopha.2021.112450.

[12]

Zhang JX, Hu DJ, Du W, et al. Effects of Astragalus extract on serum cTnI and TGF-β1 in rats with myocardial infarction. Hebei Med J. 2020; 42(10):1475-1478. https://doi.org/10.3969/j.issn.1002-7386.2020.10.007.

[13]

Ma X, Zhang K, Li H, et al. Extracts from Astragalus membranaceus limit myocardial cell death and improve cardiac function in a rat model of myocardial ischemia. J Ethnopharmacol. 2013; 149(3):720-728. https://doi.org/10.1016/j.jep.2013.07.036.

[14]

Cheng L, Wang Q, Meng G, et al. Effect of Astragalus extract on oxidative stress and cardiac function protection on rat models with viral myocarditis infection. Chin J Nosocomiol. 2023; 33(10):1463-1467. https://doi.org/10.11816/cn.ni.2023-221289.

[15]

Wang LC, Zhang WS, Liu Q, et al. A standardized Notoginseng extract exerts cardioprotection by attenuating apoptosis under endoplasmic reticulum stress conditions. J Funct Foods. 2015; 16:20-27. https://doi.org/10.1016/j.jff.2015.04.018.

[16]

Han SY, Li HX, Ma X, et al. Evaluation of the anti-myocardial ischemia effect of individual and combined extracts of Panax notoginseng and Carthamus tinctorius in rats. J Ethnopharmacol. 2013; 145(3):722-727. https://doi.org/10.1016/j.jep.2012.11.036.

[17]

Loh YC, Tan CS, Ch’ng YS, et al. Mechanisms of action of Panax notoginseng ethanolic extract for its vasodilatory effects and partial characterization of vasoactive compounds. Hypertens Res. 2018; 42(2):182-194. https://doi.org/10.1038/s41440-018-0139-9.

[18]

Zhang WQ, Zhang ZL, Zhang N, et al. Comparative study on the active components and efficacy of Astragalus membranaceus (Fisch.) Bunge and Panax Notoginseng compound by two different preparation methods. Prog Mod Biomed. 2023; 23(24):4607-4613. https://doi.org/10.13241/j.cnki.pmb.2023.24.002.

[19]

Lu JQ, Lin H, Zhu ZD, et al. Advances in research on the effects of regulating lipid metabolism using Astragalus mongholicus and pseudo-ginseng on MACE and analysis of potential mechanisms. Chin Gen Pract. 2020; 23(27):3466-3473. https://doi.org/10.12114/j.issn.1007-9572.2020.00.308.

[20]

Shi P, Chai XQ, Lei B, et al. Clinical observation of Huangqi Sanqi Powder in promoting wound healing of 60 cases of anal fistula. Clin Res Pract. 2018; 3(11):114-115. https://doi.org/10.19347/j.cnki.2096-1413.201811054.

[21]

Lei XQ, Wei HY, Tan RZ, et al. Effects of Huangqi Sanqi Mixture on cisplatin-induced acute kidney injury in mice. Chin Tradit Pat Med. 2022; 44(04):1107-1113. https://doi.org/10.3969/j.issn.1001-1528.2022.04.012.

[22]

Xu SS, Wang BG, Liu XC, et al. Mechanism study on herbal pair of Radix Astragali and Radix Notoginseng for alleviating cerebral ischemia-reperfusion injury in rats via inhibiting inflammatory cascade reaction. J Guangzhou Univ of Tradit Chin Med. 2021; 38(3):576-582. https://doi.org/10.13359/j.cnki.gzxbtcm.2021.03.025.

[23]

Chen QQ, Ma G, Liu JF, et al. Neuraminidase 1 is a driver of experimental cardiac hypertrophy. Eur Heart J. 2021; 42(36):3770-3782. https://doi.org/10.1093/eurheartj/ehab347.

[24]

Maass AH, Buvoli M. Cardiomyocyte preparation, culture, and gene transfer. Methods Mol Biol. 2007; 366:321-330. https://doi.org/10.1007/978-1-59745-030-0_18.

[25]

Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level-risk factors, screening, and outcomes. Nat Rev Cardiol. 2011; 8(12):673-685. https://doi.org/10.1038/nrcardio.2011.154.

[26]

Liu P, Yu HS, Zhang LJ, et al. A rapid method for chemical fingerprint analysis of Panax notoginseng powders by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Chin J Nat Med. 2015; 13(6):471-480. https://doi.org/10.1016/S1875-5364(15)30042-X.

[27]

Liang C, Yao Y, Ding H, et al. Rapid classification and identification of chemical components of Astragali Radix by UPLC‐Q‐TOF‐MS. Phytochem Anal. 2022; 33(6):943-960. https://doi.org/10.1002/pca.3150.

[28]

Li Y, Huang S, Sun J, et al. RRLC-QTOF/MS-based metabolomics reveal the mechanism of chemical variations and transformations of Astragali Radix as a result of the roasting process. Front Chem. 2022;10:903168. https://doi.org/10.3389/fchem.2022.903168.

[29]

Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016; 13(6):368-378. https://doi.org/10.1038/nrcardio.2016.25.

[30]

Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2022; 118(17):3272-3287. https://doi.org/10.1093/cvr/cvac013.

[31]

Reid BG, Stratton MS, Bowers S, et al. Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. J Mol Cell Cardiol. 2016; 97:106-113. https://doi.org/10.1016/j.yjmcc.2016.04.015.

[32]

Gao J, Lyu M, Xie WW, et al. Regularity of traditional Chinese medicine prescriptions for same treatment for cardiovascular and cerebrovascular diseases. Chin J Chin Mater Med. 2019; 44(1):193-198. https://doi.org/10.19540/j.cnki.cjcmm.20181101.007.

[33]

Yang HY, Liu ML, Luo P, et al. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine. 2022;104:154268. https://doi.org/10.1016/j.phymed.2022.154268.

[34]

Ding WJ, Chen GH, Deng SH, et al. Calycosin protects against oxidative stress-induced cardiomyocyte apoptosis by activating aldehyde dehydrogenase 2. Phytother Res. 2023; 37(1):35-49. https://doi.org/10.1002/ptr.7591.

[35]

Yan X, Yu A, Zheng H, et al. Calycosin-7-O-β-D-glucoside attenuates OGD/R-induced damage by preventing oxidative stress and neuronal apoptosis via the SIRT1/FOXO1/PGC-1α pathway in HT22 cells. Neural Plast. 2019;2019:8798069. https://doi.org/10.1155/2019/8798069.

[36]

Ma C, Xia R, Yang S, et al. Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE-/- mice. Theranostics. 2020; 10(3):1090-1106. https://doi.org/10.7150/thno.38115.

[37]

Pan R, Zhuang Q, Wang J. Ononin alleviates H2O2-induced cardiomyocyte apoptosis and improves cardiac function by activating the AMPK/mTOR/autophagy pathway. Exp Ther Med. 2021; 22(5):1307. https://doi.org/10.3892/etm.2021.10742.

[38]

Zeng JJ, Shi HQ, Ren FF, et al. Notoginsenoside R1 protects against myocardial ischemia/reperfusion injury in mice via suppressing TAK1-JNK/p38 signaling. Acta Pharmacol Sin. 2023; 44(7):1366-1379. https://doi.org/10.1038/s41401-023-01057-y.

[39]

Zhong J, Lu W, Zhang J, et al. Notoginsenoside R1 activates the Ang2/Tie2 pathway to promote angiogenesis. Phytomedicine. 2020;78:153302. https://doi.org/10.1016/j.phymed.2020.153302.

[40]

Wu QQ, Xiao Y, Yuan Y, et al. Mechanisms contributing to cardiac remodelling. Clin Sci (Lond). 2017; 131(18):2319-2345. https://doi.org/10.1042/CS20171167.

[41]

Bazgir F, Nau J, Nakhaei-Rad S, et al. The microenvironment of the pathogenesis of cardiac hypertrophy. Cells. 2023; 12(13):1780. https://doi.org/10.3390/cells12131780.

[42]

Worke LJ, Barthold JE, Seelbinder B, et al. Densification of type I collagen matrices as a model for cardiac fibrosis. Adv Healthc Mater. 2017; 6(22):10. https://doi.org/10.1002/adhm.201700114.

[43]

Zeng Z, Wang Q, Yang X, et al. Qishen Granule attenuates cardiac fibrosis by regulating TGF-β /Smad3 and GSK-3β pathway. Phytomedicine. 2019;62:152949. https://doi.org/10.1016/j.phymed.2019.152949.

[44]

Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 2017; 127(10):3770-3783. https://doi.org/10.1172/JCI94753.

[45]

Garone C, Minczuk M, Tilokani L, et al. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018; 62(3):341-360. https://doi.org/10.1042/EBC20170104.

[46]

Adebayo M, Singh S, Singh AP, et al. Mitochondrial fusion and fission: the fine‐tune balance for cellular homeostasis. FASEB J. 2021; 35(6):e21620. https://doi.org/10.1096/fj.202100067R.

[47]

Zhuang Q, Guo F, Fu L, et al. 1-Deoxynojirimycin promotes cardiac function and rescues mitochondrial cristae in mitochondrial hypertrophic cardiomyopathy. J Clin Invest. 2023; 133(14):e164660. https://doi.org/10.1172/JCI164660.

[48]

Hu Q, Zhang H, Gutiérrez CN, et al. Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circulation Res. 2020; 126(4):456-470. https://doi.org/10.1161/CIRCRESAHA.119.315252.

[49]

Wu QR, Zheng DL, Liu PM, et al. High glucose induces Drp1-mediated mitochondrial fission via the orai1 calcium channel to participate in diabetic cardiomyocyte hypertrophy. Cell Death Dis. 2021; 12(2):216. https://doi.org/10.1038/s41419-021-03502-4.

[50]

Xiong W, Ma Z, An D, et al. Mitofusin 2 participates in mitophagy and mitochondrial fusion against angiotensin II-induced cardiomyocyte injury. Front Physiol. 2019;10:411. https://doi.org/10.3389/fphys.2019.00411.

[51]

Ma Z, Liu Z, Li X, et al. Metformin collaborates with PINK1/Mfn2 overexpression to prevent cardiac injury by improving mitochondrial function. Biology (Basel). 2023; 12(4):582. https://doi.org/10.3390/biology12040582.

[52]

Luo F, Fu M, Wang T, et al. Down-regulation of the mitochondrial fusion protein Opa1/Mfn2 promotes cardiomyocyte hypertrophy in Su5416/hypoxia-induced pulmonary hypertension rats. Arch Biochem Biophys. 2023;747:109743. https://doi.org/10.1016/j.abb.2023.109743.

PDF (14099KB)

128

Accesses

0

Citation

Detail

Sections
Recommended

/