Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics

Qiuping Zhang , Qiuju Huang , Zhiping Cheng , Wei Xue , Shoushi Liu , Yunnuo Liao , Xiaolan Li , Xin Chen , Yaoyao Han , Dan Zhu , Zhiheng Su , Xin Yang , Zhuo Luo , Hongwei Guo

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) : 64 -76.

PDF (19619KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) :64 -76. DOI: 10.1016/S1875-5364(25)60804-1
Original article
research-article

Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics

Author information +
History +
PDF (19619KB)

Abstract

Xiaoaiping (XAP) Injection demonstrates the anti-prostate cancer (PCa) effects, yet the underlying mechanism remains unclear. This study aims to investigate the impact of XAP on PCa and elucidate its mechanism of action. PCa cell proliferation was evaluated using a cell counting kit-8 (CCK-8) assay. Cell apoptosis was assessed through Hoechst staining and Western blotting assays. Proteomics technology was employed to identify key molecules and significant signaling pathways modulated by XAP in PCa cells. To further validate potential key genes and important pathways, a series of assays were conducted, including acridine orange (AO) staining, transmission electron microscopy, and immunofluorescence assays. The molecular mechanism of XAP against PCa in vivo was examined using a PC3 xenograft mouse model. Results demonstrated that XAP significantly inhibited cell proliferation in multiple PCa cell lines. In C4-2 and prostate cancer cell line-3 (PC3) cells, XAP induced cellular apoptosis, evidenced by reduced B-cell lymphoma 2 (Bcl-2) levels and elevated Bcl-2-associated X (Bax) levels. Proteomic, immunofluorescence, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) investigations revealed a strong correlation between forkhead box O3a (FoxO3a) autophagic degradation and the anti-PCa action of XAP. XAP hindered autophagy by reducing the expression levels of autophagy-related protein 5 (Atg5)/autophagy-related protein 12 (Atg12) and enhancing FoxO3a expression and nuclear translocation. Furthermore, XAP exhibited potent anti-PCa action in PC3 xenograft mice and triggered FoxO3a nuclear translocation in tumor tissue. These findings suggest that XAP induces PCa apoptosis via inhibition of FoxO3a autophagic degradation, potentially offering a novel perspective on XAP injection as an effective anticancer therapy for PCa.

Keywords

Xiaoaiping Injection / Autophagy / Apoptosis / Forkhead box O3a / Prostate cancer

Cite this article

Download citation ▾
Qiuping Zhang, Qiuju Huang, Zhiping Cheng, Wei Xue, Shoushi Liu, Yunnuo Liao, Xiaolan Li, Xin Chen, Yaoyao Han, Dan Zhu, Zhiheng Su, Xin Yang, Zhuo Luo, Hongwei Guo. Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics. Chinese Journal of Natural Medicines, 2025, 23(1): 64-76 DOI:10.1016/S1875-5364(25)60804-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hyuna S, Jacques F, Rebecca LS, et al. 2020: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3):209-249. https://doi.org/10.3322/caac.21660.

[2]

Zhai Z, Zheng Y, Li N, et al. Incidence and disease burden of prostate cancer from 1990 to 2017: results from the global burden of disease study 2017. Cancer. 2020; 126(9):1969-1978. https://doi.org/10.1002/cncr.32733.

[3]

Li L, Wang J, Feng L, et al. Rubioncolin C, a natural naphthohydroquinone dimer isolated from Rubia yunnanensis, inhibits the proliferation and metastasis by inducing ROS-mediated apoptotic and autophagic cell death in triple-negative breast cancer cells. J Ethnopharmacol. 2021;277:114184. https://doi.org/10.1016/j.jep.2021.114184.

[4]

Tang H, Shu P, Liu S, et al. Traditional Chinese medicine in oncotherapy: the research status. Nutr Cancer. 2020; 72(6):992-998. https://doi.org/10.1080/01635581.2019.1664599.

[5]

Wang X, Fang G, Pang Y. Chinese medicines in the treatment of prostate cancer: from formulas to extracts and compounds. Nutrients. 2018; 10(3):283-298. https://doi.org/10.3390/nu10030283.

[6]

Zimmermann F, Papachristofilou A. Radical prostatectomy or watchful waiting in early prostate cancer. Strahlenther Onkol. 2019; 195(11):1036-1038. https://doi.org/10.1007/s00066-019-01508-8.

[7]

Tian YQ, Ding P, Yan XH, et al. Discussion on quality control of preparations with cortex moutan in volume I pharmacopoeia of People’s Republic of China (2005 edition). Chin J Chin Mater Med. 2008; 33(3):339-341.

[8]

Zhang H, Zhang J, Ding H, et al. Clinical value of Tongguanteng (Radix Seu Herba Marsdeniae Tenacissimae) extract combined with chemotherapy in the treatment of advanced non-small cell lung cancer: a meta-analysis. J Tradit Chin Med. 2016; 36(3):261-270. https://doi.org/10.1016/S0254-6272(16)30037-1.

[9]

Huang Z, Wang Y, Chen J, et al. Effect of Xiaoaiping Injection on advanced hepatocellular carcinoma in patients. J Tradit Chin Med. 2013; 33(1):34-38. https://doi.org/10.1016/S0254-6272(13)60097-7.

[10]

Wang F, Fan QX, Wang HH, et al. Efficacy and safety of Xiaoaiping combined with chemotherapy in the treatment of advanced esophageal cancer. Chin J Oncol. 2017; 39(6):453-457. https://doi.org/10.3760/cma.j.issn.0253-3766.2017.06.010.

[11]

Zhou X, Liu M, Ren Q, et al. Oral and injectable Marsdenia tenacissima extract (MTE) as adjuvant therapy to chemotherapy for gastric cancer: a systematic review. BMC Complement Altern Med. 2019; 19(1):366-379. https://doi.org/10.1186/s12906-019-2779-y.

[12]

Yi B, Zhang S, Yan S, et al. Marsdenia tenacissima enhances immune response of tumor infiltrating T lymphocytes to colorectal cancer. Front Immunol. 2023;14:1238694. https://doi.org/10.3389/fimmu.2023.1238694.

[13]

Zhao C, Hao H, Zhao H, et al. Marsdenia tenacissima extract promotes gefitinib accumulation in tumor tissues of lung cancer xenograft mice via inhibiting ABCG2 activity. J Ethnopharmacol. 2020;255:112770. https://doi.org/10.1016/j.jep.2020.112770.

[14]

Yuan Y, Guo Y, Guo ZW, et al. Marsdenia tenacissima extract induces endoplasmic reticulum stress-associated immunogenic cell death in non-small cell lung cancer cells through targeting AXL. J Ethnopharmacol. 2023;314:116620. https://doi.org/10.1016/j.jep.2023.116620.doi:10.1016/j.jep.2023.11662.

[15]

Zhang XQ, Ding YW, Chen JJ, et al. Xiaoaiping Injection enhances paclitaxel efficacy in ovarian cancer via pregnane X receptor and its downstream molecules. J Ethnopharmacol. 2020; 5(39):113067. https://doi.org/10.1016/j.jep.2020.113067.

[16]

Li Z, Hao H, Tian W, et al. Nitric oxide, a communicator between tumor cells and endothelial cells, mediates the anti-tumor effects of Marsdenia tenacissima extract (MTE). J Ethnopharmacol. 2020;250:112524. https://doi.org/10.1016/j.jep.2019.112524.

[17]

Fan W, Sun L, Zhou JQ, et al. Marsdenia tenacissima extract induces G0/G1 cell cycle arrest in human esophageal carcinoma cells by inhibiting mitogen-activated protein kinase (MAPK) signaling pathway. Chin J Nat Med. 2015; 13(6):428-437. https://doi.org/10.1016/S1875-5364(15)30036-4.

[18]

Huang Z, Lin H, Wang Y, et al. Studies on the anti-angiogenic effect of Marsdenia tenacissima extract in vitro and in vivo. Oncol Lett. 2013; 5(3):917-922. https://doi.org/10.3892/ol.2013.1105.

[19]

Wang X, Tian N, Zhng S, et al. Clinical study on rectal administration of Xiao'aiping Injection combined with chemotherapy in the treatment of prostate cancer. Chin Pharm. 2019; 28(16):48-50. https://doi.org/10.3969/j.issn.1006-4931.2019.16.015.doi:10.3969/j.issn.1006-4931.2019.16.01.

[20]

Chen X, Luo Z, Liu X, et al. Marsdenia tenacissima (Roxb.) Moon injection exerts a potential anti-tumor effect in prostate cancer through inhibiting ErbB2-GSK3β-HIF1α signaling axis. J Ethnopharmacol. 2022;295:115381. https://doi.org/10.1016/j.jep.2022.115381.

[21]

Anderson MJ, Viars CS, Czekay S, et al. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics. 1998; 47(2):187-199. https://doi.org/10.1006/geno.1997.5122.

[22]

Liu Z, Li Y, She G, et al. Resveratrol induces cervical cancer HeLa cell apoptosis through the activation and nuclear translocation promotion of FOXO3a. Pharmazie. 2020; 75(6):250-254. https://doi.org/10.1691/ph.2020.0386.

[23]

Liang C, Dong Z, Cai X, et al. Hypoxia induces sorafenib resistance mediated by autophagy via activating FOXO3a in hepatocellular carcinoma. Cell Death Dis. 2020; 11(11):1017-1029. https://doi.org/10.1038/s41419-020-03233-y.

[24]

Cao Y, Li P, Wang H, et al. SIRT3 promotion reduces resistance to cisplatin in lung cancer by modulating the FOXO3/CDT1 axis. Cancer Med. 2021; 10(4):1394-1404. https://doi.org/10.1002/cam4.3728.

[25]

Noboru M. Autophagy: process and function. Genes Dev. 2007; 21(22):2861-2873. https://doi.org/10.1101/gad.1599207.

[26]

Guo Y, Zhao Y, Zhou Y, et al. LZ-101, a novel derivative of danofloxacin, induces mitochondrial apoptosis by stabilizing FOXO3a via blocking autophagy flux in NSCLC cells. Cell Death Dis. 2019; 10(7):484-497. https://doi.org/10.1038/s41419-019-1714-y.

[27]

Lan T, Li Q, Chang M, et al. Lei-Gong-Gen Formula Granule attenuates hyperlipidemia in rats via cGMP-PKG signaling pathway. J Ethnopharmacol. 2020;260:112989. https://doi.org/10.1016/j.jep.2020.112989.

[28]

Li Q, Lan T, He S, et al. A network pharmacology-based approach to explore the active ingredients and molecular mechanism of Lei-Gong-Gen Formula Granule on a spontaneously hypertensive rat model. Chin Med. 2021; 16(1):99-119. https://doi.org/10.1186/s13020-021-00507-1.

[29]

Chang M, Zhu D, Chen Y, et al. Total flavonoids of litchi seed attenuate prostate cancer progression via inhibiting AKT/mTOR and NF-κB signaling pathways. Front Pharmacol. 2021;12:758219. https://doi.org/10.3389/fphar.2021.758219.

[30]

Zhang W, Chen T, Yang P, et al. Total flavonoids of Litchi chinensis Sonn. seed inhibit prostate cancer growth in bone by regulating the bone microenvironment via inactivation of the HGFR/NF-κB signaling pathway. J Ethnopharmacol. 2024; 319(Pt 3):117327. https://doi.org/10.1016/j.jep.2023.117327.

[31]

KOUMTEBAYE E, SU N, HU W, et al. Antitumor activity of Xiaoaiping Injection on human gastric cancer SGC-7901 cells. Chin J Nat Med. 2012; 10(5):339-346. https://doi.org/10.1016/S1875-5364(12)60068-5.

[32]

Li L, Zhang W, Devanatha DSV, et al. Synthesis and characterization of gold nanoparticles from Marsdenia tenacissima and its anticancer activity of liver cancer HepG2 cells. Artif Cells Nanomed Biotechnol. 2019; 47(1):3029-3036. https://doi.org/10.1080/21691401.2019.1642902.

[33]

Wang K, Liu W, Xu Q, et al. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. Phytomedicine. 2021;86:153553. https://doi.org/10.1016/j.phymed.2021.153553.

[34]

Li XL, He SH, Liang W, et al. Marsdenia tenacissima (Roxb.) Moon Injection induces apoptosis of prostate cancer by regulating AKT/GSK3β/STAT3 signaling axis. Chin J Nat Med. 2023; 21(2):113-126. https://doi.org/10.1016/S1875-5364(23)60389-9.

[35]

Julia R, Marta W, Iosune I, et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 2012; 31(22):4304-4317. https://doi.org/10.1038/emboj.2012.278.

[36]

Pu WJ, Chu XH, Guo HL, et al. The activated ATM/AMPK/mTOR axis promotes autophagy in response to oxidative stress-mediated DNA damage co-induced by molybdenum and cadmium in duck testes. Environ Pollut. 2023; 316(P2):120574. https://doi.org/10.1016/j.envpol.2022.120574.

[37]

Chen B, Lai J, Dai D, et al. PARPBP is a prognostic marker and confers anthracycline resistance to breast cancer. Ther Adv Med Oncol. 2020;12:1758835920974212. https://doi.org/10.1177/1758835920974212.

[38]

Bhanu P, Srimadhavi R, Sivapriya K. Targeting ATM and ATR for cancer therapeutics: inhibitors in clinic. Drug Discov Today. 2023; 28(8):103662. https://doi.org/10.1016/j.drudis.2023.103662.

[39]

Wang XM, Lu Y, Song YM, et al. Integrative genomic study of Chinese clear cell renal cell carcinoma reveals features associated with thrombus. Nat Commun. 2020; 11(1):739. https://doi.org/10.1038/s41467-020-14601-9.

[40]

Jiang L, Zhao YM, Yang MZ. Inhibition of autophagy enhances apoptosis induced by bortezomib in AML cells. Oncol Lett. 2021; 21(2):109-115. https://doi.org/10.3892/ol.2020.12370.

[41]

Angelica G, Ilenia C, Francesco P, et al. The mitomiR/Bcl-2 axis affects mitochondrial function and autophagic vacuole formation in senescent endothelial cells. Aging. 2018; 10(10):2855-2873. https://doi.org/10.18632/aging.101591.

[42]

Zhou Y, Lu X, Huang D, et al. A novel protease inhibitor causes inclusion vacuole reduction and disrupts the intracellular growth of chlamydia trachomatis. Biochem Biophys Res Commun. 2019; 516(1):157-162. https://doi.org/10.1016/j.bbrc.2019.05.184.

[43]

Manuel D, Michel H, Jörg W, et al. Wnt signaling inhibits Forkhead box O3a-induced transcription and apoptosis through up-regulation of serum- and glucocorticoid-inducible kinase 1. J Biol Chem. 2008; 283(28):19201-19210. https://doi.org/10.1074/jbc.M710366200.

[44]

Jiang K, Zhang C, Yu B, et al. Autophagic degradation of FOXO3a represses the expression of PUMA to block cell apoptosis in cisplatin-resistant osteosarcoma cells. Am J Cancer Res. 2017; 7(7):1407-1422.

[45]

Fitzwalter BE, Andrew T. FOXO3 links autophagy to apoptosis. Autophagy. 2018; 14(8):1467-1468. https://doi.org/10.1080/15548627.2018.1475819.

[46]

Klionsky DJ. Autophagy revisited: a conversation with Christian de Duve. Autophagy. 2008; 4(6):740-743. https://doi.org/10.4161/auto.6398.

[47]

Gjedde PM. Acridine orange as a probe for measuring pH gradients across membranes: mechanism and limitations. Anal Biochem. 1991; 192(2):316-321. https://doi.org/10.1016/0003-2697(91)90542-2.

[48]

Moscat J, Karin M, Diaz-Meco MT. p62 in cancer: signaling adaptor beyond autophagy. Cell. 2016; 167(3):606-609. https://doi.org/10.1016/j.cell.2016.09.030.

[49]

Sun J, Cao Q, Lin S, et al. Knockdown of CALM2 increases the sensitivity to afatinib in HER2-amplified gastric cancer cells by regulating the Akt/FoxO3a/Puma axis. Toxicol In Vitro. 2023;87:105531. https://doi.org/10.1016/j.tiv.2022.105531.

[50]

Seiji A, Andreas V, Mannan N, et al. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. eLife. 2020;9:54954. https://doi.org/10.7554/eLife.54954.

[51]

Zheng C, Yu X, Liang Y, et al. Targeting PFKL with penfluridol inhibits glycolysis and suppresses esophageal cancer tumorigenesis in an AMPK/FOXO3a/BIM-dependent manner. Acta Pharm Sin B. 2022; 12(3):1271-1287. https://doi.org/10.1016/j.apsb.2021.09.007.

[52]

Zhang X, Zhang W, Wang Z, et al. Enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling. Cell Death Dis. 2022; 13(1):87. https://doi.org/10.1038/s41419-022-04541-1.

[53]

Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021; 71(1):7-33. https://doi.org/10.3322/caac.21654.

[54]

Cao LY, Huang H, Ni JH. Progress in researches on drugs for prostate cancer. Natl J Androl. 2003; 9(9):703-706.

[55]

Jiang S, Qiu L, Li Y, et al. Effects of Marsdenia tenacissima polysaccharide on the immune regulation and tumor growth in H22 tumor-bearing mice. Carbohydr Polym. 2016; 137:52-58. https://doi.org/10.1016/j.carbpol.2015.10.056.

[56]

Baig S, Seevasant I, Mohamad J, et al. Potential of apoptotic pathway-targeted cancer therapeutic research: where do we stand. Cell Death Dis. 2016; 7:2058-2068. https://doi.org/10.1038/cddis.2015.275.

[57]

Jan R, Chaudhry GE. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull. 2019; 9(2):205-218. https://doi.org/10.15171/apb.2019.024.

[58]

Renehan AG, Booth C, Potten CS. What is apoptosis, and why is it important. BMJ. 2001; 322(7301):1536-1538. https://doi.org/10.1136/bmj.322.7301.1536.

[59]

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70. https://doi.org/10.1016/S0092-8674(00)81683-9.

[60]

Li W, Luo LX, Zhou QQ, et al. Phospholipid peroxidation inhibits autophagy via stimulating the delipidation of oxidized LC3-PE. Redox Biol. 2022;55:102421. https://doi.org/10.1016/j.redox.2022.102421.

[61]

Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011; 27:107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005.

[62]

Galluzzi L, Pietrocola F, Bravo-San PJM, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015; 34(7):856-880. https://doi.org/10.15252/embj.201490784.

[63]

Dong J, Zhu C, Zhang F, et al. “Attractive/adhesion force” dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release. 2022; 341:892-903. https://doi.org/10.1016/j.jconrel.2021.12.026.

[64]

Wang Z, Yang L, Wu P, et al. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin. Mol Cancer. 2022; 21(1):29-47. https://doi.org/10.1186/s12943-022-01498-9.

[65]

Li M, Zhao X, Yong H, et al. FBXO22 promotes growth and metastasis and inhibits autophagy in epithelial ovarian cancers via the MAPK/ERK pathway. Front Pharmacol. 2021;12:778698. https://doi.org/10.3389/fphar.2021.778698.

[66]

Jiao YN, Wu LN, Xue D, et al. Marsdenia tenacissima extract induces apoptosis and suppresses autophagy through ERK activation in lung cancer cells. Cancer cell Int. 2018;18:149. https://doi.org/10.1186/s12935-018-0646-4.

[67]

Li K, Hao K, Zhang Y, et al. C21 fraction refined from Marsdenia tenacissima-induced apoptosis is enhanced by suppression of autophagy in human gastric cell lines. ACS Omega. 2020; 5(39):25156-25163. https://doi.org/10.1021/acsomega.0c02748.

[68]

Han RH, Huang HM, Han H, et al. Propofol postconditioning ameliorates hypoxia/reoxygenation induced H9c2 cell apoptosis and autophagy via upregulating forkhead transcription factors under hyperglycemia. Mil Med Res. 2021; 8(1):58. https://doi.org/10.1186/s40779-021-00353-0.

[69]

Hao H, Bai Y, Liu Y, et al. Protective mechanism of FoxO1 against early brain injury after subarachnoid hemorrhage by regulating autophagy. Brain Behav. 2021; 11(11):2376. https://doi.org/10.1002/brb3.2376.

[70]

Du JF, Xu Q, Zhao H, et al. PI3K inhibitor 3-MA promotes the antiproliferative activity of esomeprazole in gastric cancer cells by downregulating EGFR via the PI3K/FOXO3a pathway. Biomed Pharmacother. 2022;148:112665. https://doi.org/10.1016/J.BIOPHA.2022.112665.

[71]

Nirmala TP, Naeun L, Hoon SS, et al. Pitavastatin induces cancer cell apoptosis by blocking autophagy flux. Front Pharmacol. 2022;13:854506. https://doi.org/10.3389/fphar.2022.854506.

[72]

Fitzwalter BE, Towers CG, Sullivan KD, et al. Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev Cell. 2018; 44(5):555-565. https://doi.org/10.1016/j.devcel.2018.02.014.

[73]

Lei S, Soon L, Cheon JJ, et al. Chelidonium majus induces apoptosis of human ovarian cancer cells via ATF3-mediated regulation of Foxo3a by Tip60. J Microbiol Biotechnol 2022; 32(4):493-503. https://doi.org/10.4014/jmb.2109.09030.

[74]

Li SY, Pei WH, Zhang H. Simultaneous determination of eight bioactive components in Marsdenia tenacissima extract in rat plasma by LC-MS/MS and its application in a pharmacokinetic study. Biomed Chromatogr. 2020; 34(11):e4946. https://doi.org/10.1002/bmc.4946.

[75]

Ji X, Wang B, Nath PY, et al. Protective effect of chlorogenic acid and its analogues on lead-induced developmental neurotoxicity through modulating oxidative stress and autophagy. Front Mol Biosci. 2021;8:655549. https://doi.org/10.3389/fmolb.2021.655549.

[76]

Li CL, Han XC, Zhang H, et al. Effect of scopoletin on apoptosis and cell cycle arrest in human prostate cancer cells in vitro. Trop J Pharm Res. 2015; 14(4):611-617. https://doi.org/10.4314/tjpr.v14i4.8.

PDF (19619KB)

231

Accesses

0

Citation

Detail

Sections
Recommended

/