Research progress of small-molecule natural medicines for the treatment of ischemic stroke

Kui Liu , Ling Wang , Tao Pang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) : 21 -30.

PDF (12969KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (1) :21 -30. DOI: 10.1016/S1875-5364(25)60801-6
Review
research-article

Research progress of small-molecule natural medicines for the treatment of ischemic stroke

Author information +
History +
PDF (12969KB)

Abstract

Stroke is the second leading cause of disability and mortality worldwide, imposing a substantial socioeconomic burden on individuals and healthcare systems. Annually, approximately 14 million people experience stroke, with ischemic stroke comprising nearly 85% of cases, of which 10% to 20% involve large vessel occlusions. Currently, recombinant tissue plasminogen activator (tPA) remains the only approved pharmacological intervention. However, its utility is limited due to a narrow therapeutic window and low recanalization rates, making it applicable to only a minority of patients. Therefore, there is an urgent need for novel therapeutic strategies, including pharmacological advancements and combinatory treatments. Small-molecule natural medicines, particularly those derived from traditional Chinese herbs, have demonstrated significant therapeutic potential in ischemic stroke management. These compounds exert multiple neuroprotective effects, such as antioxidation, anti-inflammatory action, and inhibition of apoptosis, all of which are critical in mitigating stroke-induced cerebral damage. This review comprehensively examines the pathophysiology of acute ischemic stroke (AIS) and highlights the recent progress in the development of small-molecule natural medicines as promising therapeutic agents for cerebral ischemic stroke.

Keywords

Natural medicines / Small molecule / Ischemic stroke / Antioxidants / Neuroinflammation.

Cite this article

Download citation ▾
Kui Liu, Ling Wang, Tao Pang. Research progress of small-molecule natural medicines for the treatment of ischemic stroke. Chinese Journal of Natural Medicines, 2025, 23(1): 21-30 DOI:10.1016/S1875-5364(25)60801-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benesch C, Glance LG, Derdeyn CP, et al. Perioperative neurological evaluation and management to lower the risk of acute stroke in patients undergoing noncardiac, nonneurological surgery: a scientific statement from the American Heart Association/American Stroke Association. Circulation. 2021; 143(19):e923-e946. https://doi.org/10.1161/CIR.0000000000000968.

[2]

Khoshnam SE, Winlow W, Farzaneh M, et al. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017; 38(7):1167-1186. https://doi.org/10.1007/s10072-017-2938-1.

[3]

Magid BJ, Girard R, Polster S, et al. Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res. 2022; 130(8):1204-1229. https://doi.org/10.1161/CIRCRESAHA.121.319949.

[4]

Diener HC, Easton JD, Hart RG, et al. Review and update of the concept of embolic stroke of undetermined source. Nat Rev Neurol. 2022; 18(8):455-465. https://doi.org/10.1038/s41582-022-00663-4.

[5]

Martín-Montañez E, Valverde N, Ladrón de GMD, et al. Insulin-like growth factor II prevents oxidative and neuronal damage in cellular and mice models of Parkinson’s disease. Redox Biol. 2021;46:102095. https://doi.org/10.1016/j.redox.2021.102095.

[6]

Okarmus J, Agergaard JB, Stummann TC, et al. USP30 inhibition induces mitophagy and reduces oxidative stress in parkin-deficient human neurons. Cell Death Dis. 2024; 15(1):52. https://doi.org/10.1038/s41419-024-06439-6.

[7]

Zhao Y, Zhang X, Chen X, et al. Neuronal injuries in cerebral infarction and ischemic stroke: from mechanisms to treatment (Review). Int J Mol Med. 2021; 49(2):15. https://doi.org/10.3892/ijmm.2021.5070.

[8]

Liston TE, Holstein D, Solt D, et al. Lack of interactions between alteplase/tenecteplase and the adenosine A1R/A3R agonist AST-004. Stroke. 2024; 55(7):1923-1926. https://doi.org/10.1161/STROKEAHA.124.046688.

[9]

Zhen Z, Xue DJ, Chen YP, et al. Decoding the underlying mechanisms of Di-Tan-Decoction in treating intracerebral hemorrhage based on network pharmacology. BMC Complement Med Ther. 2023; 23(1):23-44. https://doi.org/10.1186/s12906-022-03831-7.

[10]

Hergenreder E, Minotti AP, Zorina Y, et al. Combined small-molecule treatment accelerates maturation of human pluripotent stem cell-derived neurons. Nat Biotechnol. 2024; 42(10):1515-1525. https://doi.org/10.1038/s41587-023-02031-z.

[11]

de Rus JA, Layé S, Calon F. How nutrients and natural products act on the brain: beyond pharmacology. Cell Rep Med. 2023; 4(10):101243. https://doi.org/10.1016/j.xcrm.2023.101243.

[12]

Chang S, Ruan WC, Xu YZ, et al. The natural product 4,10-aromadendranediol induces neuritogenesis in neuronal cells in vitro through activation of the ERK pathway. Acta Pharmacol Sin. 2017; 38(1):29-40. https://doi.org/10.1038/aps.2016.115.

[13]

Guo JD, Zhao X, Li Y, et al. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int J Mol Med. 2018; 41(4):1817-1825. https://doi.org/10.3892/ijmm.2018.3406.

[14]

Kierdorf K, Wang Y, Neumann H. Immune-mediated CNS damage. Results Probl Cell Differ. 2010; 51:173-196. https://doi.org/10.1007/400.

[15]

Sweeney MD, Zhao Z, Montagne A, et al. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019; 99(1):21-78. https://doi.org/10.1152/physrev.00050.2017.

[16]

Zheng X, Ren B, Gao Y. Tight junction proteins related to blood-brain barrier and their regulatory signaling pathways in ischemic stroke. Biomed Pharmacother. 2023;165:115272. https://doi.org/10.1016/j.biopha.2023.115272.

[17]

Shen Z, Xiang M, Chen C, et al. Glutamate excitotoxicity: potential therapeutic target for ischemic stroke. Biomed Pharmacother. 2022;151:113125. https://doi.org/10.1016/j.biopha.2022.113125.

[18]

Wang J, Tan S, Zhang Y, et al. Set7/9 aggravates ischemic brain injury via enhancing glutamine metabolism in a blocking Sirt5 manner. Cell Death Differ. 2024; 31(4):511-523. https://doi.org/10.1038/s41418-024-01264-y.

[19]

Smith HL, Chaytow H, Gillingwater TH. Excitotoxicity and ALS: new therapy targets an old mechanism. Cell Rep Med. 2024; 5(2):101423. https://doi.org/10.1016/j.xcrm.2024.101423.

[20]

Zhang LN, Wang Q, Xian XH, et al. Astrocytes enhance the tolerance of rat cortical neurons to glutamate excitotoxicity. Mol Med Rep. 2019; 19(3):1521-1528. https://doi.org/10.3892/mmr.2018.9799.

[21]

Qin C, Yang S, Chu YH, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduction Targeted Ther. 2022; 7(1):215. https://doi.org/10.1038/s41392-022-01064-1.

[22]

Chamorro Á, Dirnagl U, Urra X, et al. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016; 15(8):869-881. https://doi.org/10.1016/S1474-4422(16)00114-9.

[23]

Meng W, Ma Z, Ye H, et al. Polyphenolic oligomer-derived multienzyme activity for the treatment of ischemic stroke through ROS scavenging and blood-brain barrier restoration. J Mater Chem B. 2024; 12(8):2123-2138. https://doi.org/10.1039/d3tb02676k.

[24]

Sivandzade F, Prasad S, Bhalerao A, et al. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019;21:101059. https://doi.org/10.1016/j.redox.2018.11.017.

[25]

Wang Y, Guan X, Gao CL, et al. Medioresinol as a novel PGC-1α activator prevents pyroptosis of endothelial cells in ischemic stroke through PPARα-GOT1 axis. Pharmacol Res. 2021;169:105640. https://doi.org/10.1016/j.phrs.2021.105640.

[26]

Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018; 16:263-275. https://doi.org/10.1016/j.redox.2018.03.002.

[27]

Levard D, Buendia I, Lanquetin A, et al. Filling the gaps on stroke research: focus on inflammation and immunity. Brain Behav Immun. 2021; 91:649-667. https://doi.org/10.1016/j.bbi.2020.09.025.

[28]

Wang L, Bai Y, Tao Y, et al. Bear bile powder alleviates Parkinson’s disease-like behavior in mice by inhibiting astrocyte-mediated neuroinflammation. Chin J Nat Med. 2023; 21(9):710-720. https://doi.org/10.1016/S1875-5364(23)60449-2.

[29]

Li YF, Ren LN, Guo G, et al. Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. J Hematol Oncol. 2015;8:33. https://doi.org/10.1186/s13045-015-0130-8.

[30]

García-Culebras A, Durán-Laforet V, Peña-Martínez C, et al. Myeloid cells as therapeutic targets in neuroinflammation after stroke: specific roles of neutrophils and neutrophil-platelet interactions. J Cereb Blood Flow Metab. 2018; 38(12):2150-2164. https://doi.org/10.1177/0271678X18795789.

[31]

Parada E, Casas AI, Palomino-Antolin A, et al. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. Br J Pharmacol. 2019; 176(15):2764-2779. https://doi.org/10.1111/bph.14703.

[32]

Guan X, Zhu S, Song J, et al. Microglial CMPK2 promotes neuroinflammation and brain injury after ischemic stroke. Cell Rep Med. 2024; 5(5):101522. https://doi.org/10.1016/j.xcrm.2024.101522.

[33]

Endres M, Moro MA, Nolte CH, et al. Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke. Circ Res. 2022; 130(8):1167-1186. https://doi.org/10.1161/CIRCRESAHA.121.319994.

[34]

Iadecola C, Buckwalter MS, Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Invest. 2020; 130(6):2777-2788. https://doi.org/10.1172/JCI135530.

[35]

Blank-Stein N, Mass E. Macrophage and monocyte subsets in response to ischemic stroke. Eur J Immunol. 2023; 53(10):e2250233. https://doi.org/10.1002/eji.202250233.

[36]

Machhi J, Kevadiya BD, Muhammad IK, et al. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener. 2020; 15(1):32. https://doi.org/10.1186/s13024-020-00375-7.

[37]

Liesz A, Zhou W, Mracskó É, et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011; 134(Pt 3):704-720. https://doi.org/10.1093/brain/awr008.

[38]

Lei TY, Ye YZ, Zhu XQ, et al. The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J Neuroinflamm. 2021; 18(1):25. https://doi.org/10.1186/s12974-020-02057-z.

[39]

Zhou K, Zhong Q, Wang YC, et al. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3β/PTEN axis. J Cereb Blood Flow Metab. 2017; 37(3):967-979. https://doi.org/10.1177/0271678X16648712.

[40]

Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol. 2017; 18(2):123-131. https://doi.org/10.1038/ni.3666.

[41]

Korn T, Kallies A. T cell responses in the central nervous system. Nat Rev Immunol. 2017; 17(3):179-194. https://doi.org/10.1038/nri.2016.144.

[42]

Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 2021; 97(20Supplement 2):S6-S16. https://doi.org/10.1212/WNL.0000000000012781.

[43]

Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016; 387(10029):1723-1731. https://doi.org/10.1016/S0140-6736(16)00163-X.

[44]

Luo Z, Yin F, Wang X, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[45]

Jiang M, Wang XY, Zhou WY, et al. Cerebral protection of salvianolic acid A by the inhibition of granulocyte adherence. Am J Chin Med. 2011; 39(1):111-120. https://doi.org/10.1142/S0192415X11008683.

[46]

Wei X, He Y, Wan H, et al. Integrated transcriptomics, proteomics and metabolomics to identify biomarkers of astragaloside IV against cerebral ischemic injury in rats. Food Funct. 2023; 14(8):3588-3599. https://doi.org/10.1039/D2FO03030F.

[47]

Li Y, Zhang M, Li S, et al. Selective ischemic-hemisphere targeting ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury. Asian J Pharm Sci. 2023; 18(2):100783. https://doi.org/10.1016/j.ajps.2023.100783.

[48]

Zhou J, Fan Q, Cai X, et al. Ginkgo biloba extract protects against depression-like behavior in mice through regulating gut microbial bile acid metabolism. Chin J Nat Med. 2023; 21(10):745-758. https://doi.org/10.1016/S1875-5364(23)60496-0.

[49]

Liu X, Zhang X, Wang F, et al. Improvement in cerebral ischemia-reperfusion injury through the TLR4/NF-κB pathway after Kudiezi Injection in rats. Life Sci. 2017; 191:132-140. https://doi.org/10.1016/j.lfs.2017.10.035.

[50]

Zhang T, Wu X, Cao S, et al. Efficacy of the oriental herbal medicine, Jie Yu Dan, for alleviating post-stroke aphasia: a systematic review and meta-analysis of randomized clinical trials. Eur J Integr Med. 2018; 24:35-48. https://doi.org/10.1016/j.eujim.2018.10.012.

[51]

Chua KK, Wong A, Kwan PW, et al. The efficacy and safety of the Chinese herbal medicine Di-Tan Decoction for treating Alzheimer’s disease: protocol for a randomized controlled trial. Trials. 2015;16:199. https://doi.org/10.1186/s13063-015-0716-z.

[52]

Xu A, Wen ZH, Su SX, et al. Elucidating the synergistic effect of multiple Chinese herbal prescriptions in the treatment of post-stroke neurological damage. Front Pharmacol. 2022;13:784242. https://doi.org/10.3389/fphar.2022.784242.

[53]

Ren L, Luo L, Hu Z, et al. Functional characterization of CYP81C16 involved in the tanshinone biosynthetic pathway in Salvia miltiorrhiza. Chin J Nat Med. 2023; 21(12):938-949. https://doi.org/10.1016/S1875-5364(23)60484-4.

[54]

Fricker M, Tolkovsky AM, Borutaite V, et al. Neuronal cell death. Physiol Rev. 2018; 98(2):813-880. https://doi.org/10.1152/physrev.00011.2017.

[55]

Li X, Liu Z, Liao J, et al. Network pharmacology approaches for research of traditional Chinese medicines. Chin J Nat Med. 2023; 21(5):323-332. https://doi.org/10.1016/S1875-5364(23)60429-7.

[56]

Wang F, Qian H, Kong L, et al. Accelerated bone regeneration by astragaloside IV through stimulating the coupling of osteogenesis and angiogenesis. Int J Biol Sci. 2021; 17(7):1821-1836. https://doi.org/10.7150/ijbs.57681.

[57]

Longo V, Barbati SA, Re A, et al. Transcranial direct current stimulation enhances neuroplasticity and accelerates motor recovery in a stroke mouse model. Stroke. 2022; 53(5):1746-1758. https://doi.org/10.1161/STROKEAHA.121.034200.

[58]

Ni GX, Liang C, Wang J, et al. Astragaloside IV improves neurobehavior and promotes hippocampal neurogenesis in MCAO rats though BDNF-TrkB signaling pathway. Biomed Pharmacother. 2020;130:110353. https://doi.org/10.1016/j.biopha.2020.110353.

[59]

Cai H, Ma Y, Jiang L, et al. Hypoxia response element-regulated MMP-9 promotes neurological recovery via glial scar degradation and angiogenesis in delayed stroke. Mol Ther. 2017; 25(6):1448-1459. https://doi.org/10.1016/j.ymthe.2017.03.020.

[60]

Zhang M, Zhu R, Zhang L. Triclosan stimulates human vascular endothelial cell injury via repression of the PI3K/Akt/mTOR axis. Chemosphere. 2020;241:125077. https://doi.org/10.1016/j.chemosphere.2019.125077.

[61]

Shi G, Chen J, Zhang C, et al. Astragaloside IV promotes cerebral angiogenesis and neurological recovery after focal ischemic stroke in mice via activating PI3K/Akt/mTOR signaling pathway. Heliyon. 2023; 9(12):e22800. https://doi.org/10.1016/j.heliyon.2023.e22800.

[62]

Nederlof R, Eerbeek O, Hollmann MW, et al. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart. Br J Pharmacol. 2014; 171(8):2067-2079. https://doi.org/10.1111/bph.12363.

[63]

Li Y, Yang Y, Zhao Y, et al. Astragaloside IV reduces neuronal apoptosis and parthanatos in ischemic injury by preserving mitochondrial hexokinase-II. Free Radic Biol Med. 2019; 131:251-263. https://doi.org/10.1016/j.freeradbiomed.2018.11.033.

[64]

Qi M, Su X, Li Z, et al. Bibliometric analysis of research progress on tetramethylpyrazine and its effects on ischemia-reperfusion injury. Pharmacol Ther. 2024;259:108656. https://doi.org/10.1016/j.pharmthera.2024.108656.

[65]

Chang CY, Wu CC, Pan PH, et al. Tetramethylpyrazine alleviates mitochondrial abnormality in models of cerebral ischemia and oxygen/glucose deprivation reoxygenation. Exp Neurol. 2023;367:114468. https://doi.org/10.1016/j.expneurol.2023.114468.

[66]

Feng XF, Li MC, Lin ZY, et al. Tetramethylpyrazine promotes stroke recovery by inducing the restoration of neurovascular unit and transformation of A1/A2 reactive astrocytes. Front Cell Neurosci. 2023;17:1125412. https://doi.org/10.3389/fncel.2023.1125412.

[67]

Jin Z, Liang J, Kolattukudy PE. Tetramethylpyrazine preserves the integrity of blood-brain barrier associated with upregulation of MCPIP1 in a murine model of focal ischemic stroke. Front Pharmacol. 2021;12:710358. https://doi.org/10.3389/fphar.2021.710358.

[68]

Marco-Contelles J. Recent advances on nitrones design for stroke treatment. J Med Chem. 2020; 63(22):13413-13427. https://doi.org/10.1021/acs.jmedchem.0c00976.

[69]

Nie L, He K, Qiu C, et al. Tetramethylpyrazine nitrone alleviates D-galactose-induced murine skeletal muscle aging and motor deficits by activating the AMPK signaling pathway. Biomed Pharmacother. 2024;173:116415. https://doi.org/10.1016/j.biopha.2024.116415.

[70]

Guo B, Zheng C, Cao J, et al. Tetramethylpyrazine nitrone exerts neuroprotection via activation of PGC-1α/Nrf2 pathway in Parkinson’s disease models. J Adv Res. 2024;64:195. https://doi.org/10.1016/j.jare.2023.11.021.

[71]

Li S, Tian Z, Xian X, et al. Catalpol rescues cognitive deficits by attenuating amyloid β plaques and neuroinflammation. Biomed Pharmacother. 2023;165:115026. https://doi.org/10.1016/j.biopha.2023.115026.

[72]

Wiciński M, Górski K, Walczak M, et al. Neuroprotective properties of linagliptin: focus on biochemical mechanisms in cerebral ischemia, vascular dysfunction and certain neurodegenerative diseases. Int J Mol Sci. 2019; 20(16):4052. https://doi.org/10.3390/ijms20164052.

[73]

Zhang MF, Wang JH, Sun S, et al. Catalpol attenuates ischemic stroke by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway. Phytomedicine. 2024;128:155362. https://doi.org/10.1016/j.phymed.2024.155362.

[74]

Zhu HF, Shao Y, Qin L, et al. Catalpol enhances neurogenesis and inhibits apoptosis of new neurons via BDNF, but not the BDNF/Trkb pathway. Drug Des Devel Ther. 2019; 13:4145-4157. https://doi.org/10.2147/DDDT.S223322.

[75]

Chen H, He Y, Chen S, et al. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: applications for natural product efficacy with omics and systemic biology. Pharmacol Res. 2020;158:104877. https://doi.org/10.1016/j.phrs.2020.104877.

[76]

Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014; 515(7527):431-435. https://doi.org/10.1038/nature13909.

[77]

Huang G, Zang J, He L, et al. Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke. ACS Nano. 2022; 16(1):431-452. https://doi.org/10.1021/acsnano.1c07205.

[78]

Zhao H, Li C, Li L. Baicalin alleviates bleomycin-induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep. 2020; 21(6):2321-2334. https://doi.org/10.3892/mmr.2020.11046.

[79]

Huang Q, Wang M, Wang M, et al. Scutellaria baicalensis: a promising natural source of antiviral compounds for the treatment of viral diseases. Chin J Nat Med. 2023; 21(8):563-575. https://doi.org/10.1016/S1875-5364(23)60401-7.

[80]

Wei Z, Gao R, Sun Z, et al. Baicalin inhibits influenza A (H1N1)-induced pyroptosis of lung alveolar epithelial cells via caspase-3/GSDME pathway. J Med Virol. 2023; 95(5):e28790. https://doi.org/10.1002/jmv.28790.

[81]

Wang Z, Ma L, Su M, et al. Baicalin induces cellular senescence in human colon cancer cells via upregulation of DEPP and the activation of Ras/Raf/MEK/ERK signaling. Cell Death Dis. 2018; 9(2):217. https://doi.org/10.1038/s41419-017-0223-0.

[82]

Long Y, Liu S, Wan J, et al. Brain targeted borneol-baicalin liposome improves blood-brain barrier integrity after cerebral ischemia-reperfusion injury via inhibiting HIF-1α/VEGF/eNOS/NO signal pathway. Biomed Pharmacother. 2023;160:114240. https://doi.org/10.1016/j.biopha.2023.114240.

[83]

Song X, Gong Z, Liu K, et al. Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol. 2020;34:101559. https://doi.org/10.1016/j.redox.2020.101559.

[84]

Liu K, Zhou Y, Song X, et al. Baicalin attenuates neuronal damage associated with SDH activation and PDK2-PDH axis dysfunction in early reperfusion. Phytomedicine. 2024;129:155570. https://doi.org/10.1016/j.phymed.2024.155570.

[85]

Fontana AC. Current approaches to enhance glutamate transporter function and expression. J Neurochem. 2015; 134(6):982-1007. https://doi.org/10.1111/jnc.13200.

[86]

Zhou ZQ, Li YL, Ao ZB, et al. Baicalin protects neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the phosphoinositide 3-kinase/protein kinase B signaling pathway. Neural Regen Res. 2017; 12(10):1625-1631. https://doi.org/10.4103/1673-5374.217335.

[87]

George M, Tharakan M, Culberson J, et al. Role of Nrf 2 in aging, Alzheimer’s and other neurodegenerative diseases. Ageing Res Rev. 2022;82:101756. https://doi.org/10.1016/j.arr.2022.101756.

[88]

Wang X, Yu JY, Sun Y, et al. Baicalin protects LPS-induced blood-brain barrier damage and activates Nrf2-mediated antioxidant stress pathway. Int Immunopharmacol. 2021;96:107725. https://doi.org/10.1016/j.intimp.2021.107725.

[89]

Liu M, Guo J, Zhao J, et al. Activation of NRF 2 by celastrol increases antioxidant functions and prevents the progression of osteoarthritis in mice. Chin J Nat Med. 2024; 22(2):137-145. https://doi.org/10.1016/S1875-5364(24)60586-8.

[90]

Hong Z, Cao J, Liu D, et al. Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke. J Pharm Anal. 2023; 13(2):156-169. https://doi.org/10.1016/j.jpha.2022.12.002.

[91]

Li X, Liu W, Jiang G, et al. Celastrol ameliorates neuronal mitochondrial dysfunction induced by intracerebral hemorrhage via targeting cAMP-activated exchange protein-1. Adv Sci (Weinh) 2024; 11(19):e2307556. https://doi.org/10.1002/advs.202307556.

[92]

Wang W, Jiang S, Zhao Y, et al. Echinacoside: a promising active natural products and pharmacological agents. Pharmacol Res. 2023;197:106951. https://doi.org/10.1016/j.phrs.2023.106951.

[93]

Guan R, Zou W, Dai X, et al. Mitophagy, a potential therapeutic target for stroke. J Biomed Sci. 2018; 25(1):87. https://doi.org/10.1186/s12929-018-0487-4.

[94]

Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012; 337(6098):1062-1065. https://doi.org/10.1126/science.1219855.

[95]

Zeng KW, Wang JK, Wang LC, et al. Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity. Signal Transduct Target Ther. 2021; 6(1):71. https://doi.org/10.1038/s41392-020-00447-6.

[96]

Gao C, Xu Y, Liang Z, et al. A novel PGAM5 inhibitor LFHP-1c protects blood-brain barrier integrity in ischemic stroke. Acta Pharm Sin B. 2021; 11(7):1867-1884. https://doi.org/10.1016/j.apsb.2021.01.008.

[97]

Li S, Fan G, Li X, et al. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med. 2023; 21(1):3-18. https://doi.org/10.1016/S1875-5364(23)60381-4.

[98]

Ling Y, Jin L, Ma Q, et al. Salvianolic acid A alleviated inflammatory response mediated by microglia through inhibiting the activation of TLR2/4 in acute cerebral ischemia-reperfusion. Phytomedicine. 2021;87:153569. https://doi.org/10.1016/j.phymed.2021.153569.

[99]

Yang R, Hu N, Liu TY, et al. Salvianolic acid A provides neuroprotective effects on cerebral ischemia-reperfusion injury in rats via PKA/CREB/c-Fos signaling pathway. Phytomedicine. 2024;124:155326. https://doi.org/10.1016/j.phymed.2023.155326.

[100]

Shi Y, Yan D, Nan C, et al. Salvianolic acid A inhibits ferroptosis and protects against intracerebral hemorrhage. Sci Rep. 2024; 14(1):12427. https://doi.org/10.1038/s41598-024-63277-4.

[101]

Zhu H, Jian Z, Zhong Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition. Front Immunol. 2021;12:714943. https://doi.org/10.3389/fimmu.2021.714943.

[102]

Jin W, Zhao J, Yang E, et al. Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A. Theranostics. 2022; 12(7):3196-3216. https://doi.org/10.7150/thno.71029.

[103]

Qiu J, Yan Z, Tao K, et al. Sinomenine activates astrocytic dopamine D2 receptors and alleviates neuroinflammatory injury via the CRYAB/STAT3 pathway after ischemic stroke in mice. J Neuroinflammation. 2016; 13(1):263. https://doi.org/10.1186/s12974-016-0739-8.

[104]

Cherninskyi A, Storozhuk M, Maximyuk O, et al. Triggering of major brain disorders by protons and ATP: the role of ASICs and P2X receptors. Neurosci Bull. 2023; 39(5):845-862. https://doi.org/10.1007/s12264-022-00986-8.

[105]

Wu WN, Wu PF, Chen XL, et al. Sinomenine protects against ischaemic brain injury: involvement of co-inhibition of acid-sensing ion channel 1a and L-type calcium channels. Br J Pharmacol. 2011; 164(5):1445-1459. https://doi.org/10.1111/j.1476-5381.2011.01487.x.

[106]

Wang S, Lei P, Feng Y, et al. Jinyinqingre Oral Liquid alleviates LPS-induced acute lung injury by inhibiting the NF-κB/NLRP3/GSDMD pathway. Chin J Nat Med. 2023; 21(6):423-435. https://doi.org/10.1016/S1875-5364(23)60397-8.

[107]

Qiu J, Wang M, Zhang J, et al. The neuroprotection of sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling. Int Immunopharmacol. 2016; 40:492-500. https://doi.org/10.1016/j.intimp.2016.09.024.

[108]

Wu Y, Du J, Wu Q, et al. The osteogenesis of ginsenoside Rb1 incorporated silk/micro-nano hydroxyapatite/sodium alginate composite scaffolds for calvarial defect. Int J Oral Sci. 2022; 14(1):10. https://doi.org/10.1038/s41368-022-00157-5.

[109]

Ni XC, Wang HF, Cai YY, et al. Ginsenoside Rb 1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol. 2022;54:102363. https://doi.org/10.1016/j.redox.2022.102363.

[110]

Alim I, Caulfield JT, Chen Y, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019; 177(5):1262-1279.e25. https://doi.org/10.1016/j.cell.2019.03.032.

[111]

Zhang M, Lin W, Tao X, et al. Ginsenoside Rb 1 inhibits ferroptosis to ameliorate hypoxic-ischemic brain damage in neonatal rats. Int Immunopharmacol. 2023;121:110503. https://doi.org/10.1016/j.intimp.2023.110503.

[112]

Liu T, Wang W, Li X, et al. Advances of phytotherapy in ischemic stroke targeting PI3K/Akt signaling. Phytother Res. 2023; 37(12):5509-5528. https://doi.org/10.1002/ptr.7994.

[113]

Liu J, He J, Huang L, et al. Neuroprotective effects of ginsenoside Rb1 on hippocampal neuronal injury and neurite outgrowth. Neural Regen Res. 2014; 9(9):943-950. https://doi.org/10.4103/1673-5374.133137.

[114]

Tang YC, Tian HX, Yi T, et al. The critical roles of mitophagy in cerebral ischemia. Protein Cell. 2016; 7(10):699-713. https://doi.org/10.1007/s13238-016-0307-0.

[115]

Li Y, Li J, Yang L, et al. Ginsenoside Rb 1 protects hippocampal neurons in depressed rats based on mitophagy-regulated astrocytic pyroptosis. Phytomedicine. 2023;121:155083. https://doi.org/10.1016/j.phymed.2023.155083.

[116]

Hui W, Huang W, Zheng Z, et al. Ginkgo biloba extract promotes Treg differentiation to ameliorate ischemic stroke via inhibition of HIF-1α/HK2 pathway. Phytother Res. 2023; 37(12):5821-5836. https://doi.org/10.1002/ptr.7988.

[117]

Zhao H, Guo Q, Li B, et al. The efficacy and safety of ginkgo terpene lactone preparations in the treatment of ischemic stroke: a systematic review and meta-analysis of randomized clinical trials. Front Pharmacol. 2022;13:821937. https://doi.org/10.3389/fphar.2022.821937.

[118]

Cao Y, Yang L, Cheng H. Ginkgolide B protects against ischemic stroke via targeting AMPK/PINK1. Front Pharmacol 2022;13:941094. https://doi.org/10.3389/fphar.2022.941094.

[119]

Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020; 66:89-100. https://doi.org/10.1016/j.semcancer.2019.03.002.

[120]

Yang Y, Wu Q, Shan X, et al. Ginkgolide B attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through disrupting NCOA4-FTH1 interaction. J Ethnopharmacol. 2024;318(Pt B):116982. https://doi.org/10.1016/j.jep.2023.116982.

[121]

Shu ZM, Shu XD, Li HQ, et al. Ginkgolide B protects against ischemic stroke via modulating microglia polarization in mice. CNS Neurosci Ther. 2016; 22(9):729-739. https://doi.org/10.1111/cns.12577.

[122]

Wang H, Xu X, Guan X, et al. Liposomal 9-aminoacridine for treatment of ischemic stroke: from drug discovery to drug delivery. Nano Lett. 2020; 20(3):1542-1551. https://doi.org/10.1021/acs.nanolett.9b04018.

[123]

Luo W, Deng J, He J. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J Cell Mol Med. 2023; 27(14):1959-1974. https://doi.org/10.1111/jcmm.17787.

[124]

Zheng P, Zhang N, Ren D, et al. Integrated spatial transcriptome and metabolism study reveals metabolic heterogeneity in human injured brain. Cell Rep Med. 2023; 4(6):101057. https://doi.org/10.1016/j.xcrm.2023.101057.

[125]

Zhang C, Wu J, Zhang Y, et al. Click chemistry and natural products. Chin J Nat Med. 2024; 22(2):97-99. https://doi.org/10.1016/S1875-5364(24)60557-1.

[126]

Gao CL, Hou GG, Liu J, et al. Synthesis and target identification of benzoxepane derivatives as potential anti-neuroinflammatory agents for ischemic stroke. Angew Chem Int Ed. 2020; 59(6):2429-2439. https://doi.org/10.1002/anie.201912489.

[127]

Duan Y, Du W, Song Z, et al. Functional characterization of a cycloartenol synthase and four glycosyltransferases in the biosynthesis of cycloastragenol-type astragalosides from Astragalus membranaceus. Acta Pharm Sin B. 2023; 13(1):271-283. https://doi.org/10.1016/j.apsb.2022.05.015.

PDF (12969KB)

150

Accesses

0

Citation

Detail

Sections
Recommended

/