Approved natural products-derived nanomedicines for disease treatment

Xiaotong LI , Yaoyao LAI , Guanghan WAN , Jiahui ZOU , Wei HE , Pei YANG

Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (12) : 1100 -1116.

PDF (1546KB)
Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (12) :1100 -1116. DOI: 10.1016/S1875-5364(24)60726-0
Review
research-article

Approved natural products-derived nanomedicines for disease treatment

Author information +
History +
PDF (1546KB)

Abstract

In recent years, there has been an increasing emphasis on exploring innovative drug delivery approaches due to the limitations of conventional therapeutic strategies, such as inadequate drug targeting, insufficient therapeutic efficacy, and significant adverse effects. Nanomedicines have emerged as a promising solution with notable advantages, including extended drug circulation, targeted delivery, and improved bioavailability, potentially enhancing the clinical treatment of various diseases. Natural products/materials-derived nanomedicines, characterized by their natural therapeutic efficacy, superior biocompatibility, and safety profile, play a crucial role in nanomedicine-based treatments. This review provides a comprehensive overview of currently approved natural products-derived nanomedicines, emphasizing the essential properties of natural products-derived drug carriers, their applications in clinical diagnosis and treatment, and the current therapeutic potential and challenges. The aim is to offer guidance for the application and further development of these innovative therapeutic approaches.

Keywords

Nanomedicine / Drug carriers / Natural properties / Diagnosis / Disease treatment / Safety

Cite this article

Download citation ▾
Xiaotong LI, Yaoyao LAI, Guanghan WAN, Jiahui ZOU, Wei HE, Pei YANG. Approved natural products-derived nanomedicines for disease treatment. Chinese Journal of Natural Medicines, 2024, 22(12): 1100-1116 DOI:10.1016/S1875-5364(24)60726-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song M, Aipire A, Dilxat E, et al. Research progress of polysaccharide-gold nanocomplexes in drug delivery[J]. Pharmaceutics, 2024, 16 (1) :88.

[2]

Zhang Y, He J. Tumor vasculature-targeting nanomedicines[J]. Acta Biomater, 2021, 134: 1-12.

[3]

Wu SY, Wu FG, Chen X. Antibody-incorporated nanomedicines for cancer therapy[J]. Adv Mater, 2022, 34(24): e2109210.

[4]

Qian X, Xu X, Wu Y, et al. Strategies of engineering nanomedicines for tumor retention[J]. J Control Release, 2022, 346: 193-211.

[5]

Zhuang J, Zhang X, Liu Q, et al. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases[J]. Theranostics, 2022, 12(14): 6223-6241.

[6]

Qin M, Xia H, Xu W, et al. The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy[J]. Adv Drug Deliv Rev, 2023, 203: 115137.

[7]

Schutzman R, Shi NQ, Olsen KF, et al. Mechanistic evaluation of the initial burst release of leuprolide from spray-dried PLGA microspheres[J]. J Control Release, 2023, 361: 297-313.

[8]

Abulateefeh SR. Long-acting injectable PLGA/PLA depots for leuprolide acetate: successful translation from bench to clinic[J]. Drug Deliv Transl Res, 2023, 13(2): 520-530.

[9]

Park H, Otte A, Park K. Evolution of drug delivery systems: from 1950 to 2020 and beyond[J]. J Control Release, 2022, 342: 53-65.

[10]

Li M, Wang H, Tian L, et al. COVID-19 vaccine development: milestones, lessons and prospects[J]. Signal Transduct Target Ther, 2022, 7(1): 146.

[11]

D'Mello SR, Cruz CN, Chen ML, et al. The evolving landscape of drug products containing nanomaterials in the United States[J]. Nature Nanotechnol, 2017, 12(6): 523.

[12]

Pelaz B, Alexiou CH, Alvarez -Puebla RA, et al. Diverse applications of nanomedicine[J]. Acs Nano, 2017, 11(3): 2313-2381.

[13]

Ye R, Guo Q, Huang J, et al. Eucommia ulmoides polysaccharide modified nano-selenium effectively alleviated DSS-induced colitis through enhancing intestinal mucosal barrier function and antioxidant capacity[J]. J Nanobiotechnol, 2023, 21(1): 222.

[14]

Xiong J, Wu M, Chen J, et al. Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian cancer[J]. ACS Nano, 2021, 15(12): 19756-19770.

[15]

Xie J, Li Q, Haesebrouck F, et al. The tremendous biomedical potential of bacterial extracellular vesicles[J]. Trends Biotechnol, 2022, 40(10): 1173-1194.

[16]

Shah BM, Palakurthi SS, Khare T, et al. Natural proteins and polysaccharides in the development of micro/nano delivery systems for the treatment of inflammatory bowel disease[J]. Int J Biol Macromol, 2020, 165 (Pt A): 722-737.

[17]

El-Hammadi MM, Arias JL. An update on liposomes in drug delivery: a patent review (2014-2018)[J]. Expert Opin Ther Pat, 2019, 29(11): 891-907.

[18]

Tenchov R, Bird R, Curtze AE, et al. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement[J]. ACS Nano, 2021, 15(11): 16982-17015.

[19]

Praveen TK, Gangadharappa HV, Abu Lila AS, et al. Inflammation targeted nanomedicines: patents and applications in cancer therapy[J]. Semin Cancer Biol, 2022, 86 (Pt 2): 645-663.

[20]

Pei Z, Chen S, Ding L, et al. Current perspectives and trend of nanomedicine in cancer: a review and bibliometric analysis[J]. J Control Release, 2022, 352: 211-241.

[21]

Ji C, Wang X, Xue B, et al. A fluorescent nano vector for early diagnosis and enhanced Interleukin-33 therapy of thoracic aortic dissection[J]. Biomaterials, 2023, 293: 121958.

[22]

Shah S, Dhawan V, Holm R, et al. Liposomes: advancements and innovation in the manufacturing process[J]. Adv Drug Deliv Rev, 2020, 154-155: 102-122.

[23]

Pattipeiluhu R, Arias-Alpizar G, Basha G, et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system[J]. Adv Mater, 2022, 34(16): e2201095.

[24]

Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems-the current state[J]. Adv Colloid Interface Sci, 2022, 309: 102757.

[25]

Large DE, Abdelmessih RG, Fink EA, et al. Liposome composition in drug delivery design, synthesis, characterization, and clinical application[J]. Adv Drug Deliv Rev, 2021, 176: 113851.

[26]

Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications[J]. Int J Pharm, 2021, 601: 120571.

[27]

Cheng X, Gao J, Ding Y, et al. Multi-functional liposome: a powerful theranostic nano-platform enhancing photodynamic therapy[J]. Adv Sci (Weinh), 2021, 8(16): e2100876.

[28]

Weers J, Metzheiser B, Taylor G, et al. A Gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers[J]. J Aerosol Med Pulm Drug Delivy, 2009, 22(2): 131-138.

[29]

Davidson EM, Barenholz Y, Cohen R, et al. High-dose bupivacaine remotely loaded into multivesicular liposomes demonstrates slow drug release without systemic toxic plasma concentrations after subcutaneous administration in humans[J]. Anesth Analg, 2010, 110(4): 1018-1023.

[30]

Liu S, Guo D, Guo Y, et al. Preparation and pharmacokinetics of ceftiofur sodium liposomes in cows[J]. J Vet Pharmacol Ther, 2011, 34(1): 35-41.

[31]

Zahednezhad F, Saadat M, Valizadeh H, et al. Liposome and immune system interplay: challenges and potentials[J]. J Control Release, 2019, 305: 194-209.

[32]

Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies[J]. Clin Pharmacokinet, 2003, 42: 419-436.

[33]

Xia J, Chen C, Dong M, et al. Ginsenoside Rg3 endows liposomes with prolonged blood circulation and reduced accelerated blood clearance[J]. J Control Release, 2023, 364: 23-36.

[34]

Mirchandani Y, Patravale VB, S B. Solid lipid nanoparticles for hydrophilic drugs[J]. J Control Release, 2021, 335: 457-464.

[35]

Abrishami M, Abrishami M, Mahmoudi A, et al. Solid lipid nanoparticles improve the diclofenac availability in vitreous after intraocular injection[J]. J Drug Deliv, 2016, 2016: 1368481.

[36]

Tang CH. Assembled milk protein nano-architectures as potential nanovehicles for nutraceuticals[J]. Adv Colloid Interface Sci, 2021, 292: 102432.

[37]

Kim S, Cathey MVJ, Bounds BC, et al. Ligand-mediated mechanical enhancement in protein complexes at nano- and macro-scale[J]. ACS Appl Mater Interfaces, 2024, 16(1): 272-280.

[38]

Jiang Z, Chu Y, Zhan C. Protein corona: challenges and opportunities for targeted delivery of nanomedicines[J]. Expert Opin Drug Deliv, 2022, 19(7): 833-846.

[39]

Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems[J]. Adv Drug Deliv Rev, 2023, 199: 114904.

[40]

Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions[J]. Drug Discov Today, 2015, 20(1): 122-128.

[41]

Fló J, Tisminetzky S, Baralle F. Oral transgene vaccination mediated by attenuated Salmonellae is an effective method to prevent Herpes simplex virus-2 induced disease in mice[J]. Vaccine, 2001, 19(13-14): 1772-1782.

[42]

Holmes DL, Thibaudeau K, L'Archevêque B, et al. Site specific 1: 1 opioid: albumin conjugate with in vitro activity and long in vivo duration[J]. Bioconjugate Chemistry, 2000, 11(4): 439-444.

[43]

Szabó R, Bánóczi Z, Mezo G, et al. Daunomycin-polypeptide conjugates with antitumor activity[J]. BBA-Biomembranes, 2010, 1798(12): 2209-2216.

[44]

Guo H, Lee C, Shah M, et al. A novel elastin-like polypeptide drug carrier for cyclosporine A improves tear flow in a mouse model of Sjögren’s syndrome[J]. J Control Release, 2018, 292: 183-195.

[45]

Sharma A, Kaur I, Dheer D, et al. A propitious role of marine sourced polysaccharides: drug delivery and biomedical applications[J]. Carbohydrate Polymers, 2023, 308 :120448.

[46]

Pourjavadi A, Alipour S, Doroudian M. Polysaccharide-modified magnetic drug nanocarriers: structures and applications in cancer chemotherapy[J]. J Drug Delivery Sci Technol, 2024, 91 : 105140.

[47]

Kou F, Mei Y, Wang W, et al. Phellinus linteus polysaccharides: a review on their preparation, structure-activity relationships, and drug delivery systems[J]. Int J Biol Macromol, 2024, 258 (Pt 1): 128702.

[48]

Guo Y, Liu F, Zhang J, et al. Research progress on the structure, derivatives, pharmacological activity, and drug carrier capacity of Chinese yam polysaccharides: a review[J]. Int J Biol Macromol, 2024, 261 (Pt 2): 129853.

[49]

Dheer D, Arora D, Jaglan S, et al. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery[J]. J Drug Target, 2017, 25(1): 1-16.

[50]

Murano E. Use of natural polysaccharides in the microencapsulation techniques[J]. J Appl Ichthyol, 1998, 14(3-4): 245-249.

[51]

Xue HQ, Ju YK, Ye XZ, et al. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: a review[J]. Int J Biol Macromol, 2024, 254 : 128048.

[52]

Sun L, Liu J, Lin SS, et al. Potent anti-angiogenicactivity of B19-a mono-carbonyl analogue of curcumin[J]. Chin J Nat Med, 2014, 12(1): 8-14.

[53]

Lee JE, Yoon SS, Lee JW, et al. Curcumin-induced cell death depends on the level of autophagic flux in A172 and U87MG human glioblastoma cells[J]. Chin J Nat Med, 2020, 18(2): 114-122.

[54]

Wu P, Huang R, Xiong YL, et al. Protective effects of curcumin against liver fibrosis through modulating DNA methylation[J]. Chin J Nat Med, 2016, 14(4): 255-264.

[55]

Luo W, Bai L, Zhang J, et al. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin[J]. Carbohydr Polym, 2023, 311: 120718.

[56]

Zhang R, Liu F, Zhang Q, et al. Intra-articular delivery system of methotrexate for rheumatoid arthritis therapy: an in-suit thermosensitive comprehensive gel of polysaccharide from Aconitum carmichaelii Debx[J]. Int J Biol Macromol, 2023, 244: 124822.

[57]

Weng Y, Zhang H, Xu S, et al. Preparation and quality evaluation of Honokiol nanoparticles using a new polysaccharide polymer as its carrier[J]. Curr Drug Deliv, 2023, 20(2): 183-191.

[58]

Yuan H, Guo C, Liu L, et al. Progress and prospects of polysaccharide-based nanocarriers for oral delivery of proteins/peptides[J]. Carbohydr Polym, 2023, 312: 120838.

[59]

Alam Khan S, Jawaid Akhtar M. Structural modification and strategies for the enhanced doxorubicin drug delivery[J]. Bioorg Chem, 2022, 120: 105599.

[60]

Henry B, Volle G, Akpovi H, et al. Splenic clearance of rigid erythrocytes as an inherited mechanism for splenomegaly and natural resistance to malaria[J]. EBioMedicine, 2022, 82: 104167.

[61]

Yang Z, Liu Y, Zhao K, et al. Dual mRNA co-delivery for in situ generation of phagocytosis-enhanced CAR macrophages augments hepatocellular carcinoma immunotherapy[J]. J Control Release, 2023, 360: 718-733.

[62]

Joshi BS, de Beer MA, Giepmans BNG, et al. Endocytosis of extracellular vesicles and release of their cargo from endosomes[J]. ACS Nano, 2020, 14(4): 4444-4455.

[63]

Liu S, Chen X, Bao L, et al. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles[J]. Nat Biomed Eng, 2020, 4(11): 1063-1075.

[64]

Saifi MA, Sathish G, Bazaz MR, et al. Exploration of tumor penetrating peptide iRGD as a potential strategy to enhance tumor penetration of cancer nanotherapeutics[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188895.

[65]

Gao X, Xu J, Yao T, et al. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases[J]. Adv Drug Deliv Rev, 2022, 187: 114362.

[66]

Li Z, Wang Y, Ding Y, et al. Cell-based delivery systems: emerging carriers for immunotherapy[J]. Adv Funct Mater, 2021, 31 (23): 31.

[67]

Hamidi M, Tajerzadeh H. Carrier erythrocytes: an overview[J]. Drug Deliv, 2003, 10(1): 9-20.

[68]

Kim J, Hall RR, Lesniak MS, et al. Stem cell-based cell carrier for targeted oncolytic virotherapy: translational opportunity and open questions[J]. Viruses, 2015, 7(12): 6200-6217.

[69]

Power AT, Wang J, Falls TJ, et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity[J]. Mol Ther, 2007, 15(1): 123-130.

[70]

Ahmed AU, Thaci B, Alexiades NG, et al. Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma[J]. Mol Ther, 2011, 19(9): 1714-1726.

[71]

Battistelli M, Falcieri E. Apoptotic bodies: particular extracellular vesicles involved in intercellular communication[J]. Biology-Basel, 2020, 9(1): 10.

[72]

Chen H, Wang L, Zeng X, et al. Exosomes, a new star for targeted delivery[J]. Front Cell Dev Biol, 2021, 9: 751079.

[73]

Hough KP, Deshane JS. Exosomes in allergic airway diseases[J]. Curr Allergy Asthma Rep, 2019, 19(5): 26.

[74]

Alipoor SD, Mortaz E, Varahram M, et al. The potential biomarkers and immunological effects of tumor-derived exosomes in lung cancer[J]. Front Immunol, 2018, 9: 819.

[75]

Zhang HG, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions[J]. Am J Pathol, 2014, 184(1): 28-41.

[76]

Nie H, Xie X, Zhang D, et al. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer[J]. Nanoscale, 2020, 12(2): 877-887.

[77]

McAndrews KM, Che SPY, LeBleu VS, et al. Effective delivery of STING agonist using exosomes suppresses tumor growth and enhances antitumor immunity[J]. J Biol Chem, 2021, 296: 100523.

[78]

Liu C, Su C. Design strategies and application progress of therapeutic exosomes[J]. Theranostics, 2019, 9(4): 1015-1028.

[79]

Fu P, Yin S, Cheng H, et al. Engineered exosomes for drug delivery in cancer therapy: a promising approach and application[J]. Curr Drug Deliv, 2024, 21(6): 817-827.

[80]

Liu HM, Zhang Y. Folic acid-decorated astrocytes-derived exosomes enhanced the effect of temozolomide against glioma[J]. Kaohsiung J Med Sci, 2024, 40(5): 435-444.

[81]

Han X, Saengow C, Ju L, et al. Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing[J]. Nat Commun, 2024, 15(1): 3435.

[82]

Ståhl A-l, Johansson K, Mossberg M, et al. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases[J]. Pediatr Nephrol, 2019, 34(1): 11-30.

[83]

Mohammadi MR, Riazifar M, Pone EJ, et al. Isolation and characterization of microvesicles from mesenchymal stem cells[J]. Methods, 2020, 177: 50-57.

[84]

Raza F, Zheng M, Zhong H, et al. Engineered tumor microvesicles modified by SP94 peptide for arsenic trioxide targeting drug delivery in liver cancer therapy[J]. Mat Sci Eng C-Mater, 2023, 155: 213683.

[85]

Nössing C, Ryan KM. 50 years on and still very much alive: 'Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics'[J]. Br J Cancer, 2023, 128(3): 426-431.

[86]

Canbay A, Taimr P, Torok N, et al. Apoptotic body engulfment by a human stellate cell line is profibrogenic[J]. Lab Invest, 2003, 83(5): 655-663.

[87]

Xiong Z, Ma Y, He J, et al. Apoptotic bodies of bone marrow mesenchymal stem cells inhibit endometrial stromal cell fibrosis by mediating the Wnt/β-catenin signaling pathway[J]. Heliyon, 2023, 9(11): e20716.

[88]

Gao P, Zhou L, Wu J, et al. Riding apoptotic bodies for cell-cell transmission by African swine fever virus[J]. Proc Natl Acad Sci U S A, 2023, 120(48): e2309506120.

[89]

Wang J, Donohoe E, Canning A, et al. Immunomodulatory function of licensed human bone marrow mesenchymal stromal cell-derived apoptotic bodies[J]. Int Immunopharmacol, 2023, 125 (Pt A): 111096.

[90]

Wen J, Creaven D, Luan X, et al. Comparison of immunotherapy mediated by apoptotic bodies, microvesicles and exosomes: apoptotic bodies’ unique anti-inflammatory potential[J]. J Transl Med, 2023, 21(1): 478.

[91]

Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection[J]. Sci Signal, 2009, 2(100): ra81.

[92]

Berda-Haddad Y, Robert S, Salers P, et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α[J]. Proc Natl Acad Sci U S A, 2011, 108(51): 20684-20689.

[93]

Jiang T, Xia Y, Wang W, et al. Apoptotic bodies inhibit inflammation by PDL1-PD1-mediated macrophage metabolic reprogramming[J]. Cell Prolif, 2024, 57(1): e13531.

[94]

Moreno VM, Baeza A. Bacteria as nanoparticle carriers for immunotherapy in oncology[J]. Pharmaceutics, 2022, 14 (4): 784.

[95]

Kang SR, Nguyen DH, Yoo SW, et al. Bacteria and bacterial derivatives as delivery carriers for immunotherapy[J]. Adv Drug Deliv Rev, 2022, 181: 114085.

[96]

Qin CJ, Ding MR, Tian GZ, et al. Chemical approaches towards installation of rare functional groups in bacterial surface glycans[J]. Chin J Nat Med, 2022, 20(6): 401-420.

[97]

Felgner S, Kocijancic D, Frahm M, et al. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy[J]. Oncoimmunology, 2018, 7(2): e1382791.

[98]

Silva AJ, Zangirolami TC, Novo-Mansur MT, et al. Live bacterial vaccine vectors: an overview[J]. Braz J Microbiol, 2014, 45(4): 1117-1129.

[99]

Moreno VM, Álvarez E, Izquierdo-Barba I, et al. Bacteria as nanoparticles carrier for enhancing penetration in a tumoral matrix model[J]. Adv Mater Interfaces, 2020, 7 (11): 1901942.

[100]

Tan KE, Lim YY. Viruses join the circular RNA world[J]. Febs j, 2021, 288(15): 4488-4502.

[101]

Pumpens P, Grens E. HBV core particles as a carrier for B cell/T cell epitopes[J]. Intervirology, 2001, 44(2-3): 98-114.

[102]

Huang CY, Butrapet S, Tsuchiya KR, et al. Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development[J]. J Virol, 2003, 77(21): 11436-11447.

[103]

Koser ML, McGettigan JP, Tan GS, et al. Rabies virus nucleoprotein as a carrier for foreign antigens[J]. Proc Natl Acad Sci U S A, 2004, 101(25): 9405-9410.

[104]

Schuphan J, Commandeur U. Analysis of engineered tobacco mosaic virus and potato virus X nanoparticles as carriers for biocatalysts[J]. Front Plant Sci, 2021, 12: 710869.

[105]

Jariyapong P, Xing L, van Houten NE, et al. Chimeric hepatitis E virus-like particle as a carrier for oral-delivery[J]. Vaccine, 2013, 31(2): 417-424.

[106]

Liu CG, Zhao Y, Lu Y, et al. ABCA1-labeled exosomes in serum contain higher microRNA-193b levels in Alzheimer’s disease[J]. Biomed Res Int, 2021, 2021: 5450397.

[107]

Athauda D, Gulyani S, Karnati HK, et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide-PD trial[J]. JAMA Neurol, 2019, 76(4): 420-429.

[108]

Xue Q, Samakovli D, Swevers L, et al. Drosophila X virus-like particles as efficient dsRNA carriers for improved RNAi against the invasive species[J]. J Pest Sci, 2024, 97(1): 429-443.

[109]

Xue Q, Swevers L, Taning CNT. Drosophila X virus-like particles as delivery carriers for improved oral insecticidal efficacy of scorpion Androctonus australis peptide against the invasive fruit fly, Drosophila suzukii [J]. Insect Sci, 2024, 31( 3): 847-858.

[110]

Anzaghe M, Schülke S, Scheurer S. Virus-like particles as carrier systems to enhance immunomodulation in allergen immunotherapy[J]. Curr Allergy Asthma Rep, 2018, 18(12): 71.

[111]

Farjadian F, Ghasemi A, Gohari O, et al. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities[J]. Nanomedicine (Lond), 2019, 14(1): 93-126.

[112]

Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects[J]. J Nanobiotechnol, 2018, 16(1): 71.

[113]

Mohanty SK, Swamy MK, Sinniah UR, et al. Leptadenia reticulata (Retz. ) Wight & Arn. (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects[J]. Molecules, 2017, 22 (6): 1019.

[114]

Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA-Cancer J Clin, 2023, 73(1): 17-48.

[115]

Dizon DS, Kamal AH. Cancer statistics 2024: all hands on deck[J]. CA-Cancer J Clin, 2024, 74(1): 8-9.

[116]

Fan DH, Cao YK, Cao MQ, et al. Nanomedicine in cancer therapy[J]. Signal Transduct Target Ther, 2023, 8(1): 34.

[117]

Meel R, Sulheim E, Shi Y, et al. Smart cancer nanomedicine[J]. Nat Nanotechnol, 2019, 14(11): 1007-1017.

[118]

Zhao H, Yu J, Zhang R, et al. Doxorubicin prodrug-based nanomedicines for the treatment of cancer[J]. Eur J Med Chem, 2023, 258: 115612.

[119]

Cowens JW, Creaven PJ, Greco WR, et al. Initial clinical (phase I) trial of TLC D-99 (doxorubicin encapsulated in liposomes)[J]. Cancer Res, 1993, 53(12): 2796-2802.

[120]

Mross K, Niemann B, Massing U, et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study[J]. Cancer Chemoth Pharm, 2004, 54(6): 514-524.

[121]

Hauck ML, LaRue SM, Petros WP, et al. Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors[J]. Clin Cancer Res, 2006, 12(13): 4004-4010.

[122]

Lyon PC, Gray MD, Mannaris C, et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial[J]. Lancet Oncol, 2018, 19(8): 1027-1039.

[123]

Gray MD, Lyon PC, Mannaris C, et al. Focused ultrasound hyperthermia for targeted drug release from thermosensitive liposomes: results from a phase I trial[J]. Radiology, 2019, 291(1): 232-238.

[124]

Rodriguez MA, Pytlik R, Kozak T, et al. Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study[J]. Cancer, 2009, 115(15): 3475-3482.

[125]

Bedikian AY, Vardeleon A, Smith T, et al. Pharmacokinetics and urinary excretion of vincristine sulfate liposomes injection in metastatic melanoma patients[J]. J Clin Pharmacol, 2006, 46(7): 727-737.

[126]

Bedikian AY, Silverman JA, Papadopoulos NE, et al. Pharmacokinetics and safety of Marqibo (vincristine sulfate liposomes injection) in cancer patients with impaired liver function[J]. J Clin Pharmacol, 2011, 51(8): 1205-1212.

[127]

Shah NN, Merchant MS, Cole DE, et al. Vincristine sulfate liposomes injection (VSLI, Marqibo®): results from a phase I study in children, adolescents, and young adults with refractory solid tumors or leukemias[J]. Pediatr Blood Cancer, 2016, 63(6): 997-1005.

[128]

Strieth S, Dunau C, Kolbow K, et al. Phase I clinical study of vascular targeting fluorescent cationic liposomes in head and neck cancer[J]. Eur Arch Otorhinolaryngol, 2013, 270(4): 1481-1487.

[129]

Strieth S, Dunau C, Michaelis U, et al. Phase I/II clinical study on safety and antivascular effects of paclitaxel encapsulated in cationic liposomes for targeted therapy in advanced head and neck cancer[J]. Head Neck, 2014, 36(7): 976-984.

[130]

Wang XH, Zhou SY, Qian ZZ, et al. Evaluation of toxicity and single-dose pharmacokinetics of intravenous ursolic acid liposomes in healthy adult volunteers and patients with advanced solid tumors[J]. Expert Opin Drug Metab Toxicol, 2013, 9(2): 117-125.

[131]

Valk FM, Wijk DF, Lobatto ME, et al. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration[J]. Nanomedicine, 2015, 11(5): 1039-1046.

[132]

Gabizon AA, Tahover E, Golan T, et al. Pharmacokinetics of mitomycin-c lipidic prodrug entrapped in liposomes and clinical correlations in metastatic colorectal cancer patients[J]. Invest New Drugs, 2020, 38(5): 1411-1420.

[133]

Li Y, Chen NH, Palmisano M, et al. Pharmacologic sensitivity of paclitaxel to its delivery vehicles drives distinct clinical outcomes of paclitaxel formulations[J]. Mol Pharm, 2015, 12(4): 1308-1317.

[134]

Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane[J]. Expert Opin Pharmacol, 2006, 7(8): 1041-1053.

[135]

Micha JP, Goldstein BH, Birk CL, et al. Abraxane in the treatment of ovarian cancer: The absence of hypersensitivity reactions[J]. Gynecol Oncol, 2006, 100(2): 437-438.

[136]

Chen NH, Brachmann C, Liu XP, et al. Albumin-bound nanoparticle paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration[J]. Cancer Chemoth Pharm, 2015, 76(4): 699-712.

[137]

Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine[J]. Adv Drug Deliv Rev, 2008, 60(8): 876-885.

[138]

Bashtan VP. Clinical effectiveness of the use of liposomes with antibiotics and ecterocide in purulent-inflammatory thoracic and abdominal complications[J]. Klin Khir, 1997(1): 14-16.

[139]

Groll AH, Rijnders BJA, Walsh TJ, et al. Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of liposomal amphotericin B[J]. Clin Infect Dis, 2019, 68(Suppl 4): S260-S274.

[140]

Abu Ammar A, Nasereddin A, Ereqat S, et al. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis[J]. Drug Deliv Transl Res, 2019, 9(1): 76-84.

[141]

Eichenfield DZ, Sprague J, Eichenfield LF. Management of acne vulgaris: a review[J]. J Am Med Assoc, 2021, 326(20): 2055-2067.

[142]

Williams HC, Dellavalle RP, Garner S. Acne vulgaris[J]. Lancet, 2012, 379 (9813): 361-372.

[143]

Kelidari HR, Saeedi M, Hajheydari Z, et al. Spironolactone loaded nanostructured lipid carrier gel for effective treatment of mild and moderate acne vulgaris: a randomized, double-blind, prospective trial[J]. Colloids Surf B, 2016, 146: 47-53.

[144]

El-Housiny S, Shams Eldeen MA, El-Attar YA, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study[J]. Drug Deliv, 2018, 25(1): 78-90.

[145]

Xie FM, Zeng K, Chen ZL, et al. Treatment of recurrent condyloma acuminatum with solid lipid nanoparticle gel containing podophyllotoxin: a randomized double-blinded, controlled clinical trial[J]. J South Med Univ, 2007, 27(5): 657-659.

[146]

Kalariya M, Padhi BK, Chougule M, et al. Clobetasol propionate solid lipid nanoparticles cream for effective treatment of eczema: formulation and clinical implications[J]. Indian J Exp Biol, 2005, 43(3): 233-240.

[147]

Lea J, Sharma R, Yang F, et al. Detection of phosphatidylserine-positive exosomes as a diagnostic marker for ovarian malignancies: a proof of concept study[J]. Oncotarget, 2017, 8(9): 14395-14407.

[148]

Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7): 2053-2108.

[149]

Hu Z, Wang S, Dai Z, et al. A novel theranostic nano-platform (PB@FePt-HA-g-PEG) for tumor chemodynamic-photothermal co-therapy and triple-modal imaging (MR/CT/PI) diagnosis[J]. J Mater Chem B, 2020, 8(24): 5351-5360.

[150]

García-Romero N, Carrión-Navarro J, Esteban-Rubio S, et al. DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients[J]. Oncotarget, 2017, 8(1): 1416-1428.

[151]

Rozenberg OA, Loshakova LV, Mikhaĭlova N, et al. Radiologic detection of triombrast in liposomes of liver and spleen (first phase of clinical trial)[J]. Vestn Rentgenol Radiol, 1993(5): 35-38.

[152]

Brouwers AH, De Jong DJ, Dams ET, et al. Tc-99m-PEG-Liposomes for the evaluation of colitis in Crohn’s disease[J]. J Drug Target, 2000, 8(4): 225-233.

[153]

Underwood C, van Eps AW, Ross MW, et al. Intravenous technetium-99m labelled PEG-liposomes in horses: a safety and biodistribution study[J]. Equine Vet J, 2012, 44(2): 196-202.

[154]

Gabon Q, Sayag D, Texier I, et al. Evaluation of intraoperative fluorescence imaging-guided surgery in cancer-bearing dogs: a prospective proof-of-concept phase II study in 9 cases[J]. Transl Res, 2016, 170: 73-88.

[155]

Lázaro-Ibáñez E, Sanz-Garcia A, Visakorpi T, et al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes[J]. Prostate, 2014, 74(14): 1379-1390.

[156]

Chiva-Blanch G, Bratseth V, Laake K, et al. One year of omega 3 polyunsaturated fatty acid supplementation does not reduce circulating prothrombotic microvesicles in elderly subjects after suffering a myocardial infarction[J]. Clin Nutr, 2021, 40(12): 5674-5677.

[157]

Uzzaman A, Zhang X, Qiao Z, et al. Discovery of small extracellular vesicle proteins from human serum for liver cirrhosis and liver cancer[J]. Biochimie, 2020, 177: 132-141.

[158]

Zhang Z, Mateus J, Coelho CH, et al. Humoral and cellular immune memory to four COVID-19 vaccines[J]. Cell, 2022, 185 (14): 2434-2451. e2417.

[159]

Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine[J]. N Engl J Med, 2020, 383(27): 2603-2615.

[160]

Hadj Hassine I. Covid-19 vaccines and variants of concern: a review[J]. Rev Med Virol, 2022, 32(4): e2313.

[161]

Kremsner PG, Mann P, Kroidl A, et al. Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2 : a phase 1 randomized clinical trial[J]. Wien Klin Wochenschr, 2021, 133 (17-18): 931-941.

[162]

Maruggi G, Mallett CP, Westerbeck JW, et al. A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models[J]. Mol Ther, 2022, 30(5): 1897-1912.

[163]

Sahin U, Muik A, Vogler I, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans[J]. Nature, 2021, 595(7868): 572-577.

[164]

Toyama K, Eto T, Takazawa K, et al. DS-5670a, a novel mRNA-encapsulated lipid nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2: results from a phase 2 clinical study[J]. Vaccine, 2023, 41(38): 5525-5534.

[165]

Bennett C, Woo W, Bloch M, et al. Immunogenicity and safety of a bivalent (omicron BA. 5 plus ancestral) SARS-CoV-2 recombinant spike protein vaccine as a heterologous booster dose: interim analysis of a phase 3, non-inferiority, randomised, clinical trial[J]. Lancet Infect Dis, 2024, 24(6): 581-593.

[166]

Black RE, Cousens S, Johnson HL, et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis[J]. Lancet, 2010, 375(9730): 1969-1987.

[167]

Dashefsky B, Wald E, Guerra N, et al. Safety, tolerability, and immunogenicity of concurrent administration of Haemophilus influenzae type b conjugate vaccine (meningococcal protein conjugate) with either measles-mumps-rubella vaccine or diphtheria-tetanus-pertussis and oral poliovirus vaccines in 14- to 23-month-old infants [J]. Pediatrics, 1990, 85 ( 4 Pt 2): 682-689.

[168]

Pomat WS, van den Biggelaar AHJ, Wana S, et al. Safety and immunogenicity of pneumococcal conjugate vaccines in a high-risk population: a randomized controlled trial of 10-valent and 13-valent pneumococcal conjugate vaccine in papua new guinean infants[J]. Clin Infect Dis, 2019, 68(9): 1472-1481.

[169]

Palmu AA, Jokinen J, Borys D, et al. Effectiveness of the ten-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) against invasive pneumococcal disease: a cluster randomised trial[J]. Lancet, 2013, 381(9862): 214-222.

[170]

Ruiz-Palacios GM, Guerrero ML, Hernández-Delgado L, et al. Immunogenicity, reactogenicity and safety of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) in Mexican infants[J]. Hum Vaccin, 2011, 7(11): 1137-1145.

[171]

Barug D, Berbers GAM, van Houten MA, et al. Infant antibody levels following 10-valent pneumococcal-protein D conjugate and DTaP-Hib vaccinations in the first year of life after maternal Tdap vaccination: an open-label, parallel, randomised controlled trial[J]. Vaccine, 2020, 38(29): 4632-4639.

[172]

Tripp RA, Tompkins SM. Virus-vectored influenza virus vaccines[J]. Viruses-Basel, 2014, 6(8): 3055-3079.

[173]

Zhu FC, Wurie AH, Hou LH, et al. Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet, 2017, 389(10069): 621-628.

[174]

Wong G, Richardson JS, Pillet S, et al. Adenovirus-vectored vaccine provides postexposure protection to ebola virus-infected nonhuman primates[J]. J Infect Dis, 2015, 212 (Suppl 2): S379-383.

[175]

Li JX, Hou LH, Meng FY, et al. Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial[J]. Lancet Glob Health, 2017, 5(3): e324-e334.

[176]

Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J]. N Engl J Med, 2021, 385(6): 493-502.

[177]

Coelho T, Adams D, Silva A, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis[J]. N Engl J Med, 2013, 369(9): 819-829.

[178]

Suhr OB, Coelho T, Buades J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study[J]. Orphanet J Rare Dis, 2015, 10: 109.

[179]

Zhang X, Goel V, Attarwala H, et al. Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the Phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis[J]. J Clin Pharmacol, 2020, 60(1): 37-49.

[180]

Suri R, Neupane YR, Mehra N, et al. Sirolimus loaded polyol modified liposomes for the treatment of Posterior Segment Eye Diseases[J]. Med Hypotheses, 2020, 136.

[181]

Salcedo-Ledesma A, Córdoba A, Zatarain-Barrón NC, et al. Subconjunctival sirolimus-loaded liposomes for the treatment of moderate-to-severe dry eye disease[J]. Clin Ophthalmol, 2023, 17: 1295-1305.

[182]

Friedman NJ. Impact of dry eye disease and treatment on quality of life[J]. Curr Opin Ophthalmol, 2010, 21(4): 310-316.

[183]

Schwartz LM, Woloshin S. A clear-eyed view of restasis and chronic dry eye disease[J]. JAMA Intern Med, 2018, 178(2): 181-182.

[184]

Hyde SC, Southern KW, Gileadi U, et al. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis[J]. Gene Ther, 2000, 7(13): 1156-1165.

[185]

Okebukola PO, Kansra S, Barrett J. Vitamin E supplementation in people with cystic fibrosis[J]. Cochrane Database Syst Rev, 2020, 9(9): Cd009422.

[186]

Mehata AK, Setia A, Vikas, et al. Vitamin E TPGS-based nanomedicine, nanotheranostics, and targeted drug delivery: past, present, and future[J]. Pharmaceutics, 2023, 15 (3): 722.

[187]

Nowak JK, Sobkowiak P, Drzymała-Czyż S, et al. Fat-soluble vitamin supplementation using liposomes, cyclodextrins, or medium-chain triglycerides in cystic fibrosis: a randomized controlled trial[J]. Nutrients, 2021, 13 (12): 4554.

[188]

Li X, Gu J, Xiao Q, et al. Liposomal codelivery of inflammation inhibitor and collagen protector to the plaque for effective anti-atherosclerosis[J]. Chin Chem Lett, 2023, 34(1): 107483.

[189]

Xu N, Wu J, Wang W, et al. Anti-tumor therapy of glycyrrhetinic acid targeted liposome co-delivery of doxorubicin and berberine for hepatocellular carcinoma[J]. Drug Deliv Transl Res, 2024: 1-17.

[190]

Ma X, Sui X, Liu C, et al. Co-delivery of berberine and magnolol targeted liposomes for synergistic anti-lung cancer[J]. Colloids Surf A Physicochem Eng Asp, 2023, 673: 131773.

[191]

Li X, Peng X, Zoulikha M, et al. Multifunctional nanoparticle-mediated combining therapy for human diseases[J]. Signal Transduct Target Ther, 2024, 9(1): 1.

[192]

Li D, Zhao A, Zhu J, et al. Inhaled lipid nanoparticles alleviate established pulmonary fibrosis[J]. Small, 2023, 19(30): 2300545.

[193]

Zhao Y, Tian Y, Ye W, et al. A lipid-polymer hybrid nanoparticle (LPN)-loaded dissolving microneedle patch for promoting hair regrowth by transdermal miR-218 delivery [J]. Biomater Sci, 2023, 11(1): 140-152.

Funding

National Natural Science Foundation of China(82073782)

National Natural Science Foundation of China(82241002)

Key Laboratory of Modern Chinese Medicine Preparation of Ministry of Education of Jiangxi University of Traditional Chinese Medicine(zdsys-202103)

PDF (1546KB)

67

Accesses

0

Citation

Detail

Sections
Recommended

/