Toosendanin: upgrade of an old agent in cancer treatment

Shuwei LI , Qingyi XIONG , Yiwen SHEN , Jiayi LIN , Lijun ZHANG , Ye WU , Jinmei JIN , Xin LUAN

Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (10) : 887 -899.

PDF (1717KB)
Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (10) :887 -899. DOI: 10.1016/S1875-5364(24)60693-X
Original article
research-article

Toosendanin: upgrade of an old agent in cancer treatment

Author information +
History +
PDF (1717KB)

Abstract

Toosendanin (TSN), a tetracyclic triterpenoid derived from Melia toosendan and M. azedarach, demonstrates broad application prospects in cancer treatment. Although previously employed as a pesticide, recent studies have revealed its potential therapeutic value in treating various types of cancer. TSN exerts an anticancer effect via mechanisms including proliferation inhibition, apoptosis induction, migration suppression, and angiogenesis inhibition. However, TSN’s toxicity, particularly its hepatotoxicity, significantly limits its therapeutic application. This review explored the dual nature of TSN, evaluating both its anticancer potential and toxicological risks, emphasizing the importance of balancing these aspects in therapeutic applications. Furthermore, we investigated the incorporation of TSN into novel therapeutic strategies, such as Proteolysis-targeting chimeras (PROTAC) technology and nanotechnology-based drug delivery systems (DDS), which enhance treatment efficacy while mitigating toxicity in normal tissues.

Keywords

Toosendanin / Cancer therapy / Hepatotoxicity / PROTAC / Nano-delivery systems

Cite this article

Download citation ▾
Shuwei LI, Qingyi XIONG, Yiwen SHEN, Jiayi LIN, Lijun ZHANG, Ye WU, Jinmei JIN, Xin LUAN. Toosendanin: upgrade of an old agent in cancer treatment. Chinese Journal of Natural Medicines, 2024, 22(10): 887-899 DOI:10.1016/S1875-5364(24)60693-X

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhong CC, Xie JX, Chen SF, et al. The structure of chuanlianse[J]. Acta Chim Sin, 1975(1): 35-47.

[2]

Li C, Lei JY, Nan YF. Determination of toosendanin in Melia toosendan by RP-HPLC[J]. China Pharm, 2015, 24(16): 87-89.

[3]

Liang ZR, Wu SQ. Determination of toosendanin in Fructus Toosendan by UPLC-MS/MS[J]. Guangdong Chem Ind, 2023, 50(20): 155-156, 175.

[4]

Zhang S, Cao L, Wang ZR, et al. Anti-cancer effect of toosendanin and its underlying mechanisms[J]. J Asian Nat Prod Res, 2019, 21(3): 270-283.

[5]

Shi YL, Li MF. Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine[J]. Prog Neurobiol, 2007, 82(1): 1-10.

[6]

Zhang J, Hou L, Zhu J. Tu1318-toosendanin exerts antitumor activity in gastric cancer by regulating circular Rna_Dlst/Mir-502 axis[J]. Gastroenterology, 2019, 156 (6): S-1025.

[7]

Shao S, Li S, Liu C, et al. Toosendanin induces apoptosis of MKN-45 human gastric cancer cells partly through miR-23a-3p-mediated downregulation of BCL2[J]. Mol Med Rep, 2020, 22(3): 1793-1802.

[8]

Wang G, Li L, Li Y, et al. Toosendanin reduces cisplatin resistance in ovarian cancer through modulating the miR-195/ERK/β-catenin pathway[J]. Phytomedicine, 2023, 109: 154571.

[9]

Wang G, Fan XQ, Li L, et al. Toosendanin shows potent efficacy against human ovarian cancer through caspase-dependent mitochondrial apoptotic pathway[J]. Am J Chin Med, 2021, 49(7): 1757-1772.

[10]

Zhang C, Gao H, Liu Z, et al. Mechanisms involved in the anti-tumor effects of toosendanin in glioma cells[J]. Cancer Cell Int, 2021, 21(1): 492.

[11]

Wang Q, Wang Z, Hou G, et al. Toosendanin suppresses glioma progression property and induces apoptosis by regulating miR-608/Notch axis[J]. Cancer Manag Res, 2020, 12: 3419-3431.

[12]

Zhang XW, Zhang C, Zhang D, et al. Toosendanin inhibits proliferation, migration and invasion of renal carcinoma cells by MMP9[J]. Cell Mol Immunol, 2023, 39(4): 793-797, 803, 798.

[13]

Arnason BG, Berkovich R, Catania A, et al. Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis[J]. Mult Scler, 2013, 19 (2): 130-136.

[14]

Wang H, Wen C, Chen S, et al. Toosendanin-induced apoptosis in colorectal cancer cells is associated with the κ-opioid receptor/β-catenin signaling axis[J]. Biochem Pharmacol, 2020, 177: 114014.

[15]

Zhang H, Chen Y, Liu Q, et al. Design, synthesis, and anti-triple negative breast cancer activity of novel toosendanin derivatives[J]. Bioorg Med Chem Lett, 2023, 83: 129187.

[16]

Zhang J, Xu HX, Wu YL, et al. Synergistic anti-tumor effect of toosendanin and paclitaxel on triple-negative breast cancer via regulating ADORA2A-EMT related signaling[J]. Adv Biol (Weinh), 2023, 7 (8): e2300062.

[17]

Zhang T, Li J, Yin F, et al. Toosendanin demonstrates promising antitumor efficacy in osteosarcoma by targeting STAT3[J]. Oncogene, 2017, 36(47): 6627-6639.

[18]

Jia X, Wang P, Huang C, et al. Toosendanin targeting eEF2 impedes Topoisomerase I & II protein translation to suppress esophageal squamous cell carcinoma growth[J]. J Exp Clin Cancer Res, 2023, 42: 97.

[19]

Zhang M, Tao Z, Gao L, et al. Toosendanin inhibits colorectal cancer cell growth through the Hedgehog pathway by targeting Shh[J]. Drug Dev Res, 2022, 83(5): 1201-1211.

[20]

Yu S, Han R, Gan R. The Wnt/β-catenin signalling pathway in haematological neoplasms[J]. Biomark Res, 2022, 10(1): 74.

[21]

Wang G, Feng CC, Chu SJ, et al. Toosendanin inhibits growth and induces apoptosis in colorectal cancer cells through suppression of AKT/GSK-3β/β-catenin pathway[J]. Int J Oncol, 2015, 47(5): 1767-1774.

[22]

Beena TB, Jesil MA, Harikumar KB. Cross-talk between AMP-activated protein kinase and the sonic hedgehog pathway in the high-fat diet triggered colorectal cancer[J]. Arch Biochem Biophys, 2023, 735: 109500.

[23]

Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46.

[24]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.

[25]

Huang OX, Shi X, Cui J. Effect of lnc RNA SNHG1 promoting proliferation of gastric cancer cell by inhibiting p27kip1[J]. J Mod Oncol, 2020, 28(14): 2378-2384.

[26]

Liu H. Study of the molecular mechanisms study of circYAP1 on growth of gastric carcinoma mediated by toosendanin[D]. Shanghai: Shanghai Jiao Tong University, 2019.

[27]

Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation[J]. Nature, 2015, 517(7534): 311-320.

[28]

Zheng J, Conrad M. The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020, 32(6): 920-937.

[29]

Chen X, Li J, Kang R, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9): 2054-2081.

[30]

Xu S, Min J, Wang F. Ferroptosis: an emerging player in immune cells[J]. Sci Bull (Beijing), 2021, 66(22): 2257-2260.

[31]

Mao Y, Liu X, Song Y, et al. VEGF-A/VEGFR-2 and FGF-2/FGFR-1 but not PDGF-BB/PDGFR-β play important roles in promoting immature and inflammatory intraplaque angiogenesis[J]. PLoS One, 2018, 13(8): e0201395.

[32]

Liu XL, Wang H, Zhang L, et al. Anticancer effects of crude extract from Melia toosendan Sieb. et Zucc on hepatocellular carcinomain vitro andin vivo [J]. Chin J Integr Med, 2016, 22(5): 362-369.

[33]

Lalier L, Vallette F, Manon S. Bcl-2 family members and the mitochondrial import machineries: the roads to death[J]. Biomolecules, 2022, 12(2): 162.

[34]

Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis[J]. Nat Rev Mol Cell Biol, 2023, 24(10): 732-748.

[35]

Sovilj D, Kelemen CD, Dvorakova S, et al. Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak[J]. Apoptosis, 2024, 29(3-4): 424-438.

[36]

Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 175-193.

[37]

Zhang Y, Zhang L, Wang Z, et al. Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy[J]. Biomaterials, 2019, 223: 119462.

[38]

Xu XJ, Li SS, Liu C, et al. Toosendanin induces apoptosis of human gastric cancer MGC-803 cells and its mechanism[J]. Chin J Appl Physiol, 2021, 37(3): 262-265.

[39]

He Y, Wang J, Liu X, et al. Toosendanin inhibits hepatocellular carcinoma cells by inducing mitochondria-dependent apoptosis[J]. Planta Med, 2010, 76(13): 1447-1453.

[40]

Li W, Wu S, Zhang H, et al. Enhanced biological photosynthetic efficiency using light-harvesting engineering with Dual-emissive carbon dots[J]. Adv Funct, 2018, 28(44): 1804004.

[41]

Zhou C, Liu Q, Xiang Y, et al. Role of the tumor immune microenvironment in tumor immunotherapy[J]. Oncol Lett, 2022, 23(2): 1-7.

[42]

Angelos MG, Patel RP, Ruella M, et al. Progress and pitfalls of chimeric antigen receptor T cell immunotherapy against T cell nalignancies[J]. Transplant Cell Ther, 2024, 30(2): 171-186.

[43]

Yang F, Zhang D, Jiang H, et al. Small-molecule toosendanin reverses macrophage-mediated immunosuppression to overcome glioblastoma resistance to immunotherapy[J]. Sci Transl Med, 2023, 15(683): eabq3558. .abq3558

[44]

Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level[J]. Nat Rev Mol Cell Biol, 2008, 9(3): 231-241.

[45]

White MJ, Mcarthur K, Metcalf D, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production[J]. Cell, 2014, 159(7): 1549-1562.

[46]

Rongvaux A, Jackson R, Harman CCD, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA[J]. Cell, 2014, 159(7): 1563-1577.

[47]

Giampazolias E, Zunino B, Dhayade S, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency[J]. Nat Cell Biol, 2017, 19(9): 1116-1129.

[48]

Gerstberger S, Jiang Q, Ganesh K. Metastasis[J]. Cell, 2023, 186(8): 1564-1579.

[49]

THIERY JP. Epithelial-mesenchymal transitions in tumour progression[J]. Nat Rev Cancer, 2002, 2(6): 442-454.

[50]

Cui L, Wei H, Li ZM, et al. TGF-β1 aggravates degenerative nucleus pulposus cells inflammation and fibrosis through the upregulation of angiopoietin-like protein 2 expression[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23): 12025-12033.

[51]

Wang G, Huang YX, Zhang R, et al. Toosendanin suppresses oncogenic phenotypes of human gastric carcinoma SGC-7901 cells partly via miR-200a-mediated downregulation of β-catenin pathway[J]. Int J Oncol, 2017, 51(5): 1563-1573.

[52]

Yang T, Xu R, Huo J, et al. WWOX activation by toosendanin suppresses hepatocellular carcinoma metastasis through JAK2/Stat3 and Wnt/β-catenin signaling[J]. Cancer Lett, 2021, 513: 50-62.

[53]

Yuan F, Zhao ZT, Jia B, et al. TSN inhibits cell proliferation, migration, invasion, and EMT through regulating miR-874/HMGB2/β-catenin pathway in gastric cancer[J]. Neoplasma, 2020, 67(5): 1012-1021.

[54]

Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition[J]. Cell Res, 2009, 19(2): 156-172.

[55]

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Bio, 2014, 15(3): 178-196.

[56]

Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications[J]. Mol Cancer, 2016, 15: 18.

[57]

Li YY, Zhang KN, Cai JW, et al. Effect of toosendanin on invasion and migration of human ovarian cancer cells[J]. Chin J Pathophysiol, 2018, 34(1): 70-74.

[58]

Luo W, Liu X, Sun W, et al. Toosendanin, a natural product, inhibited TGF-β1-induced epithelial-mesenchymal transition through ERK/Snail pathway[J]. Phytother Res, 2018, 32(10): 2009-2020.

[59]

Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation[J]. Nature, 2008, 454(7203): 436-444.

[60]

Candido J, Hagemann T. Cancer-related inflammation[J]. J Clin Immunol, 2013, 33 (Suppl 1): S79-84.

[61]

Zhang Y, Kong W, Jiang J. Prevention and treatment of cancer targeting chronic inflammation: research progress, potential agents, clinical studies and mechanisms[J]. Sci China Life Sci, 2017, 60(6): 601-616.

[62]

Li W, Huang T, Xu S, et al. Molecular mechanism of tanshinone against prostate cancer[J]. Molecules, 2022, 27(17): 5594.

[63]

Sun M, Liu Q, Liang Q, et al. Toosendanin triggered hepatotoxicity in zebrafish via inflammation, autophagy, and apoptosis pathways[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2021, 250: 109171.

[64]

FUkumura D, Kloepper J, Amoozgar Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges[J]. Nat Rev Clin Oncol, 2018, 15(5): 325-340.

[65]

Teleanu RI, Chircov C, Grumezescu AM, et al. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment[J]. J Clin Med, 2019, 9(1): 84.

[66]

Marmé D. Tumor angiogenesis: a key target for cancer therapy[J]. Oncol Res Treat, 2018, 41(4): 164.

[67]

Qin G, Kishore R, Dolan CM, et al. Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF[J]. Proc Natl Acad Sci USA, 2006, 103(29): 11015-11020.

[68]

Farhang GM, Goossens S, Nittner D, et al. p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway[J]. Cell Death Differ, 2013, 20(7): 888-897.

[69]

Cao L, Qu D, Wang H, et al. Toosendanin exerts an anti-cancer effect in glioblastoma by inducing estrogen receptor β- and p53-mediated apoptosis[J]. Int J Mol Sci, 2016, 17(11): 1928.

[70]

Yang Y, Mei C, Xian H, et al. Toosendanin-induced apoptosis of CMT-U27 is mediated through the mitochondrial apoptotic pathway[J]. Vet Comp Oncol, 2023, 21(2): 315-326.

[71]

Langeh U, Kumar V, Singh C, et al. Drug-herb combination therapy in cancer management[J]. Mol Biol Rep, 2022, 49(11): 11009-11024.

[72]

Shi J, Wang F. Effect of toosendanin on TRAIL inhibiting hepatocellular carcinoma and the related mechanism[J]. Zhejiang J Integr Tradit Chin West Med, 2017, 27(11): 936-939, 946.

[73]

Ma R, Yuan D, Guo Y, et al. Immune effects of γδ T cells in colorectal cancer: a review[J]. Front Immunol, 2020, 11 : 1600.

[74]

Yu F, Xu TQ, Chen CH, et al. Toosendanin exerts synergistic effect on γδ T cell-induced cytotoxicity to colorectal cancer by suppressing expression of MCL-1[J]. Chin J Pathophysiol, 2017, 33(11): 2020-2025.

[75]

Zheng J, Yu L, Chen W, et al. Circulating exosomal microRNAs reveal the mechanism of Fructus Meliae Toosendan-induced liver injury in mice[J]. Sci Rep, 2018, 8(1): 2832.

[76]

Ning W, Li S, Tsering J, et al. Protective effect of triphala against oxidative stress-induced neurotoxicity[J]. Biomed Res Int, 2021, 2021(1): 6674988.

[77]

Zhang F, Zhang X, Gu Y, et al. Hepatoprotection of Lycii Fructus polysaccharide against oxidative stress in hepatocytes and larval zebrafish[J]. Oxid Med Cell Longev, 2021, 2021(1): 3923625.

[78]

Yang JH. Cytoprotective effect of Bambusae caulis in liquamen by blocking oxidative stress in hepatocytes[J]. Molecules, 2023, 28(15): 5862.

[79]

Kim SY, Kim EA, Kim YS, et al. Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses[J]. Int J Biol Macromol, 2016, 91: 804-811.

[80]

Tang DX, Xiong JY, Tan ZH. Comparative research of acute toxicity of fructus toosendan and fried toosendan[J]. Sichuan JPhysiol Sc, 2013, 35(2): 57-59.

[81]

Hu M, Xu M, Chen Y, et al. Therapeutic potential of toosendanin: novel applications of an old ascaris repellent as a drug candidate[J]. Biomed Pharmacother, 2023, 167: 115541.

[82]

Shan SQ. An introduction to the adverse reactions and prevention of herbal medicines[J]. J Pract Med Tech, 1999, 6(6): 417.

[83]

Zhou CG, G Y, Zhang XM. A case of poisoning caused by oral overdose of Fructus Toosendan[J]. Chin Comm Doc, 2005, 7(13): 60.

[84]

Guo YJ, Li JT, Chang ZJ. Clinical analysis of 92 cases of drug-induced liver injury caused by traditional Chinese medicine[J]. J Pract Hepatol, 2009, 12(6): 453-454.

[85]

Marzio HD, Navarro VJ. Drug-induced hepatotoxicity in humans[J]. Curr Opin Drug Discov Devel, 2008, 11(1): 53-59.

[86]

Liang Y, Chen S, Han S, et al. Toosendanin induced hepatotoxicity via triggering PERK-eIF2α-ATF4 mediated ferroptosis[J]. Toxicol Lett, 2023, 377: 51-61.

[87]

Yan X, Zhuo Y, Bian X, et al. Integrated proteomics, biological functional assessments, and metabolomics reveal toosendanin-induced hepatic energy metabolic disorders[J]. Chem Res Toxicol, 2019, 32(4): 668-680.

[88]

Xiong YH, Liu XJ, Wang XT, et al. Evaluation of Toosendan Fructus-induced hepatotoxicity based on metabolic profile of fatty acids[J]. Chin Tradit Herbal Drugs, 2017, 48: 3104-3109.

[89]

Wu RH, Chen YH, Li L, et al. Preliminary study on mechanism of sub-acute toxicity of Fructus Toosendan based on metabonomics[J]. Inf Tradit Chin Med, 2021, 38(9): 27-34.

[90]

Bai MR, Ma SRN, Tian M. Correlation study to Aconite with liver and intestinal of mice Cyp3A[J]. J North Pharm, 2012, 9(4): 35-36.

[91]

Zhang JL, Shi WY, Zhong W, et al. Effects of toosendanin on pregnancy and uterine immunity alterations in mice[J]. Am J Chin Med, 2010, 38(2): 319-328.

[92]

Wang X, Wang C, Wang Z. Determination of toosendanin in rat plasma by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry and its application in a pharmacokinetic study[J]. Biomed Chromatogr, 2013, 27(2): 222-227.

[93]

Shen C, Pan Z, Wu X, et al. A sensitive liquid chromatography-mass spectrometry method for determination of toosendanin in rat plasma and its application to pharmacokinetic study[J]. J Chromatogr Sci, 2022, 60(5): 478-485.

[94]

Wu JL, Leung ELH, Zhou H, et al. Metabolite analysis of toosendanin by an ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry technique[J]. Molecules, 2013, 18(10): 12144-12153.

[95]

Yu J, Zhang R, Zhang T, et al. Determination of toosendanin and trans-anethole in Fructus Meliae Toosendan and Fructus Foeniculi by HPLC-MS/MS and GC-MS/MS in rat plasma and their potential herb-herb interactions[J]. Biomed Chromatogr, 2020, 34(7): e4837.

[96]

Li K, Crews CM. PROTACs: past, present and future[J]. Chem Soc Rev, 2022, 51(12): 5214-5236.

[97]

Liyanage PY, Hettiarachchi SD, Zhou Y, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 419-433.

[98]

Zeng S, Huang W, Zheng X, et al. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: recent progress and future challenges[J]. Eur J Med Chem, 2021, 210: 112981.

[99]

Hughes SJ, Ciulli A. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders[J]. Essays Biochem, 2017, 61(5): 505-516.

[100]

He X, Weng Z, Zou Y. Progress in the controllability technology of PROTAC[J]. Eur J Med Chem, 2024, 265: 116096.

[101]

Chen C, Yang Y, Wang Z, et al. Recent advances in pro-PROTAC development to address On-Target Off-tumor toxicity[J]. J Med Chem, 2023, 66(13): 8428-8440.

[102]

Si L, Shen Q, Li J, et al. Generation of a live attenuated influenza A vaccine by proteolysis targeting[J]. Nat Biotechnol, 2022, 40(9): 1370-1377.

[103]

Sakamoto KM, Kim KB, Verma R, et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation[J]. Mol Cell Proteomics, 2003, 2 (12):1350-1358.

[104]

Mohamed AJ, Yu L, Bäckesjö CM, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain[J]. Immunol Rev, 2009, 228(1): 58-73.

[105]

Huang HT, Dobrovolsky D, Paulk J, et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader[J]. Cell Chem Biol, 2018, 25 (1): 88-99. e6.

[106]

Sakamoto KM, Kim KB, Kumagai A, et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation[J]. Proc Natl Acad Sci USA, 2001, 98(15): 8554-8559.

[107]

Jin J, Wu Y, Zhao Z, et al. Small-molecule PROTAC mediates targeted protein degradation to treat STAT3-dependent epithelial cancer[J]. JCI Insight, 2022, 7 (22): e160606.

[108]

Xu H, Liu L, Li W, et al. Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications[J]. Oncogene, 2021, 40(9): 1555-1569.

[109]

Bai L, Zhou H, Xu R, et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo[J]. Cancer Cell, 2019, 36 (5): 498-511. e17.

[110]

Yang K, Wu H, Zhang Z, et al. Development of selective histone deacetylase 6 (HDAC6) degraders recruiting von Hippel-Lindau (VHL) E3 ubiquitin ligase [J]. ACS Med Chem Lett, 2020, 11(4): 575-581.

[111]

Bian J, Ren J, Li Y, et al. Discovery of wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity[J]. Bioorg Chem, 2018, 81: 373-381.

[112]

He Y, Khan S, Huo Z, et al. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies[J]. J Hematol Oncol, 2020, 13(1): 103.

[113]

Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm[J]. Nat Rev Drug Discov, 2017, 16(2): 101-114.

[114]

Casan JML, Seymour JF. Degraders upgraded: the rise of PROTACs in hematological malignancies[J]. Blood, 2024, 143(13): 1218-1230.

[115]

Albalawi F, Hussein MZ, Fakurazi S, et al. Engineered nanomaterials: the challenges and opportunities for nanomedicines[J]. Int J Nanomed, 2021, 16: 161-184.

[116]

Chen D, Liu X, Lu X, et al. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy[J]. Front Pharmacol, 2023, 14 : 1111991.

[117]

Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery[J]. Nat Rev Drug Discov, 2021, 20(2): 101-124.

[118]

Chen Y, Wang J, Wang Q, et al. Coordination-bonded fucoidan-based curcumin nanoparticle for cancer-targeted therapy[J]. Acs Sustain Chem Eng, 2023, 11(32): 11745-11755.

[119]

Kaps A, Gwiazdoń P, Chodurek E. Nanoformulations for delivery of pentacyclic triterpenoids in anticancer therapies[J]. Molecules, 2021, 26(6): 1764.

[120]

WOng KE, Ngai SC, Chan KG, et al. Curcumin nanoformulations for colorectal cancer: a review[J]. Front Pharmacol, 2019, 10 : 152.

[121]

Choi CHJ, Xiong MP. Nanomedicines beyond cancer[J]. Mol Pharm, 2021, 18(2): 475-475.

[122]

Song BL, Zhang XH, Qiao ZY, et al. Peptide-based AIEgens: from molecular design, stimuli responsiveness to biomedical application[J]. CCS Chemistry, 2021, 4(2): 437-455.

[123]

Sakai-kato K, Yoshida K, Takechi-haraya Y, et al. Physicochemical characterization of liposomes that mimic the lipid composition of exosomes for effective intracellular trafficking[J]. Langmuir, 2020, 36(42): 12735-12744.

[124]

Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids[J]. J Mol Biol, 1965, 13(1): 238-252.

[125]

Miao YQ, Chen MS, Zhou X, et al. Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel[J]. Acta Pharmacol Sin, 2021, 42(10): 1714-1722.

[126]

Zhu Y, Wang A, Zhang S, et al. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells[J]. J Adv Res, 2023, 49: 159-173.

[127]

Battista S, Maggi MA, Bellio P, et al. Curcuminoids-loaded liposomes: influence of lipid composition on their physicochemical properties and efficacy as delivery systems[J]. Colloid Surface A, 2020, 597: 124759.

[128]

Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Res, 1986, 46 (12 Pt 1): 6387-6392.

[129]

Ma Z, Gao X, Raza F, et al. Design of GSH-responsive curcumin nanomicelles for oesophageal cancer therapy[J]. Pharmaceutics, 2022, 14(9): 1802.

[130]

Giliopoulos D, Zamboulis A, Giannakoudakis D, et al. Polymer/metal organic framework (MOF) nanocomposites for biomedical applications[J]. Molecules, 2020, 25(1): 185.

[131]

Li W, Chen Y, He K, et al. The apoptosis of liver cancer cells promoted by curcumin/TPP-CZL nanomicelles with mitochondrial targeting function[J]. Front Bioeng Biotechnol, 2022, 10: 804513.

[132]

Shu X, Zhu Z, Cao D, et al. PEG-derivatized birinapant as a nanomicellar carrier of paclitaxel delivery for cancer therapy[J]. Colloids Surf B Biointerfaces, 2019, 182: 110356.

[133]

Lu J, Lou Y, Zhang Y, et al. Paclitaxel has a reduced toxicity profile in healthy rats after polymeric micellar nanoparticle delivery[J]. Int J Nanomedicine, 2023, 18: 263-276.

[134]

Han Y, Liang N, Yan P, et al. A chitosan-based micellar system as nanocarrier for the delivery of paclitaxel[J]. Polymers (Basel), 2020, 12(2): 380.

[135]

Tayyab S, Feroz SR. Chapter Nine - Serum albumin: clinical significance of drug binding and development as drug delivery vehicle[M].In: Adv Protein Chem Struct Biol, 2021, 123 : 193-218.

[136]

Chen Y, Han L, Qiu X, et al. Reassembling of albumin-bound paclitaxel mitigates myelosuppression and improves its antitumoral efficacy via neutrophil-mediated targeting drug delivery[J]. Drug Deliv, 2022, 29(1): 728-742.

[137]

Hassan MS, Awasthi N, Ponna S, et al. Nab-paclitaxel in the treatment of gastrointestinal cancers—improvements in clinical efficacy and safety[J]. Biomedicines, 2023, 11(7): 2000.

[138]

Von Hoff DD, Ramanathan RK, Borad MJ, et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial[J]. J Clin Oncol, 2011, 29(34): 4548-4554.

[139]

Hosein PJ, De Lima Lopes GJ, Pastorini VH, et al. A phase II trial of nab-paclitaxel as second-line therapy in patients with advanced pancreatic cancer[J]. Am J Clin Oncol, 2013, 36(2): 151-156.

[140]

Shroff RT, Javle MM, Xiao L, et al. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial[J]. JAMA Oncol, 2019, 5(6): 824-830.

[141]

Takashima A, Shitara K, Fujitani K, et al. Peritoneal metastasis as a predictive factor for nab-paclitaxel in patients with pretreated advanced gastric cancer: an exploratory analysis of the phase III absolute trial[J]. Gastric Cancer, 2019, 22(1): 155-163.

[142]

Kobayashi D, Mochizuki Y, Torii K, et al. Phase II multi-institutional prospective trial of nab-paclitaxel as second-line chemotherapy for advanced gastric cancer refractory to fluoropyrimidine with modified dose reduction criteria (CCOG1303) [J]. Int J Clin Oncol, 2020, 25(10): 1793-1799.

[143]

Overman MJ, Adam L, Raghav K, et al. Phase II study of nab-paclitaxel in refractory small bowel adenocarcinoma and CpG island methylator phenotype (CIMP)-high colorectal cancer[J]. Ann Oncol, 2019, 30(3): 495.

[144]

Zhou Q, Wu X, Wen C, et al. Toosendanin induces caspase-dependent apoptosis through the p38 MAPK pathway in human gastric cancer cells[J]. Biochem Biophys Res Commun, 2018, 505(1): 261-266.

[145]

Shi JY, Xu XL, Gao HY, et al. Effect of ligustrazine on malignant biological behavior of ovarian cancer cells[J]. Chin J Clin Pharmacol, 2021, 37(7): 847-850.

[146]

Yang T, Huo J, Xu R, et al. Synergistic effect of toosendanin and regorafenib against cell proliferation and migration by regulating WWOX signaling pathway in hepatocellular carcinoma[J]. Phytother Res, 2021, 35(8): 4567-4578.

[147]

Zhang S, Dong Y, Chen X, et al. Toosendanin, a late-stage autophagy inhibitor, sensitizes triple-negative breast cancer to irinotecan chemotherapy[J]. Chin Med, 2022, 17(1): 55.

[148]

Zhang J, Yang F, Mei X, et al. Toosendanin and isotoosendanin suppress triple-negative breast cancer growth via inducing necrosis, apoptosis and autophagy[J]. Chem Biol Interact, 2022, 351: 109739.

[149]

Pei Z, Fu W, Wang G. A natural product toosendanin inhibits epithelial-mesenchymal transition and tumor growth in pancreatic cancer via deactivating Akt/mTOR signaling[J]. Biochem Biophys Res Commun, 2017, 493(1): 455-460.

[150]

Chen S, Ni J, Luo L, et al. Toosendanin induces hepatotoxicity via disrupting LXRα/Lipin1/SREBP1 mediated lipid metabolism[J]. Food Chem Toxicol, 2024, 187: 114631.

[151]

Zhuo Y, Zhang Y, Li M, et al. Hepatotoxic evaluation of toosendaninvia biomarker quantification and pathway mapping of large-scale chemical proteomics[J]. Food Chem Toxicol, 2021, 153: 112257.

[152]

Luo L, Ni J, Zhang J, et al. Toosendanin induces hepatotoxicity by restraining autophagy and lysosomal function through inhibiting STAT3/CTSC axis[J]. Toxicol Lett, 2024, 394: 102-113.

[153]

Luo L, Liang Y, Fu Y, et al. Toosendanin induces hepatocyte damage by inhibiting autophagic fluxvia TFEB-mediated lysosomal dysfunction[J]. Pharmaceuticals (Basel), 2022, 15(12): 1509.

[154]

Yang F, Li L, Yang R, et al. Identification of serum microRNAs as potential toxicological biomarkers for toosendanin-induced liver injury in mice[J]. Phytomedicine, 2019, 58: 152867.

[155]

Li WH, Wang YZ, Luo SX, et al. Effect of long-term administration of stri-frying Toosendan Fructus on liver and kidney toxicity of rats[J]. J Liaoning Univ Tradit Chin Med, 2018, 20(1): 48-51.

[156]

Tang DX, Xiong JY, Liang YJ, et al. Study on acute toxicity of Fructus Toosendan to rats, lishizhen medicine and materia medica[J]. Lishizhen Med Mater Med Res, 2011, 22(10): 2387-2389.

[157]

Zhang XF. Studies on embryotoxicity of toosendanin and immunological toxicology mechanism of uterus in pregnant mice[D]. Xianyang: Noorthwest A&F University, 2004.

[158]

Zhang XF, Wang JH, Zhang SF, et al. Embryotoxicity studies of toosendan on Kunming mice[J]. Acta Veter Zootech Sin, 2005(3): 301-305.

[159]

Zhang JL, Huang J, Zhong XH. Effects of toosendan on CD4+/CD8+ T cells and F4/80 + macrophages in uterine tissues of pregnant mice[J]. Prog Veter Med, 2011, 32(3): 86-90.

[160]

Yu JCH, Min ZD, IP NY. Melia toosendan regulates PC12 cell differentiation via the activation of protein kinase A and extracellular signal-regulated kinases[J]. Neurosignals, 2004, 13(5): 248-257.

[161]

Shi YL, Chen WY. Effect of toosendanin on acetylcholine level of rat brain, a microdialysis study[J]. Brain Res, 1999, 850(1): 173-178.

[162]

Zhu ZZ, Liao LY, Qiao HZ. Extracellular vesicle-based drug delivery system boosts phytochemicals’ therapeutic effect for neurodegenerative diseases[J]. Acup Herb Med, 2022, 2 (4): 229-239.

[163]

Atieno DP, Chen YX, Bai LD, et al. Nature products of traditional Chinese medicine provide new ideas in γδT cell for tumor immunotherapy[J]. Acup Herb Med, 2022, 2 (2): 78-83.

Funding

National Natural Science Foundation of China(82322073)

National Natural Science Foundation of China(82304790)

National Natural Science Foundation of China(82173846)

China Postdoctoral Innovative Talent Support Program(BX20220213)

Shanghai Rising-Star Program(22QA1409100)

Oriental Scholars of Shanghai(TP2022081)

Jiangxi Province Thousand Talents Program(jxsq2023102168)

Young Talent Lifting Project of China Association of Chinese Medicine(No. CACM-(2021-QNRC2-A08))

Shanghai Science and Technology Innovation Action Plan(21S11902800)

Three-year Action Plan for Shanghai TCM Development and Inheritance Program(Nos. ZY (2021-2023)-0401)

Three-year Action Plan for Shanghai TCM Development and Inheritance Program(ZY (2021-2023)-0208)

Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202004)

CAMS Innovation Fund for Medical Sciences (CIFMS)(2023-I2M-3-009)

Shanghai Sailing Program(22YF1445000)

Shanghai Sailing Program(23YF1442600)

National Key R&D Program of China(2022YFC3502000)

Strategic Innovation Team of TCM Chemical Biology, Organizational Key Research and Development Program of Shanghai University of Traditional Chinese Medicine(2023YZZ02)

PDF (1717KB)

77

Accesses

0

Citation

Detail

Sections
Recommended

/